Abstract
The spatially-incoherent radiators in visible light communication (VLC) constrain the optical carrier to be only driven by a real electrical sub-carrier, which cannot be quadrature modulated as in classic RF-based systems. This restriction, in turn, severely limits the transmission throughput of VLC systems. To overcome this technical challenge, we propose a novel coherent transmission scheme for VLC, in which the optical carrier is only treated as a purely amplitude-modulated carrier capable of transmitting two-dimensional (2D) symbols (e.g. quadrature modulated symbols). The ability of our new coherent transmission scheme to transmit 2D symbols is validated through analytical symbol error rate derivation and Matlab simulations. Results show that our scheme can improve both the spectral and energy efficiency of VLC systems, i.e. by either doubling the spectral efficiency or achieving more than 45% energy efficiency improvement, when compared to its existing counterparts.