Abstract
This paper presents a novel design of trapped microstrip-ridge gap waveguide by using partially filled air gaps in a conventional microstrip-ridge gap waveguide. The proposed method offers an applicable solution to obviate frustrating assembly processes for standalone high-frequency circuits employing the low temperature co-fired ceramics technology which supports buried cavities. To show the practicality of the proposed approach, propagation characteristics of both trapped microstrip and microstrip-ridge gap waveguide are compared first. Then, a right-angle bend is introduced, followed by designing a power divider. These components are used to feed a linear 4-element array antenna. The bandwidth of the proposed array is 13 GHz from 64~76 GHz and provides the realized gain of over 10 dBi and the total efficiency of about 80% throughout the operational band. The antenna is an appropriate candidate for upper bands of WiGig (63.72~70.2) and FCC-approved 70 GHz band (71~76 GHz) applications.