Abstract
The first wave of IEEE 802.11ax capable devices have already hit the market, aiming at enhancing the Quality of Experience (QoE) for the users in dense deployments, by enabling novel features to improve throughput and spectrum efficiency. One of these features is Spatial Reuse (SR) mechanism, which is introduced for coping with the exposed node problem. Under the SR operation, nodes belonging on different Basic Service Sets (BSSs) are allowed to initiate concurrent transmissions, utilising the spectrum resources and improving throughput. However, the main challenge for this enabling technology is the increased interference level that is introduced by the concurrent transmissions. Even though, there are a few algorithms available in the literature that study this issue for the IEEE 802.11ax, in this article we look into that issue from a different perspective. We propose an Interference-Aware scheduler for the Medium Access Control (MAC) queue based on the interference level observed and other characteristics that can be obtained from the channel and the inter-BSS frames. This paper considers only downlink traffic for the evaluation of the proposed scheme with simulation-based results showing a clear performance improvement of up to 34% against the legacy First-In First-Out (FIFO) MAC queue by introducing new policies and leave room for further exploration and enhancements.