Abstract
The SUCC~SS of the deployment of CPRS will be significantly influenced by the introduction of efieient and variable QoS management and supporting mechanisms. Although QoS profiles for a number of CPRS service classes has been specified by ETSI, implementation issues plays a major role in achieving that. This includes QoS management in the areas of trsfflc scheduling, traffic shaping and call admission control techniques. QoS in CPRS is defined as the collective etTect of service performances, which determines the degree of satisfaction of a user of the service. QoS enables the differentiation between provided services. Increasing demand and limited bandwidth available for mobile communication scrriees require efficient use of radio resources among diverse services. I n future wireless packet networks, it is anticipated that B wide variety of data applications, ranging from WWW browsing to Email, and real time sewices like paeketized voice and videoconference will be supported with varying levels of QoS. Therefore there is P need for packet and service scheduling schemes that effectively provide QoS guarantees and also are simple to implement This paper describes a novel dynamic admission control and scheduling technique based on genetic algorithms focusing on static and dynamic parameters of service classes I. Performance comparison of this technique on a CPRS system is evaluated against data services and also a trafiic mix comprising voice and data.