Abstract
The training of medical image analysis systems using machine learning
approaches follows a common script: collect and annotate a large dataset, train
the classifier on the training set, and test it on a hold-out test set. This
process bears no direct resemblance with radiologist training, which is based
on solving a series of tasks of increasing difficulty, where each task involves
the use of significantly smaller datasets than those used in machine learning.
In this paper, we propose a novel training approach inspired by how
radiologists are trained. In particular, we explore the use of meta-training
that models a classifier based on a series of tasks. Tasks are selected using
teacher-student curriculum learning, where each task consists of simple
classification problems containing small training sets. We hypothesize that our
proposed meta-training approach can be used to pre-train medical image analysis
models. This hypothesis is tested on the automatic breast screening
classification from DCE-MRI trained with weakly labeled datasets. The
classification performance achieved by our approach is shown to be the best in
the field for that application, compared to state of art baseline approaches:
DenseNet, multiple instance learning and multi-task learning.