Abstract
We propose an approach to accurately esti- mate 3D human pose by fusing multi-viewpoint video (MVV) with inertial measurement unit (IMU) sensor data, without optical markers, a complex hardware setup or a full body model. Uniquely we use a multi-channel 3D convolutional neural network to learn a pose em- bedding from visual occupancy and semantic 2D pose estimates from the MVV in a discretised volumetric probabilistic visual hull (PVH). The learnt pose stream is concurrently processed with a forward kinematic solve of the IMU data and a temporal model (LSTM) exploits the rich spatial and temporal long range dependencies among the solved joints, the two streams are then fused in a final fully connected layer. The two complemen- tary data sources allow for ambiguities to be resolved within each sensor modality, yielding improved accu- racy over prior methods. Extensive evaluation is per- formed with state of the art performance reported on the popular Human 3.6M dataset [26], the newly re- leased TotalCapture dataset and a challenging set of outdoor videos TotalCaptureOutdoor. We release the new hybrid MVV dataset (TotalCapture) comprising of multi- viewpoint video, IMU and accurate 3D skele- tal joint ground truth derived from a commercial mo- tion capture system. The dataset is available online at http://cvssp.org/data/totalcapture/.