Abstract
Orthogonal frequency division multiplexing (OFDM) with index modulation (IM) (OFDM-IM), which employs the activated sub-carrier indices to convey information, exhibits higher energy efficiency and lower peak-to-average power ratio (PAPR)thanconventionalOFDMsystems.Tofurtherimprovethe throughput of discrete Fourier transform (DFT) based OFDM-IM (DFT-OFDM-IM),discretecosinetransform(DCT)basedOFDMIM (DCT-OFDM-IM) can be employed with double subcarriers giventhesamebandwidth.However,oneofthemaindisadvantage of DCT-OFDM-IM is its lack of circular convolutional property over a dispersive channel. To address this issue, an enhanced DCT-OFDM-IM(EDCT-OFDM-IM)systemhasbeenproposedby introducing symmetric prefix and suffix at the transmitter and a pre-filter at the receiver leading to better performance than DFTOFDM-IM in terms of bit error rate (BER). However, due to its special structure, it is difficult to derive the accurate absolute bit error probability (ABEP) upper bound, which is essential for the performance evaluation. In this paper, a tight ABEP upper bound is derived using the moment-generating-function (MGF). Our theoretical analysis is validated by simulation results and proven to be very accurate. Consequently the advantages of the EDCT-OFDM-IM system over the classic OFDM-IM system are further demonstrated analytically.