Abstract
There is evidence that water-ice exists on a number of bodies in the solar system. As ice deposits may contain biomarkers that indicate the presence of life, or can be used as a consumable resource for future missions, confirming these observations with in-situ measurements is of great interest. Missions aiming to do this must consider how the presence of water-ice in regolith affects both the regolith’s properties and the performance of the instruments that interact with it. The properties of icy lunar and Martian regolith simulants in preparation for currently planned missions are examined in this chapter. These results can be used in future instrumentation testing and missions designed to explore other icy bodies in the solar system. The testing of icy lunar regolith simulants is summarised, before focusing on experiments demonstrating the change in properties of frozen NU-LHT-2M, a simulant of the highlands regolith found at the lunar poles, as water is added. Further tests showed a critical point of 5 ± 1% water mass content where the penetration resistance significantly increases. The addition of water to Martian regolith simulants was also examined, with the presence of salts resulting in the formation of cemented crusts under simulated Martian conditions. Additional tests with the ExoMars PSDDS demonstrated how increased internal cohesion caused by the water resulted in the failure of the instrument.