Abstract
Epitaxially grown III-V semiconductor lasers on silicon substrates are key to the development of low-cost silicon photonic circuits. Antimony based Composite Quantum Well (CQW) devices on silicon, which overcome lattice constant and thermal mismatch differences, have been successfully demonstrated in the important 1.55 m long-haul telecoms wavelength region [1] . However, further development is required to address high threshold current densities and temperature sensitivity. To improve these on-silicon devices we investigate and report on the efficiency limiting mechanisms of the equivalent active regions grown on GaSb. The devices investigated here consist of compressively strained Ga 0.8 In 0.2 Sb QWs with Al 0.35 Ga 0.65 As 0.03 Sb 0.97 barriers and Al 0.9 Ga 0.1 As 0.07 Sb 0.93 cladding layers lattice matched to a GaSb substrate [2] . In this paper we report on the temperature and high hydrostatic pressure dependent investigation of these devices. We identify details of the principal efficiency limiting mechanisms and sources of temperature sensitivity and provide specific recommendations for design improvement.