Output list
Journal article
First online publication 14/09/2023
Physical Review C, 108, 3, 035807-1 - 035807-8
The 25 Al(p, γ) reaction has long been highlighted as a possible means to bypass the production of 26 Al cosmic γ rays in classical nova explosions. However, uncertainties in the properties of key resonant states in 26 Si have hindered our ability to accurately model the influence of this reaction in such environments. We report on a detailed γ-ray spectroscopy study of 26 Si and present evidence for the existence of a new, likely ℓ = 1, resonance in the 25 Al + p system at Er = 153.9(15) keV. This state is now expected to provide the dominant contribution to the 25 Al(p, γ) stellar reaction rate over the temperature range, T ∼ 0.1 − 0.2 GK. Despite a significant increase in the rate at low temperatures, we find that the final ejected abundance of 26 Al from classical novae remains largely unaffected even if the reaction rate is artificially increased by a factor of 10. Based on new, Galactic chemical evolution calculations, we estimate that the maximum contribution of novae to the observed Galactic abundance of 26 Al is ∼0.2 M⊙. Finally, we briefly highlight the important role that Super-AGB stars may play in the production of 26 Al.
Journal article
Level structure of the Tz=-1 nucleus Ar 34 and its relevance for nucleosynthesis in ONe novae
Published 03/2021
Physical review. C, 103, 3, 035805
The 24 Mg + 12 C fusion reaction was used to perform a detailed γ-ray spectroscopy study of the astrophysically important nucleus 34 Ar. In particular, an experimental setup, coupling the advanced γ-ray tracking array GRETINA with the well-established Argonne fragment mass analyzer (FMA), was employed to obtain excitation energies and spin-parity assignments for excited states in 34 Ar, both above and below the proton separation energy. For the first time, an angular distribution analysis of in-beam γ rays from fusion-evaporation reactions, using a tracking array, has been performed and Coulomb energy differences of analog states in the T = 1, A = 34 mirror system, explored from 0 to 6 MeV. Furthermore, we present a comprehensive discussion of the astrophysical 33 Cl(p, γ) stellar reaction rate, together with implications for the identification of nova presolar grains from sulfur isotopic abundances.
Conference proceeding
Published 01/12/2020
Journal of physics. Conference series, 1643, 1
International Nuclear Physics Conference, 29/07/2019–02/08/2019, Glasgow, UK
The reaction of a pulsed 18O beam on a self-supporting and gold-backed isotopically-enriched 164Dy target of thickness 6.3 mg/cm2 at separate primary beam energies of 71, 76 and 80 MeV was studied at the accelerator at the ALTO facility of the IPN Orsay. The γ rays produced were detected using the newly-constructed ν-Ball spectrometer which comprised of HPGe and LaBr3(Ce) detectors. This conference paper describes the methodology and effectiveness of multiplicity/sum-energy gating, for channel selection between fusion evaporation events and lower multiplicity/energy events from inelastic nuclear scattering and Coulomb excitation of the target, and from two-neutron transfer reactions to 166Dy.
Journal article
Published 26/06/2020
Physical Review Letters, 124, 25
The discovery of presolar grains in primitive meteorites has launched a new era of research in the study of stellar nucleosynthesis. However, the accurate classification of presolar grains as being of specific stellar origins is particularly challenging. Recently, it has been suggested that sulfur isotopic abundances may hold the key to definitively identifying presolar grains with being of nova origins and, in this regard, the astrophysical Cl33 ( p,γ ) Ar34 reaction is expected to play a decisive role. As such, we have performed a detailed γ -ray spectroscopy study of Ar34 . Excitation energies have been measured with high precision and spin-parity assignments for resonant states, located above the proton threshold in Ar34 , have been made for the first time. Uncertainties in the Cl33 ( p,γ ) reaction have been dramatically reduced and the results indicate that a newly identified ℓ=0 resonance at Er=396.9 ( 13 ) keV dominates the entire rate for T=0.25–0.40 GK . Furthermore, nova hydrodynamic simulations based on the present work indicate an ejected S 32/ S 33 abundance ratio distinctive from type-II supernovae and potentially compatible with recent measurements of a presolar grain.
Journal article
Published 26/02/2020
Physical Review. C, 101, 2
We report on the measurement of lifetimes of excited states in the near-mid-shell nuclei Dy-164,Dy-166 using the gamma-ray coincidence fast-timing method. The nuclei of interest were populated using reactions between an O-18 beam and a gold-backed isotopically enriched Dy-164 target of thickness 6.3 mg/cm(2) at primary beam energies of 71, 76, and 80 MeV from the IPN-Orsay laboratory, France. Excited states were populated in Dy-164, Dy-166, and W-178,W-179 following Coulomb excitation, inelastic nuclear scattering, two-neutron transfer, and fusion-evaporation reaction channels respectively. Gamma rays from excited states were measured using the nu-Ball high-purity germanium (HPGe)-LaBr3 hybrid gamma-ray spectrometer with the excited state lifetimes extracted using the fast-timing coincidence method using HPGe-gated LaBr3-LaBr3 triple coincident events. The lifetime of the first I-pi = 2(+) excited state in Dy-166 was used to determine the transition quadrupole deformation of this neutron-rich nucleus for the first time. The experimental methodology was validated by showing consistency with previously determined excited state lifetimes in Dy-164. The half-lives of the yrast 2(+) states in Dy-164 and Dy-166 were 2.35(6) and 2.3(2) ns, respectively, corresponding to transition quadrupole moment values of Q(0) = 7.58(9) and 7.5(4) eb, respectively. The lifetime of the yrast 2(+) state in Dy-166 is consistent with a quenching of nuclear quadrupole deformation at beta approximate to 0.35 as the N = 104 mid-shell is approached.
Journal article
Multi-quasiparticle sub-nanosecond isomers in 178W
Published 10/02/2020
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 801, 135140
We report on the first measurement of the half-lives of and four-quasiparticle states in the even-even nucleus 178W. The sub-nanosecond half-lives were measured by applying the centroid shift method to data taken with LaBr3(Ce) scintillator detectors of the NuBall array at the ALTO facility in Orsay, France. The half-lives of these states only became experimentally accessible by the combination of several experimental techniques - scintillator fast timing, isomer spectroscopy with a pulsed beam, and the event-by-event calorimetry information provided by the NuBall array. The measured half-lives are and for the and states, respectively. The decay transitions include weakly hindered E1 and E2 branches directly to the ground-state band, bypassing the two-quasiparticle states. This is the first such observation for an E1 transition. The interpretation of the small hindrance hinges on mixing between the ground-state band and the t-band.
Journal article
Isomer spectroscopy and sub-nanosecond half-live determination in 178w using the NuBall array
Published 03/2019
Acta Physica Polonica B, 50, 3, 661 - 667
The reaction of a pulsed 18O beam on a 164Dy target was studied in the first experiment with the NuBall array at the IPN Orsay, France. Excited state half-lives were measured using the fast timing method with 20 LaBr3(Ce) detectors. The timing characteristics of the fully digital acquisition system is briefly discussed. A value for the previously unknown half-life of the first excited 4+ state in 178W is presented.