Abstract
—With the huge number of broadband users, automated network management becomes of huge interest to service providers. A major challenge is automated monitoring of user Quality of Experience (QoE), where Artificial Intelligence (AI) and Machine Learning (ML) models provide powerful tools to predict user QoE from basic protocol indicators such as Round Trip Time (RTT), retransmission rate, etc. In this paper, we introduce an effective feature selection method along with the corresponding classification algorithms to address this challenge. The simulation results show a prediction accuracy of 78% on the benchmark ITU ML5G-PS-012 dataset, improving 11% over the state-of-the-art result whilst reducing the model complexity at the same time. Moreover, we show that the local area network round trip time (LAN RTT) value during daytime and midweek plays the most prominent factor affecting the user QoE.