Abstract
Automatic image annotation is the task of automatically assigning some form of semantic label to images, such as words, phrases or sentences describing the objects, attributes, actions, and scenes depicted in the image. In this chapter, we present an overview of the various automatic image annotation tasks that were organized in conjunction with the ImageCLEF track at CLEF between 2009–2016. Throughout the eight years, the image annotation tasks have evolved from annotating Flickr photos by learning from clean data to annotating web images by learning from large-scale noisy web data. The tasks are divided into three distinct phases, and this chapter will provide a discussion for each of these phases.We will also compare and contrast other related benchmarking challenges, and provide some insights into the future of automatic image annotation.