Abstract
The launch of the StarLink Project has recently stimulated a new wave of research on integrating Low Earth Orbit (LEO) satellite networks with the terrestrial Internet infrastructure. In this context, one distinct technical challenge to be tackled is the frequent topology change caused by the constellation behaviour of LEO satellites. Frequent change of the peering IP connection between the space and terrestrial Autonomous Systems (ASes) inevitably disrupts the Border Gateway Protocol (BGP) routing stability at the network boundaries which can be further propagated into the internal routing infrastructures within ASes. To tackle this problem, we introduce the Geosynchronous Network Grid Addressing (GNGA) scheme by decoupling IP addresses from physical network elements such as a LEO satellite. Specifically, according to the density of LEO satellites on the orbits, the IP addresses are allocated to a number of stationary "grids" in the sky and dynamically bound to the interfaces of the specific satellites moving into the grids along time. Such a scheme allows static peering connection between a terrestrial BGP speaker and a fixed external BGP (e-BGP) peer in the space, and hence is able to circumvent the exposure of routing disruptions to the legacy terrestrial ASes. This work-in-progress specifically addresses a number of fundamental technical issues pertaining to the design of the GNGA scheme.