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ABSTRACT 

 

Soil moisture content (SMC) is an important parameter in many fields, especially in 

agricultural practices. That is the reason that an accurate retrieval of this parameter is of the 

utmost importance. Point-based measurements of soil moisture while accurate, are expensive 

in terms of time and effort, not to mention that their inability to depict spatial variability of 

SMC accurately on a large scale. Soil moisture retrieval methods using remote sensing 

technologies show great promise but suffer from numerous limitations. To minimize the 

effects of those limitations, a novel decision level data fusion algorithm for SMC estimation 

is proposed in this research. Initially, individual estimations are determined from 3 different 

methodologies; the inversion of Empirically Adapted Integral Equation Model (EA-IEM) 

which is semi-empirically calibrated using a parameter Lopt for Sentinel-1, the Perpendicular 

Drought Index (PDI), and Temperature Vegetation Dryness Index (TVDI) for LANDSAT-8. 

Then, three feature level fusions using novel combinations of salient features extracted from 

each of the method mentioned above are performed using an Artificial Neural Network 

(ANN). The latter is characterized by the modification of its performance function from 

absolute error to Root Mean Square Error. Finally, all estimations including the feature level 

fusions estimation are fused at the decision level using a novel weights-based estimation, 

which is implemented through a novel Matlab code. The performance of the proposed system 

is validated and tested using measurements collected from three study areas, an agricultural 

field in Blackwell farms, Guildford, United Kingdom, and two different agricultural fields in 

Sidi Rached, Tipasa, Algeria. Those measurements consisted of SMC level, and surface 

roughness parameters which were extracted using a newly designed laser profilometre. The 

proposed SMC estimation system produces stronger correlations and lower RMSE values than 

any individual SMC estimation in the order of at least 0.38%, 1.4%, and 1.09% for Blackwell 

farms, Sidi Rached 1 and Sidi Rached 2 datasets respectively. 

 

Keywords: soil moisture content; remote sensing; data fusion; empirically adapted integral 

equation model; Sentinel-1; perpendicular drought index; temperature vegetation dryness 

index; Landsat-8; feature level fusion; artificial neural network; decision level fusion; 

Blackwell farms; Sidi Rached.
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1. INTRODUCTION 

 Background 

Though agriculture is essential for the nourishment of the overgrowing world’s population, 

it does not come without a price. Agriculture represents approximately 38.5% of Earth’s land 

area (FAO 2011) and 70% of the world’s freshwater withdrawal corresponds to irrigation 

purposes (Nhemachena, Matchaya et al. 2018), which leads to the subject of this research. In 

order to, effectively reduce agricultural water consumption, it is important to understand an 

important component of the hydrological cycle, soil moisture (Jackson, Schmugge et al. 1996). 

 Accurate Surface Soil Moisture Content (SMC) levels estimations are instrumental not 

only for agricultural applications but for a deeper understanding of a variety of hydrological 

processes as well. On the global level, SMC can help determine a variety of land-atmosphere 

interactions, not to mention its crucial role in recent climate change studies (Hauser, Orth et 

al. 2016, Trenberth, Dai et al. 2014). SMC is also a significant factor for medium to small level 

applications such as natural resources management, drought assessments (Amani, Salehi et al. 

2017), and most importantly, agricultural practices like irrigation scheduling (Rodríguez-

Fernández, de Souza et al. 2017).  

In light of the highlighted importance of Soil Moisture Content (SMC), numerous attempts 

have been made in the literature to devise methods for its retrieval using different sensing 

platforms (Rahimzadeh-Bajgiran, Berg et al. 2013, Byun, Liaqat et al. 2014). Direct in-situ 

measurements of SMC offer the best estimation possible in terms of accuracy, but it comes at 

the expenses of time and effort, especially due to the fact that those discrete measurements are 

point-based, which makes them specific to particular locations only and does not depict the 

spatial distribution and variability of soil moisture realistically (Byun, Liaqat et al. 2014). 

These limitations can be overcome by the use of indirect measurements or, in other words, 

remote sensing (Jackson 1993).  

Remote sensing is capable of offering a continuous spatial and temporal coverage of SMC 

at all levels, and operational SMC satellites from various space agencies are an excellent 

example (Petropoulos, George P., Griffiths et al. 2013). Mission purposed satellites like Soil 

Moisture and Ocean Salinity (SMOS) (Kerr, Waldteufel et al. 2001a) or Soil Moisture Active 

Passive (SMAP) (Entekhabi, Yueh et al. 2014), do provide accurate SMC estimations (4% 

error) at a depth of 0-5 cm every 3 days (Al-Yaari, Wigneron et al. 2017).  
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However, their respective spatial resolution (30-50 km for SMOS and 10-40 km for SMAP) 

limits their usefulness at the regional level (Entekhabi, Njoku et al. 2010). Conversely, for 

small scale agriculture or family farms (< 2 ha), which happens to represent 75% of the 

agricultural land of the world (Lowder, Skoet et al. 2016), a different set of sensors with the 

significantly better spatial resolution is required, namely Synthetic Aperture Radars (SAR) 

(Moran, Peters-Lidard et al. 2004), thermal infrared and multispectral imagers (Hassan-

Esfahani, Torres-Rua et al. 2014). 

 High-resolution SAR imagers are independent of weather conditions, have night and day 

imaging capability, and offer surface penetration at various depths depending on their 

frequencies (from a few cms in X-band to tens of cm in the L-band in dry soil conditions) 

(Zribi, Muddu et al. 2019). SMC estimation methods pertaining to high-resolution SAR utilise 

the fact that the backscattered radar signal is directly influenced by the dielectric constant of 

the upper few centimetres of the surface, the latter is also sensitive to soil roughness, soil 

texture, soil moisture (Kornelsen, Coulibaly 2013a). The relationship of the dielectric constant 

and SMC is best described as a polynomial (Hallikainen, Ulaby et al. 1985). This relationship 

has been successfully and consistently exploited by myriad models, whether be them semi-

empirical methods like Oh (Oh, Sarabandi et al. 1992) and Dubois (Dubois, Van Zyl et al. 

1995), or theoretical models such as the inversion of the Integral Equation Model (IEM) 

(Koyama, Liu et al. 2017, Baghdadi, Holah et al. 2006). The IEM is used extensively to 

determine soil moisture content and surface roughness parameters (Fung, Li et al. 1992), but 

its application in the presence of medium to intense vegetation covers is difficult since the 

sensitivity of the radar response to SMC is significantly reduced in these areas, especially at 

very short radar wavelength (Khabazan, Motagh et al. 2013).   

Estimations using multispectral and thermal infrared synergies, on the other hand, are not 

affected by the presence of partial or even intense vegetation covers (Lambin, Ehrlich 1996). 

The concept of these synergies takes advantage of the fact that surface radiant temperatures 

are correlated with the distribution and variability of SMC levels and vegetation (Du, Song et 

al. 2017). In remote sensing terms, surface radiant temperatures can be represented using Land 

Surface Temperature (LST) derived from atmospherically corrected thermal infrared images 

(with the wavelength in the range from 8 to 13 microns), and vegetation cover intensity (Yang, 

Y., Guan et al. 2015). Vegetation cover intensity can be represented by various Vegetation 

Indices (VI), which are essentially derived from algebraic combinations of the visible red (380-

760 nm) and near-infrared (760 nm-1 microns) (Petropoulos, Ireland et al. 2015). (Sandholt, 

Rasmussen et al. 2002) realized that the relationship between LST and VI can indicate SMC 

levels. VI/LST data points, when represented as two-dimensional scatter plot, form a 
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triangle/trapezoid feature space, which could be later used to determine extreme boundaries 

(dry/wet edges) to calculate an index called Temperature Vegetation Dryness Index (TVDI). 

TVDI, in turn, has a linear relationship with SMC (Petropoulos, G., Carlson et al. 2009). This 

method, however, suffers from uncertainty and subjectivity, especially when atmospheric 

conditions are not uniform. There are also limitations imposed by the current satellite 

technology involved in this synergy, namely coarse temporal resolution and susceptibility to 

cloudy conditions (Yang, Y., Guan et al. 2015).  

Since all the aforementioned sensors and methods produce variable results under different 

conditions, data fusion techniques are widely considered a suitable solution since they entail 

the compensation of the limitation of each sensor by the advantages of the other. To achieve 

the most accurate estimation possible, information is extracted from multiple sensors and 

combined instead of inferring estimations from a single sensor (Dong, Zhuang et al. 2009).  A 

comprehensive description of each method, as well as their respective limitations, will be 

provided in breadth in the Literature Review section. 

 Aim and Objectives 

This research aims to address the shortcomings of the previously highlighted remote 

sensing technologies by designing a system capable of using the advantages of each sensor to 

compensate for the limitations of another in the SMC retrieval sense. The goal of this research 

is to design a novel system that incorporates data fusion techniques to achieve soil moisture 

content determination (validated by point-based ground measurements) with better accuracy 

(compared to using one single technology on its own) and said system would need to ensure: 

• The retrieval of SMC levels using Synthetic Aperture Radar (SAR) by inverting an 

updated version of the Integral Equation Model.  

• The retrieval of SMC levels using a multispectral index called the Perpendicular 

Drought Index. 

• The retrieval of SMC levels using a synergy of thermal and multispectral images by 

exploiting the relationship between land surface temperature and the intensity of 

vegetation covers. This relationship culminates in an index called Temperature 

Vegetation Dryness Index which, in turn, estimates soil moisture content. 

• The retrieval of SMC levels using a feature level fusion, by feeding features extracted 

from each of the retrieval methods to an estimator. Different combinations of features 

have been used in this method. 
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• The retrieval of SMC levels using a decision level fusion by fusing all achieved 

estimations in a weight-based system. 

• Better accuracy of SMC estimation than that of each method is achieved with a fusion 

scheme. 

 Novelty and contributions  

The novelty of this research lies in the data fusion aspect of the proposed SMC estimation 

system, especially the feature and decision level fusions, more specifically the weight-based 

nature of this system.  

All of the previously described methods have already been investigated extensively in 

numerous studies (Dawson, Fung et al. 1997, Barrett, Dwyer et al. 2009, Sahebi, Angles 2010, 

Kornelsen, Coulibaly 2013a, MirMazloumi, Sahebi 2016, Mirsoleimani, Sahebi et al. 2019, 

Huang, S., Ding et al. 2019, Ghulam, Qin, and Zhan 2007, Zhang, J., Zhou et al. 2014, GE, 

ZHANG et al. 2018, Chen, Sun, Wang et al. 2019, Koyama, Liu et al. 2017, Baghdadi, Holah 

et al. 2006, Aisyah, Kusratmoko et al. 2019, Gherboudj, Magagi et al. 2011). Surveying those 

investigations produced a comprehensive knowledge of the advantages and limitations of each 

of those methods. The survey confirmed to the author the existence of a strong case for the use 

of data fusion techniques to ameliorate the accuracy of SMC estimation. However, employing 

said techniques for SMC estimation is hardly a novel contribution, as various iterations of 

those techniques have already been researched by authors in (Kurucu, Sanli et al. 2009, Bai, 

L., Long et al. 2019, Notarnicola, Posa 2001, Posa, Notarnicola et al. 2004, Yuan, Xu et al. 

2020, Zaman, McKee et al. 2012). This lead the author of this research to explore a novel 

approach to data fusion techniques as an attempt to achieve a more SMC estimation. The 

elements of the novelty of this approach can be summarized by the following points: 

• The use of an updated version of IEM suggested by (Song, Zhou et al. 2009), and 

incorporating a more accurate surface roughness parameter suggested by (Baghdadi, 

Holah et al. 2006) into that updated version. 

• The design and implementation of a new Laser profilometre to measure surface 

roughness parameters. 

• The design, planning, and execution of field campaigns to collect SMC and surface 

roughness ground measurement for tests and validation of the proposed system in 3 

distinct study areas.  

• The replacement of the performance function of a Back Propagation Neural Network 

from absolute error to Root Mean Square Error. 
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• The design and implementation of a novel feature level fusions using different 

combinations of the extracted salient features from each method. Specifically, to the 

time of writing of this thesis, the use of features from IEM inversion (especially this 

updated version of the IEM), Perpendicular Drought Index, and Temperature 

Vegetation Dryness Index has never been used in the same SMC estimation system. 

• The design of a novel weight-based system, where the weights are inferred from 

ground truth measurements, and those weights can be updated if future measurements 

are introduced. 

• The implementation of all components of the proposed SMC estimation system 

through the conception of a novel Matlab code. 

• Achieving an acceptable accuracy of estimation compared to the more similar studies 

in the literature.  

 Publication List 

In the time elapsed doing this research, two conference papers were published: 

• YAHIA, O., GUIDA, R., and IERVOLINO, P., 2018. Sentinel-1 and Landsat-8 

feature level fusion for soil moisture content estimation. EUSAR 2018, which was 

presented in the form of a poster. 

• YAHIA, O., GUIDA, R., and IERVOLINO, P., 2018. Weights Based Decision Level 

Data Fusion of Landsat-8 and Sentinel-1 for Soil Moisture Content Estimation, 

IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium 

2018, IEEE, pp. 8078-8081, which was presented in an oral presentation. 

 Outline of The Thesis 

This thesis is composed of six chapters: Introduction, Literature Review, Soil Moisture 

Content Estimation System- Conceptual design, Generating Test Datasets, Testing and 

Evaluation, and Conclusions and Future Work. 

Chapter 2, named Literature Review, provides a definition of Soil Moisture Content. Then 

it describes methods pertaining to Soil Moisture Content Retrieval Using Remote Sensing. 

Those methods include SMC Retrieval Using Operational Estimation by Remote Sensing, 

SMC Effects on Active Microwave Sensing, of which the chapter goes into finer details 

describing the Integral Equation Model theory as well as the limitations of SMC estimation 

through IEM inversion. Those methods also include SMC Retrieval Using Multispectral and 

Thermal Remote Sensors, most specifically Perpendicular Drought Index and Temperature 
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Vegetation Dryness Index, and their respective concepts, and their limitations when it comes 

to SMC estimations. Chapter 2 also defines Data fusion techniques and their massive potential 

to solve the limitation of each of the methods mentioned above supported by the evidence of 

past literature concerning data fusion specifically for SMC Estimation. Chapter 2 delineates 

the motivations and the rationale behind the novel SMC estimation system. Chapter 2 offers a 

detailed description of each component of the proposed system as well. 

Chapter 3 is named Soil Moisture Content Estimation System – Conceptual Design. 

Chapter 3 will justify the motivations behind using data fusion techniques to maximize the 

accuracy of SMC estimation. Then, the proposed SMC estimation system is introduced with 

all its various components. Components consist of the updated version of the Integral Equation 

Model and the reason behind its use, Pre-processing, the Perpendicular Drought Index and 

Temperature Vegetation Dryness Index respective determinations, Feature level fusion and 

the rationale behind it, and finally, more importantly, the most salient item of novelty in this 

research, the Fusion Centre, the reasoning behind it, as well as the proposed index to measure 

the accuracy of its estimation.  

Chapter 4 is called Generating Test Datasets. Chapter 4 is dedicated to delineating all 

details concerning the used study areas, as well as the corresponding earth observation data of 

these areas of interest (whether be it Sentinel-1 or Landsat-8 data). Chapter 4 incorporates 

descriptions of the process of ground truth measurement collection. Those measurements 

consist of two different information, SMC using the ML3 Theta Soil Moisture Probe and 

surface roughness parameters through two different types of Profilometres. 

Chapter 5 is named Testing and Evaluation. It contains all of the achieved results and 

analysis by the proposed SMC estimation system in study areas: Blackwell Farms, Sidi Rached 

1, and Sidi Rached 2. The results are analyzed and evaluated to produce key remarks and 

discussion points about the proposed system. 

Chapter 6 is named Conclusions and Future Work. It provides a summary of the thesis, and 

a list of the attained achievement in the course of this research, as well as the future research, 

plans the author has. 
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2. LITERATURE REVIEW  

 Introduction 

The design of a soil moisture retrieval system requires an intimate knowledge of soil 

moisture content, and that includes its basic concepts and the technologies used for its 

measurement. It is quite important to be familiarized with remote sensing to gather relevant 

information for the aforementioned system. This chapter will begin by providing key 

definitions of SMC and remote sensing and how soil moisture was retrieved in remote sensing 

data according to the state of the art. Different soil moisture content retrieval methods based 

on different sensors are explained in terms of theory and limitations of performance, methods 

such as the operational estimation by remote sensing, retrieval using active microwaves 

sensors (SAR), or more specifically, the use of Integral equation model inversion, and retrieval 

using multispectral and thermal remote sensors, where a multispectral index in the 

Perpendicular Drought Index was explained as well as another synergetic index (multispectral 

and thermal infrared synergy) in the Temperature Vegetation Dryness Index.  

This chapter concludes with the definition of data fusion techniques along with its different 

processing levels, and the proposal of data fusion as a solution to the discussed limitations.  

 Soil Moisture Content 

Soil moisture content (SMC) can be defined as the amount of water present within 

unsaturated soil particles (Hillel 1998). Based on the depth from the surface, soil moisture is 

split into two zones: the first zone represents the soil moisture in the upper 10 cm soil layer, 

and it is named the surface soil moisture, the second zone is immediately beneath the first is 

named the root zone soil moisture, where the water is available down to 200 cm below the soil 

surface, and it contains the groundwater available to plants as illustrated by Figure 1: 
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 The saturated and unsaturated soil zones. Adapted from (Peng, 

Loew et al. 2017). 

Figure 1 depicts the surface later and root zone, as well as the saturated and unsaturated 

soil zones. Where soil surface water (whether from irrigation or rain) drains downwards into 

deeper soil layers to eventually the permanently saturated layer, the top of the permanently 

saturated layer is called the water table depth (or groundwater depth). Where the capillary 

fringe is the layer of variable thickness that lies directly beneath the water table. The water in 

this layer moves upwards by capillary action (Petropoulos, Ireland et al. 2015). 

In this research, the focus would be on the estimation of surface soil moisture for 

agricultural practices.  

Soil moisture content can vary from one type of soil to another. Different soils hold 

different amounts of water depending on their structure and texture. Speaking in the 

microscopic sense, the soil is composed of particles, and its classification depends entirely on 

the dimensions and void spaces of those particles. The described particles are clay, silt, and 

sand (Kellogg 1993). The United State Department of Agriculture (USDA) classifies soil types 
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according to a soil triangle which includes all possible combination of clay, silt, and sand as 

illustrated by Figure 2: 

 

  USDA soil texture classification (Kellogg 1993). 

Soil samples are attributed to one of twelves classes depending on the percentages of sand, 

silt, and clay, which represent the bottom, right and left axes, respectively, of the triangle in 

Figure 2. The distinction between the different classes is ascertained through methods such as 

the pipette method, the hydrometer method, and field estimates. Field estimates are the 

simplest method to determine a soil texture class. Those estimates rely on the feel of the soil 

texture (gritty, smooth, or sticky) and how it responds to rubbing it between the fingers to form 

a ribbon. Sand particles have a gritty feel, silt particles feel smooth and silky (Fenton, Vero et 

al. 2015). While a sticky feel corresponds to the presence of clay. Field estimates are not 

entirely too accurate and laboratory determinations are necessary for validation. Please note 

that the criteria of this texture classification is relevant only to the mineralogical composition 
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of the soil, and not the percentage of the organic matter present within it, which is a whole 

different criterion of classification that entails different methods of determination (Ditzler, 

Scheffe et al. 2017). 

Soil saturation occurs when soil pores are completely filled with water (no space for air 

within the soil particles). After the source of water whether from irrigation or rainfall dries up, 

water present in the larger pores moves downwards (drainage) which allows for air to replaces 

some of that water in which case the soil is called at Field Capacity (FC). At FC, the 

proportions of water and air are considered optimal for plant growth. As the water in the soil 

eventually dries out, the soil is at its lower limit of soil moisture and it is said at the Permanent 

Wilting Point (PWP), which signifies that soil moisture level is so low plants cannot absorb it. 

The difference between FC and PWP is the total amount of water available for vegetation and 

is called Plant Available Water (PAW). Figure 3 elucidates the correlation between plant 

available water, field capacity, and permanent wilting point (Zotarelli, Dukes et al. 2010): 

 

 Relationship between soil moisture levels and soil texture classes 

(Zotarelli, Dukes et al. 2010). 

Figure 3 demonstrates that different texture classes of soil have different FC and PWP, 

which in turn means different PAW. Coarse textured soil (sand) has the least PAW compared 

to the finer-textured soil (loam), with Clay being the texture possessing the most PAW. It has 

to do with the size of pores which corresponds to faster drainage in the sand (in a matter of 
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hours), and relatively slower drainage for clayey soils (2-3 days) (C. Brouwer, A. Goffeau et 

al. 1985). 

Soil moisture content importance is quite apparent, especially if the task at hand is to detect 

water deficit. The latter takes place when the evaporative demand of a plant is greater than the 

water supply in the soil. It has been established that short-term water deficit may affect the 

plant growth processes (Shao, Chu et al. 2008). Water deficit can cause wilting, closure of 

stomata, and decrease in cell enlargement and growth. Severe water stress may result in an 

arrest of photosynthesis, a disturbance of metabolism, and finally death (Berry, Kalra et al. 

1988). Therefore, in the agricultural sense, precise soil moisture content retrieval is crucial for 

plant health. The soil moisture content in a soil volume V is expressed by equation 1: 

𝒎𝒗 =  (
𝒗

𝑽
) × 𝟏𝟎𝟎% (1)  

Where mv = soil moisture content (%), V= soil volume (m3) and v = is the volume of water 

in V (m3). The equation can be applicable in many scales, depending on the measurement 

method or the research at hand, the scales can range from cubic centimetres to cubic kilometres 

(Seneviratne, Corti et al. 2010).  

 Soil Moisture Content Retrieval Using Remote Sensing 

Remote sensing is the process of inferring information from indirect measurements 

collected by sensors on-board various platforms (aircraft and satellites), without being in direct 

contact with the observed object, phenomenon, and or environment (Schowengerdt 2007). As 

opposed to measurements collected from hand-held sensors, input collected from the latter is 

also called proximal sensing (Mulla 2013). This information is usually the measurement of 

reflected or emitted electromagnetic radiation from soil or plant material, in which case we 

speak of “passive” sensing. Conversely, when sensors transmit their energy, they are called 

“active” sensors (such as Synthetic Aperture Radar), and they will measure the backscattered 

energy (the echo)  (Sikdar, Glavic et al. 2004).  

Spectral remote sensing consists of the determination of the wavelength of each photon of 

light by its energy level. Light and other electromagnetic radiations are designated in terms of 

their wavelengths. For instance, visible light possesses wavelengths between 0.4 and 0.7 

microns, whereas radio waves have wavelengths greater than 30 cm (Shippert 2003) as 

displayed in Figure 4: 
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 The electromagnetic spectrum (Shippert 2003). 

It is well established in the literature that SMC has a tremendous effect on soil reflectance. 

Soil reflectance decreases with the increased presence of SMC volume and vice versa (Mulla 

2013, Randall B. Smith 2013, Lobell, Asner 2002, Oltra-Carri, Baup et al. 2015, Somers, 

Gysels et al. 2010). Figure 5 further illustrates the effect of SMC levels on the spectral 

reflectance of the soil:   

 

 Evolution of the spectral signatures behaviour depending on the 

volumetric soil moisture content ranging between 0 and 0.48 m3·m −3 (Oltra-Carri, 

Baup et al. 2015). 
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As opposed to passive sensors, Active microwave instruments produce their own artificial 

radiant energy source for illumination which grants them penetration capabilities through 

clouds, dust, water vapour, and rain cells (Karthikeyan, Pan et al. 2017). Active microwave 

sensors, more specifically radars, are equipped with transceiver antennas capable of emitting 

modulated electromagnetic pulses and measuring the strength and the time between the 

transmitted and reflected pulses (Mansourpour, Rajabi et al. 2006). Those measurements allow 

the determination of both the type of ground target and its distance from the transmitter. Radar 

Images are composed of pixels containing intensity values expressed as uncalibrated digital 

numbers which are often converted to a physical quantity named the Backscattering 

Coefficient measured in decibel units (dB) (Mo, Schmugge et al. 1984, Döring, Schwerdt 

2013). Radars can be categorized into two groups: non-imaging and imaging radars. The 

output of non-imaging radars is not an image, but rather one-dimensional data such as the data 

produced by altimeters and scatterometer. The output of imaging radars is comprised of two 

measurements: slant range and azimuth (Iervolino 2015). Synthetic Aperture Radars (SAR) 

are included within the latter group. SARs are operational in myriad frequency bands of the 

microwave spectrum, the most recurrent being L, C, and X bands (Ulaby, F. T., Long et al. 

2014). 

A more detailed review of techniques for soil moisture retrieval from SAR images will be 

provided in section 2.3.2. 

2.3.1 Soil Moisture Retrieval Using Operational Estimation by Remote Sensing 

Many satellite missions and remote sensing radiometers have been used to gain a 

comprehensive understanding of the global hydrological processes, and this is maybe apparent 

by the emergence of new SMC operational products from different space agencies 

(Petropoulos, Ireland et al. 2015). Soil Moisture and Ocean Salinity (SMOS) (Kerr, Waldteufel 

et al. 2001a) and Soil Moisture Active Passive (SMAP) (Entekhabi, Yueh et al. 2014), are 

great examples of such efforts. 

SMOS is a European Space Agency (ESA) satellite mission launched on the 2nd of 

November 2009 with the objective of providing soil moisture and ocean salinity maps. 

Mapping these two important components in the water cycle clears our understanding of the 

exchange processes between the surface of the Earth and the atmosphere which improves 

weather and climate models (Kerr, Waldteufel et al. 2001b). SMOS uses a novel 

interferometric radiometer called Microwave Imaging Radiometer with Aperture Synthesis 
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(MIRAS). Microwave radiometry at the L-band (1400 -1427 MHz) is used to estimate surface 

soil moisture and ocean salinity (Kerr, Waldteufel et al. 2010). The produced images in the 

span of 3 days form a global soil moisture map at the depth of 0-5 cm with 4% accuracy, 

however, the spatial resolution of 30 to 50 km while it suits global measurements, is not 

suitable for mid-scale to small scale applications  (Kerr, Font et al. 2012). 

The SMAP mission is another example of mission solely purposed for SMC estimation. 

SMAP was one of the four missions recommended by the U.S. National Research Council 

Committee on Earth Science and Applications from Space. Similar to SMOS, the goal is to 

measure soil moisture and with the same accuracy (4%). The difference is that it uses an L-

band radiometer (1.41 GHz) and an L-band radar (1.26 GHz) measurements (at a spatial 

resolution of 40 km and 3 km respectively) to extract combined information about near-surface 

soil moisture at 0 to 5 cm depth, the data products in the revisit time of 3 days at 

hydrometeorology and hydro-climatology scales are 10 km and 40 km respectively 

(Entekhabi, Njoku et al. 2008). Minimizing the effect of vegetation on soil parameters is the 

reason behind the simultaneous use of both active and passive sensors. While the radiometer 

can provide better soil moisture measurements under vegetation conditions, radar has a far 

better spatial resolution. Therefore the combination of information from both provides an 

enhanced estimation of soil moisture measurements in terms of spatial capabilities and 

accuracy (Entekhabi, Njoku et al. 2010, Brown, Escobar et al. 2013, Reichle, Ardizzone et al. 

2018). However, even with those enhancements, the spatial resolution is too poor to be 

considered useful for many uses, especially for agriculture. 

2.3.2 Soil Moisture Content Effects on Active Microwave Sensing 

SAR is a popular active microwave technique due to its large potential for SMC retrieval 

at the regional scales (Oldak, Jackson et al. 2003, Mattia, Balenzano et al. 2018), the 

backscattered radar signal is influenced by SMC levels as well as several other surface 

characteristics such as surface roughness profile, mineralogical composition of the soil, and 

dielectric features of the soil, and radar characteristics like the incidence angle, the working 

frequency of the SAR and polarization (Khabazan, Motagh et al. 2013). 

 The dielectric features of the surface soil are often referred to as dielectric constant (ε) 

(Verhoest, Lievens 2013). It is important to note that the relationship between the dielectric 

constant and SMC is of polynomial nature. The polynomial relationship of SMC and dielectric 

constant summarizes the dependence of the latter on the mineralogical composition of the soil 
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as well as the SAR frequency and SMC levels, as demonstrated by (Hallikainen, Ulaby et al. 

1985, Verhoest, Lievens 2013), empirically calculated by regression analysis using 

frequencies of 1.4 GHz and 18 GHz. The dependence is illustrated in Figure 6: 

 

 Dielectric constant as a function of soil moisture (Hallikainen, 

Ulaby et al. 1985) 

Where 𝜺′ is the real component of dielectric constant representing relative permittivity, and 

𝜺′′ is the imaginary component representing dielectric loss factor (Hallikainen, Ulaby et al. 

1985).  

(Hallikainen, Ulaby et al. 1985) expressed that relationship by Equation 2: 

𝜺 =  (𝒂𝟎 + 𝒂𝟏𝑺 + 𝒂𝟐𝑪) + (𝒃𝟎 +  𝒃𝟏𝑺 + 𝒃𝟐𝑪)𝒎𝒗 + (𝒄𝟎 + 𝒄𝟏𝑺 + 𝒄𝟐𝑪)𝒎𝒗
𝟐 (2)  
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Where S and C are sand and clay textural components of the soil in percentage, and a0 to 

c2 are the corresponding coefficients of the polynomial expression depending on the frequency.  

2.3.2.1 IEM Theory 

The soil moisture estimation model used for this study is the single scattering IEM (Fung, 

Li et al. 1992). 

IEM inversion is a theoretical model capable of representing backscattered radar signal 

with proven ability to estimate SMC and surface roughness parameters as it has been 

investigated in numerous studies (Bai, X., He et al. 2016, Baghdadi, Nicolas, Chaaya et al. 

2011, Chen, K. S., Yen et al. 1995, Mao, Tang et al. 2008, Paloscia, Pampaloni et al. 2008). 

The IEM backscattering model is valid within a wide range of different roughness values often 

encountered in agricultural surfaces (as long as k·s ≤ 3, where k is the wavenumber and s is the 

Root Mean Square (RMS) of surface heights) (Baghdadi, Nicolas, Gherboudj et al. 2004). 

The following expressions represent the backscatter coefficient of the surface contribution 

(Fung, Li et al. 1992) : 

𝝈𝒑𝒑
𝟎  =

𝒌𝟐

𝟐
𝒆(−𝟐𝒌𝒛 

𝟐 𝒔𝟐) ∑ 𝒔𝟐𝒏

∞

𝒏=𝟏

|𝑰𝒑𝒑
𝒏 |

𝟐 𝑾𝒏(−𝟐𝒌𝒙, 𝟎)

𝒏!
 (3)  

𝐼𝑝𝑝
𝑛 =  (2𝑘𝑧)𝑛𝑓𝑝𝑝 𝑒𝑥𝑝[−2𝑘𝑧

2𝑠2] +
1

2
{𝑘𝑧

𝑛 [𝐹𝑝𝑝(−𝑘𝑥, 0) + 𝐹𝑝𝑝(𝑘𝑥 , 0)]} (4)  

𝑓𝑣𝑣 =
2𝑅𝑣

cos 𝜃𝑖
 (5)  

𝑓ℎℎ =
−2𝑅ℎ

cos 𝜃𝑖
 (6)  

𝐹𝑣𝑣(−𝑘𝑥, 0) + 𝐹𝑣𝑣(𝑘𝑥, 0)

=  
2 sin2 𝜃𝑖(1 + 𝑅𝑣)2

cos 𝜃𝑖
[(1 −

1

𝜀𝑠
) +

𝜇𝑟𝜀𝑠 − sin2 𝜃𝑖 − 𝜀𝑠 cos2 𝜃𝑖

𝜀𝑠
2 cos2 𝜃𝑖

] 
(7)  

𝐹ℎℎ(−𝑘𝑥, 0) + 𝐹ℎℎ(𝑘𝑥, 0)

=  
2 sin2 𝜃𝑖(1 + 𝑅ℎ)2

cos 𝜃𝑖
[(1 −

1

𝜀𝑠
) +

𝜇𝑟𝜀𝑠 − sin2 𝜃𝑖 − 𝜇𝑟 cos2 𝜃𝑖

𝜇𝑟
2 cos2 𝜃𝑖

] 
(8)  

𝑊(𝑛)(𝑎, 𝑏) =
1

2𝜋
∬ 𝜌𝑛(𝑥, 𝑦)𝑒−𝑖(𝑎𝑥+𝑏𝑦)𝑑𝑥𝑑𝑦 (9)  
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Where 𝜎𝑝𝑝
0   is the backscattering coefficient with pp signifying the polarization state; θi is 

the incident angle; kz= kcosθi, kx= ksinθi ; 𝑅ℎ  and 𝑅𝑣  are the horizontally and vertically 

polarized Fresnel reflection coefficients respectively; 𝜀𝑠 and 𝜇𝑟 are the relative permittivity 

and permeability of the surface; 𝑊𝑛 is the Fourier transform of the nth power of the surface 

correlation function 𝜌(𝑥, 𝑦). The latter presents an exponential distribution (equation 10) for 

low surface roughness values and a Gaussian (equation 11) for high surface roughness values 

(Baghdadi, N., Gaultier et al. 2002), For one-dimensional surface roughness profiles, the 

correlation functions are expressed in equations 10 and 11:  

𝝆(𝒙) = 𝒆
−

|𝒙|
𝒍  

(10)  

𝜌(𝑥) = 𝑒
−

𝑥2

𝑙2  
(11)  

Where l is the correlation length. 

The degree of the roughness of a given surface has a massive impact on the backscattered 

signal, this highlights the significance of the correct identification of a surface roughness 

profile (Frei, Henkel 2002). The Rayleigh criterion is widely used to establish the degree of 

smoothness of a given surface. A soil surface is considered rough if the phase difference (Δϕ)  

between two rays scattered from a separate point on the surface exceeds π/2  (Baghdadi, 

Nicolas, Zribi et al. 2008). 

Figure 7 illustrates the geometry of the phase difference of two paralleled waves scattered 

from different points on a rough surface. A surface is considered rough if it satisfies Inequation 

12: 

𝒔 >
𝝀

𝟖𝒄𝒐𝒔𝜽
 (12)  

Where 𝝀 is the wavelength.  

The phase difference Δϕ is calculated using equation 13: 

𝚫𝛟 =  𝟐𝒌 · 𝒔 · 𝒄𝒐𝒔𝜽 (13)  
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 The geometry of Rayleigh criterion. Adapted from (Hajnsek, 

Papathanassiou 2005). 

Where s, and 𝜃𝑖 are RMS of surface heights and incident angle respectively. 

The Fraunhofer criterion is a stricter criterion proposed by (Ulaby, Fawwaz Tayssir 1982). 

Instead, a soil surface is considered rough if the phase difference between two rays scattered 

from a separate point on the surface exceeds  
𝜋

8
  , which leads to inequation 14: 

𝒔 >
𝝀

𝟑𝟐𝒄𝒐𝒔𝜽
 (14)  

The RMS height can be calculated using equations 15 and 16: 

𝒔 =  √
𝟏

𝑵
[(∑ 𝒁𝒊

𝟐

𝑵

𝒊=𝟏

) − 𝑵 �̅�𝟐] (15)  

where  

�̅� =  
𝟏

𝑵
 ∑ 𝒁𝒊

𝑵

𝒊=𝟏

 (16)  

where N is the number of points, and �̅� is the mean of heights (Bryant, Moran et al. 2007).  

s 

𝜃𝑖  𝜃𝑖  
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As for the approximation of the correlation length l, it is achievable once the normalised 

autocorrelation function 𝝆(𝝃) is defined. The latter is calculated using equation 17: 

𝝆(𝝃) =  
∑ 𝒁𝒊 𝒁𝒊+𝒋

𝑵−𝒋
𝒊=𝟏

∑ 𝒁𝒊
𝟐𝑵

𝒊=𝟏

 (17)  

The surface correlation length l is the horizontal distance over which the surface profile is 

auto-correlated with a value larger than 1/e (Verhoest, Lievens et al. 2008). 

Due to the mathematical complexity of IEM, an alternative method is used to invert it to 

calculate SMC; Artificial Neural Networks (ANN) (Hecht-Nielsen 1988). ANNs have been 

used extensively and successfully to invert IEM to infer SMC and roughness parameters in 

numerous studies (Baghdadi, N., Gaultier et al. 2002, Baghdadi, N., Cresson et al. 2012, 

Baghdadi, Nicolas, El Hajj et al. 2018, Yahia, Guida et al. 2018a) [78]. ANN is a parallel 

distributed information processing structure that consists of processing elements 

interconnected together with unidirectional signal channels referred to as connections or 

weights (Gardner, Dorling 1998). The ANN used for the IEM inversion is a multi-layer 

perceptron (MLP) (Hecht-Nielsen 1988), It is a feed-forward network, characterized by a 

unique unidirectional data flow, without loop; in particular, the MLP is made up of several 

layers: an input layer, at least one or several hidden layers, and an output layer, and the training 

algorithm uses ground measured data to minimise error (Gardner, Dorling 1998, 

Daliakopoulos, Coulibaly et al. 2005). An example of an MLP is Figure 8: 

 

 Schematic diagram of an MLP. Adapted from (Hecht-Nielsen 

1988). 
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In this instance (Figure 8), the MLP is used to infer surface roughness parameters using 

measurements of the angular backscattering coefficient in polarisations VV and HH and 

incidence angles as input data. 

More details about the inner workings of the IEM inversion using ANN will be provided 

in the methodology section. 

2.3.2.2 Limitations of SMC Estimation Through IEM inversion 

 SMC retrieval using SAR, most specifically while using the IEM model, suffers from 

limitations in terms of performance due to several factors as summarized by the following 

bullet points:   

• Speckle noise is an interference that plagues active microwave sensors characterised 

as multiplicative noise (Moreira, Prats-Iraola et al. 2013). It represents variations in 

backscatter from inhomogeneous cells which can be a consequence of multiple 

scattering events caused by the nature of the surface of the target (volume scattering). 

Consequently, that leads to a granular appearance of SAR images (Thoma, Moran et 

al. 2008), such interference, requires the use of filters to help attain a better soil 

moisture content retrieval which comes at the expense of soil moisture heterogeneity 

in the filtered pixels (Thoma, Moran et al. 2008). 

• The effect of SMC on radar signals is less discernible when SMC levels exceed 35%, 

especially at the HH polarisation (Baghdadi, Nicolas, Zribi 2006). 

• Dielectric behaviour of the soil (which is a key indicator of SMC) is heavily influenced 

by the distribution of grain size, which in turn determines the amount of free space for 

available water in the soil, which highlights the importance of the accurate 

identification of the mineralogical composition of the soil in question (Kornelsen, 

Coulibaly 2013a). 

• The accuracy of SMC retrieval using IEM is largely dependent on the characterization 

of surface roughness parameters, as well as the accuracy of the measurements of those 

parameters (Verhoest, Lievens et al. 2008). However, (Zribi, Dechambre 2003, 

Baghdadi, Nicolas, Chaaya et al. 2011) introduced semi-empirical calibrations of 

RMS height and correlation length to improve the characterisation of surface 

roughness parameters which has yielded promising results.  

• The poor temporal resolution of high-resolution SARs, which makes tracking SMC 

temporal variations difficult (Cenci, Pulvirenti et al. 2018). 
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• Susceptibility to intense vegetation covers, which can cause volume scattering, the 

latter has a direct negative impact of the accuracy of SMC retrieval (Bindlish, Barros 

2000).   

Due to the limitations described above, alternative methods to estimate SMC using a 

different group of sensors were explored, namely, multispectral, and thermal remote sensors.  

 Soil Moisture Retrieval Using Multispectral and Thermal Remote 

Sensors 

Despite the poor signal penetration abilities of multispectral and thermal sensors (compared 

to active microwave sensors) (Petropoulos, Ireland et al. 2015), methods of SMC retrieval 

using those sensors offer a broad range of satellites with decent spatial resolution and a 

multitude of bands to choose from (Yang, Guan et al. 2015) 

Numerous multispectral indices of SMC estimations have been researched by a multitude 

of studies (Zhang, J., Zhou et al. 2014, Chen, Wen et al. 2015, Zhang, D., Zhou 2016, GE, 

ZHANG et al. 2018, Sha, Hu et al. 2018, Casamitjana, Torres-Madroñero et al. 2020). 

Therefore, the author of this research had to consider several constraints before choosing 

suitable methods. Indices that requires historical information were not considered due to the 

scale and nature of the study areas as well as their corresponding earth observation data 

(Landsat-8 data). That excluded monitoring methods based on vegetation indices such as 

Vegetation Condition Index (Kogan 1995), and Anomaly Vegetation Index (Weiying, 

Qianguang et al. 1994), as well as monitoring methods based on land surface temperature such 

as Thermal Inertia (Lei, Bian et al. 2014), and Vegetation Temperature Condition Index 

(Wang, Peng-xin, Li et al. 2001). On the other hand, vegetation water indices like Normalised 

Difference Water Index (Gao, Bo-Cai 1996), and the improved Normalised Multi-band 

Drought Index (Wang, Lingli, Qu 2007), were not considered as well due to their reliance on 

simple combinations of bands reflectance which offers a limited representation of the effect of 

SMC levels on reflectance (Zhang, D., Zhou 2016). Instead, the author of this research 

considered SMC estimation methods through surface reflectivity feature space as they have 

shown a lot of promise, especially for drought monitoring, not to mention that these methods 

offer a more nuanced representation of the relationship of SMC and surface reflectance. These 

methods are also a valid indicator of SMC, and their validation has been the subject of 

numerous studies (Ghulam, Qin, and Zhan 2007, Ghulam, Qin, Teyip et al. 2007, Chen, Sun, 
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Wang et al. 2019, Chen, Sun et al. 2019). The same can be said about SMC estimation methods 

through vegetation indices/land surface temperature feature space. These methods exploit the 

relationships of SMC with vegetation cover intensity and land surface temperature to produce 

indices characterised by a proven linear relationship with SMC (Wang, Changyao, Qi et al. 

2004, Gao, Zhiqiang, Gao et al. 2011, Chen, J., Wang et al. 2011, Rahimzadeh-Bajgiran, 

Omasa et al. 2012, Du, Song et al. 2017, Aisyah, Kusratmoko et al. 2019). This inherent 

relationship has made this category of methods extremely useful especially in the presence of 

an intense vegetation covers (Zhang, X., Zhao et al. 2019).  

It was due to these constraints, that the investigated SMC retrieval methods of this research 

were methods using surface reflectivity feature space, and methods using vegetation 

indices/land surface temperature feature space. Perpendicular Drought Index (PDI) and 

Temperature Vegetation Dryness Index (TVDI) are the most commonly used indices for each 

respective category. 

2.4.1 Perpendicular Drought Index  

2.4.1.1 Concept  

(Vermote, Tanré et al. 1997, Ghulam, Qin, and Zhan 2007) have found that incident 

radiances in the violet, blue, and red wavelengths are potently absorbed by vegetation lamina 

tissues, whereas, the latter, actually reflects the near-infrared (NIR) wavelengths. High 

vegetation cover intensity signifies small reflectance in the Red band and high reflectance in 

the NIR bands. Due to the fact that absorption of the red range is saturated rapidly, the increase 

of vegetation covers intensity can only be reflected by the increase of reflectance in the NIR 

region. The reflectance of bare soil is typically high in red to NIR spectral region; however, 

the presence of water content in bare soil results into a decrease in said reflectance, especially 

in the NIR domain. (Vermote, Tanré et al. 1997, Yang, Guan et al. 2015, Gao, Zhongling, Xu 

et al. 2013) have also found that plotting atmospherically corrected red bands pixels against 

their NIR counterparts results in a triangular spectral feature space that would represent 

vegetation cover and SMC conditions as depicted in Figure 9:  
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 NIR/Red triangular feature space. Adapted from (Gao, 

Zhongling, Xu et al. 2013). 

The soil line (bare soil) can be expressed using equation 16 (Ghulam, Qin, and Zhan 2007): 

𝑹𝑵𝑰𝑹 = 𝑴𝑹𝒓𝒆𝒅 + 𝑰 (16)  

Where Rred, RNIR are atmospherically corrected surface reflectance derived from red and 

NIR bands respectively, and M and I are the slope and the intercept of the soil line respectively 

in the NIR-red feature space (Shahabfar, Eitzinger 2011). 

(Ghulam, Qin, and Zhan 2007) maintained that any mathematical operation that strengthens 

the contrasts between NIR and red could be used to express the vegetation surface drought 

status and distinguish bare soil pixels information from that of vegetated pixels. (Ghulam, Qin, 

and Zhan 2007) proposed designing an orthogonal axes system, above the aforementioned 

triangular feature space, expressed by an index named Perpendicular Drought Index (PDI). In 

order to fully comprehend the concept of PDI, the reader needs to observe Figure 10, where:  
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 Definition of the PDI. Adapted from  (Ghulam, Qin, and Zhan 

2007). 

 A D line is a representation of the change in terms of vegetation cover intensity from full 

(A), partial (E) to bare soil in (D). BC is a line depicting SMC levels from a wet surface (B) 

and semi-arid (D) to completely dry surface in (C). BC is also referred to as the soil line as it 

demonstrates the direction of drought severity. F is the line perpendicular to the soil line while 

dissecting the coordinate origin and parallel to the AD line. PDI is the vertical distance from 

any random pixel point from to line F and the mathematical formula for PDI can be written 

using equation 17 (Ghulam, Qin, and Zhan 2007): 

𝑷𝑫𝑰 =  
𝟏

√𝑴𝟐 + 𝟏
(𝑹𝒓𝒆𝒅 + 𝑴𝑹𝑵𝑰𝑹) (17)  

PDI can be a great descriptor of the levels and distribution of SMC in the NIR/Red 

triangular feature space with points far from the normal line F represent dry surfaces, and 

points near said line are correspondent to wet surfaces (Shahabfar, Eitzinger 2011). PDI is 

normalized, and it varies between 0 and 1 with 0 being akin to low water stress and one being 

extreme water stress  (Ghulam, Qin, and Zhan 2007).    
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2.4.1.2 Limitations of SMC Estimation through PDI 

Since PDI is heavily dependent on the NIR-Red reflectance, any variability caused by 

biophysical features of soil, i.e. soil surface colour, and vegetation types and conditions, would 

have a significant effect on the index, which means each study area would require its own local 

calibration to obtain its correspondent coefficient M (slope of the soil line) (Ghulam, Qin, and 

Zhan 2007, Ghulam, Qin, Teyip et al. 2007) 

PDI performs at its best at low vegetation presence/ bare soil applications whereas, in areas 

with surface covers types varying from bare soil to densely vegetated surfaces, its performance 

seems to suffer, not to mention its susceptibility to cloud presence and to surfaces with non-

flat topography (Shahabfar, Eitzinger 2011).  

PDI, even with its previously mentioned limitations, is still a very valid indicator of SMC 

levels due to its linear relationship to SMC. However, its limitations have prompted the author 

of this research to seek another index to counterbalance those limitations, along with the 

limitations of the IEM inversion. The chosen index for that is the Temperature Vegetation 

Dryness Index. 

2.4.2 Temperature Vegetation Dryness Index 

To fully understand the synergetic use of remote sensing observations made by thermal and 

multispectral imageries to indirectly measure surface SMC from surface temperature (LST or 

Ts) and vegetation indices, it is imperative to define vegetation indices as well as a theoretical 

basis and biophysical properties of the LST/VI relationship. 

2.4.2.1 Vegetation Indices  

Vegetation Indices (VI) are arithmetical combinations of certain spectral bands with the 

main goal being the distinction between various vegetation properties (canopy biomass, 

absorbed radiation, chlorophyll content). It is notable that the vegetation reflectance while low 

at the Blue and Red regions of the visible spectrum, it is at its peak in the Green region, and 

even greater in the invisible Near Infrared (NIR) (Purevdorj, Tateishi et al. 1998). 

 The most popular and derivable combinations of tri-band multispectral sensors are 

Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation 

Index (GNDVI) and Soil Adjusted Vegetation Index (SAVI) (Candiago, Remondino et al. 

2015).  Table 1 gives us a brief preview of these vegetation indices:  
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 Vegetation indices. Adapted from (Candiago, Remondino et al. 2015). 

Index Calculation Use 

Normalized Difference 

Vegetation Index (NDVI) 
𝑁𝐷𝑉𝐼 =

𝑅𝑁𝐼𝑅− 𝑅𝑅

𝑅𝑁𝐼𝑅+   𝑅𝑅
 

Distinguishes between 

vegetated and non-

vegetated features. 

Green Normalized 

Difference Vegetation 

Index (GNDVI) 

𝐺𝑁𝐷𝑉𝐼 =
𝑅𝑁𝐼𝑅− 𝑅𝐺

𝑅𝑁𝐼𝑅+   𝑅𝐺
 

Detects Chlorophyll 

concentration, Leaf Index 

Area and biomass.  

Soil Adjusted Vegetation 

Index (SAVI) 

𝑆𝐴𝑉𝐼 =
𝑅𝑁𝐼𝑅− 𝑅𝑅

𝑅𝑁𝐼𝑅  +  𝑅𝑅 + 𝐿
∗ (1

+ 𝐿) 

Eliminates the effect of 

soil while observing 

vegetation cover (where 

soil surface is exposed). 

𝑅𝑁𝐼𝑅, 𝑅𝑅 and 𝑅𝐺 represent the reflectance in NIR, Red, Green bands, respectively, L is a 

constant empirical value related to the vegetation density on the ground (Candiago, 

Remondino et al. 2015). 

NDVI values range from -1 to 1, negative values represent non-vegetation features like 

water, barren areas, ice, snow or clouds, however, the common range for green vegetation is 

0.2 to 0.9, values from 0.2 to 0.3 are bushes and grasslands while values 0.4 to 0.9 are forests 

and crops (Pettorelli, Vik et al. 2005). 

GNDVI values range from 0 to 1; it displays a higher level of sensitivity to chlorophyll 

concentration than NDVI (Hunt, Hively et al. 2008). 

SAVI is used to minimise soil noise while observing the vegetation, it is especially useful 

in areas where soil surface is exposed, and vegetative cover is minimal, its values range from 

-1 to 1 with lower values signifying poor cover of green vegetation. L is a calibration parameter 

with values also range from 0 to 1, with L =0 indicating very high vegetation cover (SAVI = 

NDVI), while L= 1 points are representative of areas with no green vegetation at all. In general, 

L=0.5 is optimal in most situations (Huete 1988).  

Figure 10 displays prescription maps using NDVI, GNDVI and SAVI (L = 0.5) values of a 

tomato field near the village of San Bartolo, in the municipality of Ravenna (Italy). Areas A 

and B show zones with high and low VI values, respectively:  
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  Prescription maps using vegetation indices values (Candiago, 

Remondino et al. 2015) 

Figure 10 further highlights the effectiveness of vegetation indices in determining the 

intensity vegetation cover, which is instrumental in SMC retrieval in the LST/VI space. 

2.4.2.2 TVDI Concept 

The use of this index requires the assumption that the relationship between SMC levels, the 

intensity of fractional vegetation covers and LST is simplified and minimized into a two-

dimensional scatter plot in which data points take the form of triangle/trapezoid (Sandholt, 

Rasmussen et al. 2002, Yang, X., Wu et al. 2008). Changes in SMC levels are plotted as a 

function of surface temperature and fractional vegetation cover (which can be expressed by 

Vegetation Indices) (Lambin, Ehrlich 1996). The difference in radiative temperatures between 

soil and vegetation canopy affects LST. Evapotranspiration is another factor influencing 

surface temperature through the energy balance at the surface (Wang, Chengbin, Chen et al. 

2019). The available energy for sensible heating of the surface increases whenever there is a 

decrease in evapotranspiration due to stomatal resistance to transpiration which is controlled 

by soil moisture availability (Gao, Zhiqiang, Gao et al. 2011). Consequently, the combination 

of fractional vegetation cover and surface temperature allows the estimation of SMC from bare 

soil to full vegetated covers (Petropoulos, G., Carlson et al. 2009). This research uses the 
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Temperature Vegetation Dryness Index (TVDI) to obtain information on surface SMC via the 

LST/VI triangular space as depicted in Figure 12:  

 

 Definition of the TVDI in the LST/VI feature space. Adapted 

from (Sandholt, Rasmussen et al. 2002, Lambin, Ehrlich 1996). 

LSTmax is the maximum surface temperature observation for a given VI value. ‘a1’ and ‘b1’ 

are respectively the intercept and the slope of the linear dry edge, and ‘a2’ and ‘b2’ are 

respectively the intercept and the slope of the linear wet edge, TVDI is expressed by equation 

18:  

𝑻𝑽𝑫𝑰 =
𝑳𝑺𝑻 − 𝑳𝑺𝑻𝒎𝒊𝒏

𝑳𝑺𝑻𝒎𝒂𝒙 −  𝑳𝑺𝑻𝒎𝒊𝒏
 (18)  
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Where LST is the observed surface temperature (in Kelvin), at a random pixel, and LSTmin 

represents the wet edge denoted   LSTmin = a2 + b2VI, and LSTmax represents the dry edge 

denoted LSTmax = a1 + b1VI. 

 TVDI values range from 0 to 1, where 1 indicates low levels of SMC, and 0 indicates 

maximum evapotranspiration and water access which signify high SMC levels. (Sandholt, 

Rasmussen et al. 2002), compared TVDI values to simulated soil moisture levels from the 

distributed hydrological model based on the MIKE SHE distributed hydrological model 

(Abbott, Bathurst et al. 1986), finding that SMC and TVDI have a relationship that could be 

represented by a linear function (mv= xTVDI+y) easily calculated using linear regression 

(R2=0.7). Since then, different versions of TVDI were validated using in situ measurements in 

various studies which produced promising results (RW.ERROR - Unable to find 

reference:doc:5a520907e4b08e15c00cb525, Zhu, Jia et al. 2017, Chen, Wen et al. 2015). 

Therefore, it is safe to assume that TVDI is considered as a valid indicator of SMC levels, 

which can be used as an addition to the previously discussed methods (IEM inversion and 

PDI). 

2.4.2.3 Limitations of SMC Estimation Through TVDI 

TVDI suffers from few sources of error that can reduce the accuracy of its SMC retrieval 

abilities, and those sources can lead to a few performance issues such as: 

• The loss of the spatial and temporal variability of SMC due to the poor spatial and 

temporal resolution of the satellites suitable for this method (Chen, Wen et al. 2015). 

• The potential incorrect determinations of the “triangle” from satellite data without 

huge data grids of large scale areas; the observed area of interest may not always 

include the full range of spatial variability in terms of land surface conditions such as 

dry bare soil, wet bare soil, vegetation exhibiting water stress and well-watered 

vegetation (Sandholt, Rasmussen et al. 2002). That can lead to difficulties calculating 

the ideal dry and wet edge due to local specific factors like vegetation species, 

topography, net radiation and cloud presence, which makes the aforementioned edges 

subjective to their datasets (area of interest)  (Yang, X., Wu et al. 2008, Cho, Lee et 

al. 2014). 

• The susceptibility to errors of estimation in terms of LST due to atmospheric effects 

and illumination effects (shadows) not to mention that TVDI only accounts for SMC 

in the top surface layer (no surface penetration) (Petropoulos, G., Carlson et al. 2009). 
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Despite the preceding limitations, the TVDI methodology can still be considered as 

another valid descriptor of SMC level for this research. Its robustness for applications over 

large areas as well as its insensitivity to surface cover type (Sandholt, Rasmussen et al. 

2002) can be valuable in SMC estimation pipeline proposed by this research, as it will 

reduce any inaccuracies caused by the limitations of IEM inversion and PDI in intensely 

vegetated areas of interest. To achieve that, the author of this research has opted to 

investigate if the use of data fusion techniques would successfully ameliorate SMC 

retrieval accuracy. 

 Data Fusion Techniques 

Multi-sensor data fusion allows the combination of data gathered from different sensors 

and related information, to achieve improved accuracy and better specific estimations 

unattainable by the use of a single sensor (Hall, Llinas 1997). The resulted perception can be 

instrumental for optimal control of information for informed decision making. Data fusion 

potential for pattern recognition, visual enhancement, object detection and area surveillance 

(Dong, Zhuang et al. 2009). Multi-sensor data fusion in the remote sensing sense can be 

performed on 4 different processing levels, depending on the phase that fusion takes place: 

signal level, pixel level, feature level and decision level (Dai, Khorram 1999).  

In the signal level, fusion Signals from different sensors are merged to form a new signal 

with better signal to noise ratio than the initials signals (Stathaki 2011).  

In the pixel level fusion, each pixel of the fused image is determined from a set of pixels 

from different images with the goal of improving spectral or spatial resolution. Popularly used 

techniques are Intensity Hue Saturation (IHS) transformation (Nasr, Ramadan 2008), Gaussian 

Pyramid (Olkkonen, Pesola 1996), Wavelet-based image fusion (Amolins, Zhang et al. 2007), 

Principal Component Analysis (PCA) and Brovey Transform (Nikolakopoulos 2008). 

In the feature level fusion, salient features are extracted from each sensor in question to 

create what is called a feature vector, and the latter can be used later for classification or 

decision making. Some popular techniques employed at this level are Artificial Neural 

Networks (ANN) (Jiang, Yang et al. 2004a), Cluster Analysis, Bayesian Inference (Zeng, 

Zhang et al. 2006). 

In the decision level fusion, each sensor image is processed independently, features are 

extracted, and decisions are made separately. These decisions can be used to negate or validate 
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each other. In the end, they are fused into a final decision using a few techniques like Fuzzy 

Logic, Expert Systems, Dempster-Shafer theory, Voting Strategies (Zeng, Zhang et al. 2006). 

 Multi-Sensory Data Fusion for Soil Moisture Content Estimation 

 Data fusion in the soil moisture content sense has been the subject of a plentiful amount 

of research. (Kurucu, Sanli et al. 2009) performed an image fusion, or more specifically the 

IHS-transform method, of images from multiple multispectral bands (SPOT-2) and radar 

images from Radarsat-1. This fusion was validated using 135 soil samples, 80 samples of bare 

soil and 55 samples of soil containing wheat and barley. SMC values were extracted using the 

oven method, the relationship of reflectance to SMC presence as well as soil texture was 

analysed using the Hydrometer method. The authors found that the reflectance corresponding 

to soil samples with high clay composition was correlated the most with SMC (0.72),  pixels 

corresponding to silt dominant soil samples exhibited a weak correlation, and finally, pixels 

of soil samples containing the high presence of sand has a strong negative correlation (-0.7). 

The authors concluded that the contribution of SAR has decreased the inherent sensitivity of 

reflectance of the pixel corresponding to the samples containing plants. 

(Bai, L., Long et al. 2019) have used a different approach to image fusion. Thermal and 

multispectral data from MODIS and LANDSAT-8 satellites had been downscaled and merged 

to be used in the trapezoidal method, the latter was then used to infer SMC. The downscaling 

methods in question were High‐resolution Urban Thermal Sharpener and Enhanced Spatial 

and Temporal Adaptive Reflectance Fusion Model. That study concluded that the resulted 

downscaled LST was highly consistent with in-situ measurements, producing less RMSE 

ranging from 0.73 to 2.75 K, which in turn, has yielded an SMC estimation with a decreased 

RMSE (from 4.8% to 3.8%). 

(Moran, Hymer et al. 2000) proposed a feature level data fusion as well. The fused data in 

question were features derived from ERS-2 C-band SAR data and optical data from Landsat 

TM. The proposed methodology was tested and validated on 3 semiarid regions in 8 different 

acquisition dates. The authors in (Moran, Hymer et al. 2000) elaborated on a model proposed 

by (Sano, Qi et al. 1998) which consisted of exploring the sensitivity of radar backscattered 

signal to surface roughness, vegetation cover presence which is expressed by Green Leaf Area 

Index (GLAI), and SMC through a linear regression estimation. The elaboration was 

comprised of the idea of investigating the empirical relationship between the difference 

between any given SAR image and the backscatter from a dry season image (𝜎0 − 𝜎𝑑𝑟𝑦
0 ), and 
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GLAI. The (𝜎0 − 𝜎𝑑𝑟𝑦
0 ) feature was found to be in better agreement with SMC (R2=0.93) than 

its corresponding 𝜎0  counterpart (R2=0.27). Furthermore, that empirical relationship was 

demonstrated through plotting (𝜎0 − 𝜎𝑑𝑟𝑦
0 )/GLAI regression line. The vertical distance of any 

given point from said line was found independent of surface roughness, and it had a linear 

relationship with surface SMC of each study area. This was especially true for pixels 

representing areas with sparse vegetation cover (GLAI<0.35). Conversely, the relationship 

was not sensible for pixels with values as a change of 25% in SMC resulted only in a change 

of 3 dB in  𝜎0. The authors in  (Moran, Hymer et al. 2000)  reported that this methodology 

yielded an absolute error of an average of 2.51% across all of datasets. The authors also raised 

concerns about overall insensitivity of SAR to low SMC values, and about the overall accuracy 

of GLAI estimation using standard optical remote sensing algorithms. 

 (Notarnicola, Posa 2001) explored another avenue, the authors proposed a Bayesian 

fusion, which can be safely considered as a feature level fusion of passive and active 

microwave data to estimate soil moisture in bare soil, features were derived from RASAM 

truck-mounted radiometer-scatterometer operating at a frequency of 4.6 GHz. The features in 

question were the backscattering coefficient (IEM) and emissivity through the Wang model 

for emissivity (WANG, JAMES R., CHOUDHURY 1995), the features were introduced to 

Bayesian parameter estimation, and the estimated parameters were the dielectric constant and 

surface roughness parameters, with an emphasis on the dielectric constant (given its 

polynomial relationship to SMC). This specific fusion has yielded a 10% estimation error.  

(Posa, Notarnicola et al. 2004) elaborated on their approach by comparing the efficiency 

of their Bayesian approach (BAY) to Artificial Neural Networks (ANN). Two distinct sets of 

data were used in this study. The first set is composed of backscattering coefficient and 

emissivity were extracted from several configurations of the data measured by a truck-

mounted radiometer-scatterometer. The second set is composed of the backscattering 

coefficient which was extracted from C-band scatterometer data. The accuracy of the results 

was expressed by the coefficient of correlation (R), Root Mean Squared Error (RMSE), and 

the standard deviation (SD). The most accurate estimation for the first set was achieved using 

a configuration of 2 frequencies (4.6 GHz and 2.5 GHz for the scatterometer and radiometer 

respectively) and one co-polarisation (HH). ANN outperformed the Bayesian approach in 

terms of RMSE (0.48%) but seems to slightly underperform in terms of correlation (0.83 for 

ANN and 0.84 for BAY). As for SD, since the authors did not provide the relevant metrics of 

the ground truth, it is difficult to analyse the resulted SD, however, the SD of the Bayesian 
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method seems to be more plausible 2.73 % than that of the ANN 0.45%. it was also noted that 

that there is a major discrepancy when it comes to Bay method with values of the dielectric 

constant exceeding 18-20 (there was a major focus on the real part of the dielectric constant). 

The results of the second set of data indicate a better performance from ANN in terms of both 

R and RMSE (0.84 and 3.28% respectively) than those of the Bayesian approach (0.68 and 

5.08%). As for the SD, the same as in the first group, it is quite difficult to discern whether 

which method performs better. It was also found that Bay overestimate the dielectric constant 

for the whole dataset while ANN only overestimates data associated with rough fields with an 

average bias of 5%. 

(Van der Schalie, De Jeu et al. 2018) investigated the effect of three different data fusion 

approaches for SMC retrievals. These approaches consisted of the fusion of features from 

extracted 10 years of passive microwave data (2003-2011), which were generated from 

Advanced Microwave Scanning Radiometer Earth Observation System (AMSR-E) at multiple 

polarisations and frequencies and validated by data from SMOS satellite (2010-2013). The 

approaches in question were ANN, regression, and Land Parameter Retrieval Model (current 

baseline algorithm for passive microwave component in the ESA-Climate Change Initiative- 

Soil Moisture). For comparison and evaluation, an active microwave satellite was also used 

for SMC estimation, the satellite in question was the Advanced Scatterometer (ASCAT) and 

algorithm used for SMC retrieval was the Change Detection Algorithm. To address the 

limitations of each of the proposed methods in this study, two methods were used, a large-

scale precipitation-based validation technique which represents the anomaly correlation-based 

skills in satellite SMC estimation through data assimilation with precipitation data derived 

from Tropical Rainfall Measuring Mission (TRMM), and the Triple Collocation Analysis 

(TCA). NDVI data derived from MODIS were also used for analysis and evaluation. In terms 

of correlation, the ANN approach seems to outperform land parameters retrieval algorithm and 

regression, especially at intense vegetation cover (R=0.7 at NDVI=0.7). On the other hand, 

ANN also outperforms all other approaches when it comes to Unbiased Root Mean Square 

Difference across the whole range of vegetation intensity with its best performance recorded 

at NDVI=0.3 to 0.7, ubRMSE=1.9%. While LPRM seems to produce its lowest RMSE at low 

vegetated areas (NDVI ≤0.45, ubRMSE=2%). The regression approach, on the other hand, 

performs its best at bare to sparsely vegetated areas (NDVI≤0.1, ubRMSE=3%). SMC 

estimation using the ASCAT approach is consistent with SMOS throughout a wide range of 
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NDVI values, it does, however, records its best performance at NDVI values around 0.48 to 

0.6 with an ubRMSE=2%.  

(Semmens, Anderson et al. 2016) went in a different direction, the authors were interested 

in using a multi-sensor feature level fusion approach to monitor daily evapotranspiration (ET) 

over two California vineyards using Landsat-8 during 2013 growing season, leading into the 

drought in early 2014. The authors proposed using Spatial and Temporal Adaptive Reflective 

Fusion Model (STARFM) to merge data from multiple satellites with a multi-scale ET 

retrieval algorithm based on Two-Source Energy Balance (TSEB) and land surface 

representation for daily ET computation at 30 m resolution. The proposed system by 

(Semmens, Anderson et al. 2016) consist of running TSEB using thermal imagery band in the 

Geostationary Environmental Operational Satellites (GOES, 4 km spatial resolution, hourly 

temporal sampling), data from Moderate Resolution Imaging Spectrometer (MODIS, 1 km 

spatial resolution, daily acquisition), and data from Landsat-8 satellite (resampled to 30 m 

resolution, 16 days revisit time). The features suggested by this study were LST, LAI, and 

Albedo from Landsat-8,  LST, geolocation, LAI, albedo, and NDVI from MODIS, LST, LAI 

from GOES, and meteorological features like vapour pressure, wind speed, air temperature 

and Insolation. All features were disaggregated to 30 m spatial resolution than fed to the 

STARFM. This fusion approach produced RMSE in the order of 0.92 and 0.96 mm/day 

compared to ground measurements from flux tower sites in irrigated fields with 8 and 5-year-

old pinot noir vines, respectively. RMSE was then reduced to 4.93 and 5.76 mm/week at the 

weekly timestep which was relevant for the irrigation process of both fields. The authors in 

(Semmens, Anderson et al. 2016)  reported a model overestimation of ET especially in the 

early season in the younger vineyard which was believed to be due to issues with the model 

parameterisation of canopy architecture which is commonly caused by inter-row grass cover 

crop.  

Authors in (Park, Im et al. 2017) suggested another version of a feature level fusion. The 

goal was to design a High-Resolution Soil Moisture Drought Index (HSMDI) for drought 

monitoring in the Korean Peninsula. The proposed approach consisted of downscaling 

Tropical Rainfall Measuring Mission satellite data (precipitation 25 km), AMSR-E data during 

the period of 2003-2011 (soil moisture 25 km), and combining features from MODIS (LST, 

NDVI, Enhanced Vegetation Index, Albedo, LAI, and ET  1 km). The downscaling was 

achieved using machine learning, more specifically a random forest algorithm, and the 

approach was validated by in-situ soil measurements. The resulted SMC estimation was 
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normalised for each pixel to produce the proposed index. The downscaled 1 km soil moisture 

estimation (up to 1 km) was correlated to both AMSR-E and in-situ measurements with a mean 

coefficient of determinations R2=0.29 and 0.59, respectively. HSMDI produced encouraging 

results, it exhibited a high correlation with crop yield data, especially in non-irrigated regions 

containing the highland radish and Napa cabbage cultivated with a mean R2 of 0.77.  

Authors in (Portal, Vall-Llosscra et al. 2018) another feature level fusion of features 

derived from microwave, optical, and thermal data to map SMC at relatively high resolution. 

The microwave data were generated from SMOS (at 40 km spatial resolution), and optical and 

thermal data were generated from MODIS (1 km). The features in question were normalised 

brightness temperatures at horizontal and vertical polarizations along with their corresponding 

incident angles from SMOS, and NDVI and LST from MODIS. The SMC ground truth data 

used for validation were from two in-situ stations: REMEDHUS in Spain and OzNet in 

Australia. The proposed approach consisted of downscaling the low-resolution SMOS data 

through the multiple linear regression of the aforesaid features to achieve SMC data at 1 km. 

The values of LST pixels of MODIS containing clouds are replaced by values from the fifth 

generation of the ECMWF atmospheric reanalysis (ERA5). The approach produced an SMC 

estimation with an average R of 0.8 and RMSE of 7%.  

(Xu, Yuan et al. 2019) have also proposed a feature level fusion. The authors of this study 

developed a system to estimate regional SMC in the continental U.S by employing a 

Generalised Regression Neural Network (GRNN). The latter was trained using a sparse 

ground-based measurement from Sparse Network Stations (SNS). The use of GRNN allowed 

establishing a nonlinear relationship between passive microwave observations from SMAP 

satellite and the measurements mentioned above in the period from April 2015 to March 2018.  

The scale mismatch occurring from the small spatial support of ground-based measurements 

was rectified by the exploitation of the extended triple collocation method, which ensured the 

reliability of generated data from individual sparse network stations at SMAP coarse footprint 

scale could be verified before fed into GRNN. The data associated with the collocation 

included Ground-based SMC (SNSs), Model-based SMC (ERA-Interim SMC simulations at 

the top 7 cm), and Satellite based SMC (SMAP). To guarantee the most accurate validation 

measurement possible, only ground station with a correlation coefficient of 0.7 and up were 

considered reliable. Then, the extracted features were introduced to the GRNN, with the 

features being SMAP brightness temperatures in both polarizations, surface soil temperature 

from GEOS-5 model, vegetation water content from MODIS, Month, Latitude, and longitude. 
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The choice of GRNN was justified by the authors due to its improved ability when it comes to 

overfitting compared to a conventional feed-forward neural network. the authors employed a 

10-fold cross-validation method. The GRNN model had a promising performance in terms of 

R=0.88 and ubRMSE=5%, and R=0.74 and ubRMSE =7.1% when samples were cross-

validated.  Authors in (Yuan, Xu et al. 2020) elaborated on this exact approach by developing 

a point-surface collaborative method inversion to estimate regional SMC instead. For SNSs, 

ground stations with a correlation coefficient of 0.7 were the only ones considered in the 

calculation, which resulted in only 40% of the overall number of those stations fitted that 

threshold (372). The approach was compared to a traditional Back Propagation Neural 

Network and GRNN model had a better performance in terms of accuracy when cross-

validated (R=0.88 and RMSE=5%) than its traditional counterpart (R = 0.8, RMSE= 6.3%). 

(Huang, Liang et al. 2019) proposed the fusion of multiple Global Navigation Satellite 

Systems (GNSS) through a multiple Least Square regressions. The authors investigated the 

relationship of SMC and Signal to Noise Ratio (SNR) which is the quality of the signal 

received by the antenna. The latter is influenced by numerous factors which include antenna 

gain parameters, multipath effect, and random noise of the receiver. The idea is to benefit from 

the aforesaid relationship of the SNR of multipath reflections with SMC by considering the 

relative phase delay of multipath reflections as measures to estimate the fluctuations in SMC 

levels. GNSS monitoring data were generated from the P041 from the Plate Boundary 

Observatory (PBO) network. The station provides a high sampling rate and plentiful 

meteorological data from the GPS carrier (L1 and L2). In 2011, the Global Positioning System 

(GPS) carrier L2 observation data included high-quality L2 band SNR observation data. The 

authors fused features from data derived from a combined total of 5 GPS satellites in the 

duration of 220 days (from day 70 to 290 in 2011). Then, those features were used as the input 

of a multivariant linear regression model. The fusion has produced improvements in terms of 

correlation coefficient R, from 0.73 in a single satellite to 0.89 and using the fusion all 5 

respectively. However, in terms of RMSE, one of the GPS satellite has produced an estimation 

with less RMSE (7%) than that of the fusion of all 5 GPS satellites (13.1%).  

Authors in (Ren, Liang et al. 2019)  have elaborated on this approach by proposing using 

a different fusion model, Least Square Support Vector Machine (LS-SVM). The authors, this 

time, fused features from data generated from 32 GPS satellites in 222 days (from day 73 to 

294 in 2015). Then, those features were fed into a sliding method LS-SVM estimator. This 

particular estimator has produced better results as the inclusion of data from multiple satellites 
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has improved the overall performance of the SMC estimation by minimising the multi-path 

effect. The fusion has produced improvements in terms of correlation coefficient R and RMSE, 

from 0.74 and 7.2% in a single GPS satellite to 0.94 and 4.4% using all 32 respectively.  

It is quite observable that there is no shortage of SMC estimation related research, 

especially through a feature level fusion. The fusion of multiple parameters relevant to SMC 

almost always produces better accuracy than estimations produced by a single parameter. 

However, the author of this research had identified that the most salient gap in terms literature 

concerning multisensory data fusion for soil moisture content estimation, lies fundamentally 

in the decision level fusion aspect of it, or in this case, estimation level. This research also 

concentrates at the regional application of such estimations, as the eventual purpose of this 

research is to be used for agricultural practices, which renders the use of data from mission 

purposed satellites such SMOS, SMAP, and GNSS data irrelevant. That will also rule out the 

use of in-situ stations for validations for the same reason. When these constraints are 

considered, there has not been a piece of research dedicated to the design of an estimation level 

fusion system for soil moisture content estimation especially on the regional scale. Also, to a 

lesser extent, the combination set of the selected features for this research, i.e. IEM inversion 

parameters (this specifically modified version of IEM), PDI, and TVDI have never been fused 

in the same SMC estimation system. Not to mention, that all of the studies discussed above 

have used ground-based stations for the validation of their respective estimations, which 

makes the fashion of the validation using this specific set of ground-level measurements 

(spatial resolution at 30 m)  also another novelty, especially at these study areas in the UK, 

and especially in Algeria, which has no studies dedicated to SMC estimation using earth 

observation data.  

To reiterate, this research proposes a novel SMC estimation pipeline which is comprised, 

simultaneously, of multiple processing levels of data fusion: 

• Novel feature level fusion, where parameters from IEM inversion, PDI, TVDI are 

extracted and fed to an ANN to estimate SMC. 

• Decision level fusion, where SMC estimations from each methodology are fused using 

a weight-based system. 

The full comprehensive description of the proposed SMC estimation system will be 

provided in chapter 3, Soil Moisture Content Estimation System – Conceptual Design.  
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 Conclusion 

Chapter 2 featured a literature review of the SMC retrieval methodologies relevant to the 

design of the SMC estimation system proposed in this research.   

First, definitions of SMC and different aspects of its effects on remote sensors in terms of 

dielectric constant, reflectance and land surface temperature were provided. 

Then, operational estimations using mission purposed systems like SMOS and SMAP 

demonstrated limitations in terms of spatial resolution and limited their applicability to global 

to large scale applications rather than the use intended in this research (Agriculture). 

Afterwards, various SMC retrieval methods were explained, each of those methods, 

whether be it the IEM inversion, PDI or TVDI, have exhibited few factors impacting their 

performance in terms of accuracy.  

Finally, this chapter concluded by the depiction of data fusion techniques as a possible 

solution to minimise the inaccuracies caused by those performance-related issues. The relevant 

studies investigating these approaches, as well as the contrast between the approach proposed 

by the author of this research to the approaches proposed by these studies. 
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3. SOIL MOISTURE CONTENT ESTIMATION SYSTEM – 

CONCEPTUAL DESIGN  

 Introduction 

Chapter 3 outlines the motivations behind the proposed SMC estimation system, not to 

mention the different limitations encountered by each used method in the aforesaid system, 

and it also provides a detailed description of an alternative version of IEM inversion as well 

as the reasons behind the inclusion of a semi-empirical parameter Lopt. Then, the soil moisture 

content estimation is introduced along with a comprehensive explanation of each component 

of the system, from pre-processing and PDI and TVDI determinations to the feature level 

fusion and decision level fusions. 

 Motivations Behind Using Data Fusion 

In order to understand the reasons behind the selection of the used data fusion techniques, 

it is important to recall the corresponding limitation of each methodology by observing Table 

2: 
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 Comparison of the different used methods of SMC retrieval. 

Group of 

sensors 
Method Advantages Disadvantages 

Microwave 

active 

Integral 

Equation 

Model 

inversion 

- The high spatial 

resolution of SAR 

sensors and their 

independence to clouds 

presence and night time 

(Sikdar, Glavic et al. 

2004). 

- Offer SMC 

information at the 

deeper surface layers 

(depending on 

frequency) (Verhoest, 

Lievens 2013). 

- Speckle (Moreira, Prats-

Iraola et al. 2013). 

- Insensitivity to SMC when 

it exceeds 35% (Baghdadi, 

Nicolas, Zribi 2006).  

- Sensitivity to surface 

roughness (Verhoest, 

Lievens et al. 2008). 

-Sensitivity to the intensity 

of vegetation cover 

(Bindlish, Barros 2000). 

- Coarse temporal resolution 

(Bindlish, Barros 2000). 

Multispectral 
Perpendicular 

Drought Index 

- Good spatial 

resolution. 

- Simple 

implementation. 

- Good performance in 

bare soil and low 

vegetated areas  

(Ghulam, Qin, and Zhan 

2007).  

- Course temporal resolution 

and susceptibility to cloudy 

conditions and surfaces with 

dense vegetation cover 

(Shahabfar, Eitzinger 2011). 

- The subjectivity of the soil 

line to its corresponding 

dataset (Ghulam, Qin, Teyip 

et al. 2007). 
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Synergetic 

method 

Temperature 

Vegetation 

Dryness Index 

 

-Good spatial resolution. 

-Simple implementation. 

- Robustness to the 

effects of partial to full 

vegetation cover (Yang, 

X., Wu et al. 2008). 

 

 

-Susceptibility to cloudy 

conditions, illumination 

effects and atmospheric 

effects (Wang, Changyao, Qi 

et al. 2004, Yang, Guan et al. 

2015). 

- The coarse temporal 

resolution (Chen, Wen et al. 

2015). 

- The subjectivity of wet 

edges to their corresponding 

datasets (Sandholt, 

Rasmussen et al. 2002). 

Table 2 can only further reinforce the argument for the necessity of data fusion techniques 

application. In addition to the IEM inversion, a multispectral index (PDI) will offer an 

additional source of SMC estimation for the proposed fusion scheme to minimise the effects 

of high SMC levels (>35%) and surface roughness values, and the addition of TVDI will offer 

an index resistant to vegetation covers. According to the definition of data fusion techniques 

provided in section 2.5, data fusion at this instance is only possible at the feature level and 

decision level (estimation level). 

Prior to the presentation of the proposed SMC estimation system, it is noteworthy that a 

different version of the IEM from the one presented in section 2.3.2.1 had to be used. It was 

due to the fact that the values of surface roughness parameters (k.s>3) collected from one of 

the study areas are not within the range of valid surface roughness values for IEM as described 

in section 4.2. Therefore, certain measures had to be taken to ensure that the range of validity 

is increased in case of encountering study areas with similar surface roughness values in the 

future. Those measures were: 

• The addition of a semi-empirical calibration parameter Lopt (Baghdadi, Holah et al. 

2006).  
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• Implementation of an updated version of the IEM called the Empirically Adapted 

Integral Equation (EA-IEM) in (Song, Zhou et al. 2009). 

 The Updated Version of the IEM  

(Baghdadi, Holah et al. 2006) proposed a semi-empirical calibration to IEM by replacing 

the estimation of correlation length l by an optimal calibration parameter called Lopt. The goal 

was to improve the agreement between the backscattering coefficients generated by SAR 

sensors and those estimated by the IEM. Lopt is dependent on RMS of the surface heights, 

incidence angle and polarization, and the parameters relevant to the configuration of this 

research are expressed by Equation 19 which was proposed by (Baghdadi, Nicolas, El Hajj et 

al. 2018) for Sentinel-1: 

𝑳𝒐𝒑𝒕(𝒔, 𝜽𝒊, 𝑽𝑽) = 𝟏. 𝟐𝟖𝟏 + 𝟎. 𝟏𝟑𝟒(𝒔𝒊𝒏𝟎. 𝟏𝟗𝜽𝒊)−𝟏.𝟓𝟗𝒔 (19)  
 

Where s is RMS of surface heights, 𝜃𝑖  is the incidence angle at pixel i and VV is the 

polarisation. 

Lopt proved to achieve a better agreement between radar signal inferred from the IEM 

model and SAR data in the C-band (at 5.6 cm wavelength)  for HH and VV polarization as 

well as for incidence angles (20° to 48°), with an improved validity range of (s < 4 cm) 

(Baghdadi, Nicolas, Chaaya et al. 2011), which in turn, would lead to a more accurate IEM 

inversion with a reduced bias and root mean square error in terms of the SMC estimation.  

It is worth noting that the availability of ground truth for SMC is necessary to apply the 

model designed in (Hallikainen, Ulaby et al. 1985) (equation 2). However, the whole purpose 

of this research is to estimate SMC independent from the presence of ground truth. Therefore, 

the author was motivated to investigate the Empirically Adapted  Integral Equation (EA-IEM) 

(Song, Zhou et al. 2009), especially the equations related to VV-polarization since it is the 

only co-polarized configuration available in the Sentinel-1 datasets. The idea is to infer 

dielectric constant directly from the active microwave backscattering coefficient using 

knowing that (Song, Zhou et al. 2009): 

𝐹𝑣 =  
𝜎𝑣𝑣

0

𝑘2

2  𝑒𝑥𝑝(−2𝑘𝑧
2𝑠2) ∑

(2𝑠𝑘𝑧)2𝑛𝑊𝑛(−2𝑘𝑥, 0)
𝑛!

∞
𝑛=1

 
(20)  
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𝜀𝑟

=
1

(0.5 − (
𝐹𝑣𝑠0.05𝑠𝑖𝑛3.35(𝜃 + 1.1)(𝐿𝑜𝑝𝑡 − 0.049)[0.042+0.06𝑠𝑖𝑛 (𝜃−1)]

106𝑒𝑥𝑝 (−1.996𝑠2𝑘𝑧
2)𝑡𝑎𝑛0.46(𝜃 + 0.32)

)

5
27

)

1
cos (1.02𝜃−0.2)

− 3 

 (21)  

Where Fv  in equation 20, is calculated using the calibrated 𝜎𝑣𝑣
0  extracted from Sentinel-l, 

and the dielectric constant 𝜀𝑟   in equation 21, is calculated for the Gaussian surface correlation 

function, due to the rough nature of the surface height measurements, where the correlation 

length was replaced by Lopt.  

 The Proposed Soil Moisture Content Estimation System 

In this research, a novel soil moisture content estimation system is proposed, and the 

novelty of this system lies primarily in the fusion aspect of different estimations provided by 

different methods in the feature and the decision level. The reason for the selection of the 

decision level fusion is to have different independent estimations in case of the absence of a 

data source.  

 Figure 13 elucidates a flowchart of the different components of such a system: 
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 The proposed soil moisture content estimation system. 

The components of this system are regrouped by functionality to facilitate their description; 

the groups are pre-processing, PDI and TVDI determinations, Feature Level Fusion and Fusion 

centre.  
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3.4.1 Pre-processing 

All of the extracted EO data from Landsat-8 and Sentinel-1, respectively, are pre-processed 

using Sentinel Application Platform (SNAP). SNAP is a common architecture for all Sentinel 

toolboxes being jointly developed by Brockmann Consult, SkyWatch, and C-S. This 

architecture is ideally suitable for the analysis and processing of earth observation due to its 

inherent technological innovations which include, Extensibility, Portability, Modular Rich 

Client Platform, Generic EO Data Abstraction, Tiled Memory Management, as well as a Graph 

Processing Framework (STEP ESA 2015). Its various functionalities facilitated the module of 

pre-processing significantly.  

Initially, SAR data undergoes radiometric calibration as well as multi-looking before it can 

be co-registered with multispectral and thermal data, which themselves, are transformed from 

digital numbers (DN) to reflectance and temperatures, respectively. Then, all resulting images 

are resampled to 30 metres, which is both the spatial resolution of OLI and the sampling 

distance of the ground truth SMC measurements points. The 30 metres is a good compromise 

between the spatial resolution of TIRS (100 metres) and the spatial resolution of Sentinel-1, 

which is (20.4 m x 24.5 m). Then, the resampled MS image is used to calculate NDVI and 

PDI, and to formulate the LST/NDVI feature space scatterplot when combined with the 

resampled thermal image. On the other hand, the resampled image of the backscattering 

coefficient 𝜎0, along with the RMS height (s), the calibrated parameter (lopt) and incidence 

angle θi, are used to calculate simulated backscattered coefficient, which is the product of EA-

IEM.  

3.4.2 PDI and TVDI Determinations 

For PDI, the slope of the soil line is determined using the least-squares linear regression; 

the corresponding soil lines for each study area are elucidated in Figure 14: 
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`

 

 Soil Lines of the study areas; Blackwell farms (a), Sidi Rached 1 

(b), Sidi Rached 2 (c). 

Initial analysis of Figure 14 confirms that the soil line in the study area (a) represents a 

weak positive correlation (R2=0.43) despite that the low-intensity vegetation cover in that area. 

Whereas, the soil lines in study areas (b) and (c) do not accurately depict the soil line as 

described by (Ghulam, Qin, and Zhan 2007). Both soil lines depict a negative correlation 

between reflectance in the red and NIR bands, respectively, with various degrees of strength, 

as in fair negative correlation in study area (b) (R2=0.81), weak negative correlation in study 

area (c) (R2=0.53). That could be due to the presence of intense vegetation cover in those study 

areas (b) and (c), as well as their corresponding low number of pixels representing bare soil.  
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As for the determination of TVDI, the intercept and slope of the dry edge of the LST/NDVI 

feature space are inferred by selecting the maximum LST for each NDVI value, then applying 

least-squares linear regression to those temperatures. Conversely, to infer the intercept and 

slope of the wet edge, the minimum LST for each of the NDVI values is used for linear 

regression instead. 

 Figure 15 illustrates the triangle LST/NDVI feature space for each of the used study areas: 

 

 Triangle LST/NDVI feature space of the study areas; Blackwell 

farms (a), Sidi Rached 1 (b), Sidi Rached 2 (c). 

Preliminary analysis of Figure 15 reveals that LST/NDVI feature space in the study area (a), 

has a significant number of the pixels with low NDVI values (0.1 to 0.3) which is denoted as 

bare soil and low vegetation cover intensity. It is because of that reason, that the triangular 
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shape of LST/NDVI feature space was not achieved, with the triangle being better formed in 

the study area (b) due to its apparent heterogeneity in terms of vegetation cover intensity with 

most pixels having NDVI values from (0.3 to 0.5). The triangle is also achieved in LST/NDVI 

feature space in the study area (c) despite the low number of its data samples with pixels with 

NDVI values ranging from 0.15 (bare soil) to 0.5 (fully vegetated areas).  

3.4.3 Feature Level Fusion  

Feature level fusion is achieved in this research by simple concatenation of the feature 

vectors obtained from the previously discussed methods of SMC estimation.  

Let X = {x1, x2 ...xn} and Y = {y1,y2,…ym} denote feature vectors (X ∈ Rn and Y ∈ Rm), and 

the goal is to merge vectors X and Y to generate a new joint feature vector  Z with an improved  

accuracy SMC estimation, where Z is obtained using equation 22 (Ross, Govindarajan 2005): 

Z = X ∪ Y= {x1, x2 ...xn, y1, y2,…ym}, Z ∈ R n+m (22)  

 

Studies conducted by (Alexakis, Mexis et al. 2017), used this concept to concatenate 

features extracted from radar parameters {𝜎𝑉𝑉
0 , θi}, vegetation index {NDVI} and thermal 

image {LST} where the addition of the latter parameter has increased the SMC estimation 

accuracy (with a lowered RMSE values in the order of 2.7% across all study areas).  

Similarly, implemented a feature level fusion for SMC estimation by merging a feature 

vector containing radar and surface features {s, l, θi, 𝜎𝑉𝑉
0 } with the synergetic index {TVDI}. 

The implementation yielded less bias and smaller RMSE values by order of 0.474%. 

In this research, several joint feature vectors with different combinations of features were 

used to investigate whether increasing the dimensionality of features will have any effect on 

the overall accuracy of SMC estimations. The feature vectors were grouped into three joint 

feature vectors FLF1, FLF2 and FLF3 and Table 3 describe the corresponding features for 

each vector: 
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 Feature level fusion joint vectors. 

Joint feature vector Fused features 

FLF1 {s,l,𝜃𝑖,𝜎𝑉𝑉
0 }∪ { TVDI} 

FLF2 {TVDI}∪ {PDI} 

FLF3 {s,l,𝜃𝑖,𝜎𝑉𝑉
0 }∪ {TVDI}∪ {PDI} 

FLF1 is the same feature vector used in (Yahia, Guida et al. 2018a). The goal behind that 

specific selection of features was to introduce a new parameter resistant to vegetation covers 

presence (TVDI) to the EA-IEM inversion.  

FLF2 is comprised only of PDI and TVDI in cases the surface roughness parameters are 

too high to be in the valid range for EA-IEM inversion. Furthermore, the multispectral aspect 

of this vector (PDI) allows for future exploitation of several potential multispectral imagers 

(such as Sentinel-2) if the temporal gap between Sentinel-1 and Landsat-8 is too long.  

FLF3 is the joint feature vector containing all of the available features to explore whether 

increasing the dimensionality of feature space even further would result in enhanced SMC 

estimation in terms of accuracy. 

The choice of the feature level fusion estimator was a subject of discussion, numerous 

different methodologies have been suggested in the literature as seen in section 2.6. The most 

notable proposed methods were LS-regression, Support Vector Machine (SVM), Random 

Forests (FR), and ANN. So naturally, to choose the most suitable estimator for this research, 

these estimation methods were experimented with. To get a preliminary assessment, the author 

of this research used the MATLAB regression learner tool to compare the performance of each 

one of the methods mentioned above against the approach proposed by the author of this 

research in a past study (Yahia, Guida et al. 2018a) in terms of accuracy, which was expressed 

using RMSE and R2. It consists of feeding FLF1 feature vector to an estimator and comparing 

the resulting estimations against ground truth measurements. Table 4, elucidates the 

performance of each methodology of each of the study areas: 

 

 



Soil Moisture Content Estimation System – Conceptual Design 

 

  

 50 

 

 

 Comparison between different feature level estimators applied in 3 

study areas. 

Study areas Method RMSE R2 

Blackwell farms 

LS- Regression 2.01 0.07 

SVM 2.1 0.07 

RF 1.96 0.11 

ANN 1.54 0.43 

Sidi Rached 1 

LS- Regression 4.87 0.04 

SVM 4.8 0.07 

RF 4.86 0.04 

ANN 3.19 0.58 

Sidi Rached 2 

LS- Regression 3.36 0.01 

SVM 3.26 0.06 

RF 3.32 0.01 

ANN 1.97 0.62 

It is clear from Table 4, that ANN is the most consistent estimator in terms of performance. 

Its estimations seem to offer the strongest correlations and the lowest RMSE values out of all 

other methodologies. Therefore, the author of this research decided to opt to perform all feature 

level fusion estimations through  Artificial Neural Networks. 

As described in section 2.3.2.1, ANN is a system that consists of artificial neurons 

interconnected by weights, and its basic structure is composed of an input layer, one (or more) 

hidden layer, and an output layer as depicted in Figure 15: 
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 The structure of a feed-forward neural network. Adapted from 

(ASCE Task Committee on Application of Artificial Neural Networks in Hydrology 

2000). 

X (xi, xi+1…xn) is the input vector, wij denotes the connection weight from ith node in the 

input layer to jth node in the hidden layer, vjt denotes the connection weight from the jth node 

in the hidden layer to tth node in the output layers.  

Moreover, each neuron has a threshold value, also called bias, and its value has to be 

exceeded before its activation through a function f(x). The latter determines the response of 

any given node to the total input signal it receives. In this research, the used activation function 

(or transfer function) of each neuron is a sigmoid function given by equation 23 (ASCE Task 

Committee on Application of Artificial Neural Networks in Hydrology 2000):  

𝒇(𝒙) =
𝟏

𝟏 + 𝒆𝒙𝒑 (−𝒙)
 (23)  

 

Using equation 23 value of from the jth node in a hidden layer is calculated using equation 

24 (Jiang, Yang et al. 2004b): 

𝑯𝒋 =
𝟏

𝟏 + 𝒆𝒙𝒑 [−(∑ 𝒘𝒊𝒋𝒙𝒊 − 𝒃𝒋
𝒏
𝒊=𝟏 )]

 (24)  
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Where Hj is the value of the jth hidden node, wij is the weight between the ith input node 

and jth hidden note, xi is the input value, n is the number of input nodes, and bj is the bias of 

the jth hidden node. The output results or values of note in the output layer are calculated using 

equation 25 (Jiang, Yang et al. 2004b): 

𝒀𝒕 =
𝟏

𝟏 + 𝒆𝒙𝒑 [−(∑ 𝒗𝒋𝒕𝑯𝒋 − 𝜸𝒕
𝒎
𝒊=𝟏 )]

 (25)  
 

where Yt is the value of tth output node, vjt is the weight connecting the jth hidden node, m 

is the number of hidden layers and the tth output node, and 𝛾𝑡 is the bias of the tth output node. 

For this research, six distinct ANNs were used with each ANN having a different input 

vector. However, all of these ANNs input vectors are linked to the same ground truth SMC 

measurements in the training phase, and Table 5 clarifies the input vectors for each ANN: 

 The input feature vector for all of the used artificial neural networks. 

ANN  Input feature vector 

ANNTVDI TVDI 

ANNPDI PDI 

ANNEA-IEM (s,l,𝜃𝑖,𝜎𝑉𝑉
0 ) 

ANNFLF1 (s,l,𝜃𝑖,𝜎𝑉𝑉
0 , TVDI) 

ANNFLF2 (TVDI, PDI) 

ANNFLF3 (s,l,𝜃𝑖,𝜎𝑉𝑉
0 ,TVDI,PDI) 

 

The backpropagation training algorithm for all ANNs in question is the Levenberg-

Marquardt (Marquardt 1963). Out of the three study areas, a total of 260 available samples 

were collected, 70% of the samples were used for training, 20% for validation and 10% for 

testing. The process of validation is extremely important for the generalisation of the ANN 

due to its role of minimising the effect of overfitting (when an ANN becomes too specific to 

a data sample) (Hachani, Ouessar et al. 2019). The size of the hidden layer size (10 nodes) and 

the specific division of the training sample was ascertained after multitudes of 

experimentations, and this specific configuration produced the best results in terms of 

accuracy. 
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After the necessary training of all ANN, all corresponding estimations are sent to the fusion 

centre, where a weight-based fusion is performed to improve the accuracy of SMC estimation. 

3.4.4 Fusion Centre 

All estimations produced by the ANNs work as input arguments for the fusion centre 

function. The latter is an extension of a novel weight-based system designed by the author of 

this research in (Yahia, Guida et al. 2018b).  

Instead of solely respectively assigning weights w1, w2 and w3 to the estimations achieved 

by ANNTVDI, ANNPDI, ANNEA-IEM, the proposed weight-based system also includes weights w4, 

w5 and w6 for estimations produced by ANNFLF1, ANNFLF2 and ANNFLF3 respectively. The idea 

behind the inclusion is to use the improved accuracy of the feature level fusion estimations to 

influence the accuracy of the weight-based fusion estimation using equation 26: 

𝑺𝑴𝑪𝒇𝒖𝒔𝒆𝒅 = 𝒘𝟏𝑺𝑴𝑪𝑻𝑽𝑫𝑰 + 𝒘𝟐𝑺𝑴𝑪𝑷𝑫𝑰 + 𝒘𝟑𝑺𝑴𝑪𝑬𝑨−𝑰𝑬𝑴 + 𝒘𝟒𝑺𝑴𝑪𝑭𝑳𝑭𝟏

+  𝒘𝟓𝑺𝑴𝑪𝑭𝑳𝑭𝟐 +  𝒘𝟔𝑺𝑴𝑪𝑭𝑳𝑭𝟑 
(26)  

 

where SMCfused is the weight-based decision level fusion estimation and SMCTVDI, SMCPDI, 

SMCEA-IEM, SMCFLF1, SMCFLF2 and SMCFLF3, are the output estimations of ANNTVDI, ANNPDI, 

ANNEA-IEM, ANNFLF1, ANNFLF2 and ANNFLF3 respectively, and  w1+w2+w3+w4+w5+ w6=1. 

Figure 17 illustrates the inner workings of this fusion centre: 
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 Flowchart of the Fusion Centre. 
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Initially, all weights are put in loops where they are incremented from 0 to 1 with 0.01 

increments, and SMCfused is only calculated if the sum of all of the weights is equal to 1. The 

Root Mean Square Error (RMSE) of that particular estimation is calculated using equation 27 

(Willmott 1982): 

𝑹𝑴𝑺𝑬 = √∑
𝟏

𝑵
(𝑷𝒊 − 𝑶𝒊)

𝟐

𝑵

𝒊=𝟏

 (27)  
 

Where N is the number of data samples, Pi is the estimated SMC values, or in this case, 

SMCfused, and Oi is the measured SMC values. RMSE is calculated for all estimations 

mentioned above. 

After RMSE of the final fusion is determined (RMSEfused), it is compared with the lowest 

obtained RMSE value from all of the previously mentioned estimations (RMSEmin).  If 

RMSEfused is lower than RMSEmin, then RMSEfused becomes the new RMSEmin. 

Finally, after repeating this process for all of the possible combinations of weights 

satisfying the same condition, the weights corresponding to the lowest RMSE values 

(RMSEmin) are the ones that get chosen as the optimal weights for the final fusion, and those 

weights are saved in case of absence of ground truth data in future estimations. Any future 

inclusions of more SMC ground truth measurements will only improve the accuracy of SMC 

estimation system, the addition of different study areas with different weather conditions, soil 

compositions, vegetation cover distributions, surface roughness profiles and surface 

topography, will allow the proposed SMC estimation to create a configuration of weights 

suitable for each future scenario.  

The experimental results of all of the aforementioned estimations are available in chapter 

5, Testing and Evaluation. 
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 Conclusion 

Chapter 3 has explored the different issues and limitations posed by each individual method 

(PDI, TVDI, IEM inversion) and proposed a data fusion scheme to maximise the accuracy of 

SMC estimation. Chapter 3 also provided a description of the elements of novelty pertinent to 

this research. The first presented element was the updated empirically adapted IEM. The 

addition of a semi-empirical calibration parameter Lopt was proposed to increase the validity 

range of surface roughness value of the empirically adapted IEM, which was yet to be 

performed in literature. The second element of novelty presented in chapter 3, is this specific 

configurations of features vectors, more specifically FLF3. These specific set of features (s, 

l,𝜃𝑖,𝜎𝑉𝑉
0 ,TVDI,PDI), and especially the inclusion of 𝜎𝑉𝑉

0  feature (which is the direct output of 

the updated empirically adapted IEM) have never been investigated for the same EO based 

SMC estimation system. The argument behind this proposition was to increase the 

dimensionality of the feature space which would potentially result in lower inaccuracies in 

terms of SMC estimation. Chapter 3 also introduced the third element of novelty which is the 

estimation level fusion scheme of the soil estimation system. The concept of the fusion centre 

was explained, where it was argued that assigning weights to each estimation (including the 3 

succinct feature level fusions), would ameliorate the overall accuracy of estimation. Assigning 

these weights to this specific combination of estimations (ANNTVDI, ANNPDI, ANNEA-IEM, 

ANNFLF1, ANNFLF2, ANNFLF3), which are the outputs of ANNs, and using loops in the fusion 

centre have never been proposed in the literature. The third element constitutes the most 

significant addition to the state of the art that this research has to offer. 

In order to validate this system, ground truth measurements collected from study areas are 

required. Chapter 4: “Generating Test Datasets” will supply a description of the used study 

areas. 
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4. GENERATING TEST DATASETS 

 Introduction 

Chapter 4 is dedicated to all the technical details about study areas or areas of interest for 

this research, in terms of geographical location, coordinates, size, and intensity of vegetation 

cover as well as the mineralogical composition of the soil or soil type. 

Chapter 4 will also supply a detailed description of all the earth observation data adapted  

(whether be it datasets from Sentinel-1 or Landsat-8) and all in situ sensing instruments (such 

as SMC levels probes and laser and needle profilometres). 

 Study Area Details 

The validation of all the methodologies used in this research requires direct measurements 

from suitable areas of interest or study areas. Three different study areas have been selected 

for this research. 

The first and earliest dataset is one of the agricultural fields in Blackwell farms, located in 

Guildford, the county town of Surrey in South East England. The size of the farm is around 

295 m x 308 m, and at the time of collection of measurement, the field was visibly spatially 

homogenous in terms of vegetation cover intensity. The field is also characterised by a non-

flat surface topography (it has a small slope in the middle of it). 

The second study area is an agricultural field in Sidi Rached, Tipasa, Algeria, and this study 

area is by far the largest (540 m x 180 m), with the agricultural field had a spatially 

heterogeneous in terms of vegetation cover intensity, some areas of the field contained almost 

bare soil, and others had intense vegetation cover. This field, however, is characterised by 

relatively flatter surface topography. 

The third study area is another agricultural field in a different location at Sidi Rached, 

Tipasa. This field was the smallest of all of the datasets (180 m x 180 m) due to restriction 

made by the field owner. This field was also visibly heterogeneous in terms of vegetation 

cover, and similarly to the second study, the field has a flat surface topography. 

Table 6 contains relevant information for all study areas, such as the location, coordinates, 

size, and respective NDVI means for the datasets as an indicator of the intensity of vegetation 
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cover, as well as the soil type, or rather the mineralogical composition of each soil (which will 

be important for the IEM inversion application): 

 Details of study areas. 

Study area Location 

Coordinates 

(Latitude, 

longitude) 

Size 

(m x m) 

NDVI 

(Mean) 
Soil type 

Blackwell 

farms 

Guildford, 

Surrey, 

United 

Kingdom 

51° 14’ 10” N, 

000°37’ 32” W 
295 x 308  0.26 Clay loam 

Sidi Rached 1 
Tipasa, 

Algeria 

36° 33’ 18” N, 

002° 31’ 28” E 
540 x 180 0.43 

Sandy 

loam 

Sidi Rached 2 
Tipasa, 

Algeria 

36° 31’ 30” N, 

002° 32’ 38” E 
180 x 180 0.33 

Sandy 

loam 

The selection of suitable study areas was one of the most difficult challenges that faced this 

study due to the scarcity of concurrent acquisitions from different satellites. Normally, satellite 

acquisitions (Sentinel-1, Landsat-8) only quite coincide in the same day only twice or three 

times a month, and that was made worse by the frequent poor weather condition and cloud 

presence in the United Kingdom. At one point of this research, there was no possibility for 

ground truth collection campaign from the period of November 2017 to March 2018. This 

complication has prompted the author of this research to pursue different study areas 

elsewhere, and the chosen study areas were two agricultural fields in Sidi Rached, Tipasa, 

Algeria. There was a fourth study area in Mezriaa, Biskra, which is a county in the south of 

Algeria (latitude: 34° 40’ 01” N, longitude: 06° 16’ 05” E), but all SMC and roughness 

parameters measurements were disregarded due to a significant temporal gap between the 

corresponding satellites acquisitions times (Sentinel-1: 16/04/2018 at 05:38 a.m., Landsat-8: 

18/04/2018 at 10:07 a.m., approximately 52 hours) not to mention that the sandy texture of the 

soil (weak water retention capabilities) and extreme weather conditions in terms of 

temperature have altered soil moisture content levels drastically between acquisitions. This 
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alteration was manifested when the same data points of SMC measurements had substantially 

different values between the beginning and end of the campaign (differences in the order of 

10 to 20 %).  

Figures 18, 19, 20, 21, 22, and 23 depict satellites views of the concerned study areas: 

 

 Image from Sentinel-1 dataset of the study area Blackwell farms 

represented by the green rectangle (10x11 pixels).  

 

 Image from Landsat-8 dataset of the study area Blackwell farms 

represented by the green rectangle (10x11 pixels).  
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 Image from Sentinel-1 dataset of the study area Sidi Rached 1 

represented by the green rectangle (6 x 19 pixels).  

 

 

 Image from Landsat-8 dataset of the study area Sidi Rached 1 

represented by the green rectangle (6 x 19 pixels).  
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 Image from Sentinel-1 dataset of the study area Sidi Rached 2 

represented by the green rectangle (6 x 6 pixels).  

 

 

 Image from Landsat-8 dataset of the study area Sidi Rached 2 

represented by the green rectangle (6 x 6 pixels).  
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 Field photographs of the landscapes of Blackwell farms (a), Sidi 

Rached 1 (b) and Sidi Rached 2 (c). 

The author of this research is well aware that the respective sizes of all study areas in terms 

of data samples are relatively small, that was due to a lack of availability of ground truth 

measurements for SMC for high spatial resolution satellite data, and the amount of time and 

efforts required to collect such measurements on a larger scale.  

 Earth Observation Data 

Earth observation datasets were collected from two different satellites, Sentinel-1 as the 

active microwave sensor for the integral equation inversion model, and Landsat-8 as the data 

source to calculate both PDI and TVDI. 

4.3.1 Sentinel-1 

The reason Sentinel-1 was chosen for this system is its all-weather imaging capabilities, 

high spatial resolution as well its reasonable temporal resolution, (short revisit cycles of 12 

days), not to mention the availability of datasets. Sentinel-1 is a mission of twin satellites 

(a) 

(b) 

(c) 
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Sentinal-1A and Sentinel-1B, both equipped with a C-SAR on board (5.405 GHz frequency) 

(Huang, S., Ding et al. 2019).  

All products used in this study are Ground Range Detected (GRD), the acquisition mode is 

Interferometric Wide Swath (IWS), and the available polarization in this acquisition mode in 

the concerned datasets were VV, VH polarizations. However, only acquisitions with VV 

polarization were considered since the IEM inversion for SMC estimations performs its best 

in co-polarized configurations (Kornelsen, Coulibaly 2013b). The spatial resolution for this 

particular acquisition mode is 20 m x 23 m, and the swath is 250 km. Table 7 provides further 

acquisition details: 

 Sentinel-1 acquisition details 

Study area 

Spatial 

resolution  

(range, 

azimuth) 

Incidence angle 

(°) (min-max) 
Acquisition date 

Acquisition 

time 

Blackwell 

farms 

20.4 m x 22.5 m 

38.2-41.52 18/11/2017 06:21 

Sidi Rached 1 44.98-45 07/04/2018 17:51 

Sidi Rached 2 34.4-34.41 09/05/2018 5:45 

All of the used Sentinel-1 data products were downloaded from 

https://scihub.copernicus.eu/dhus/#/home. 

4.3.2 Landsat-8 

Both thermal infrared and multispectral images are collected from the Landsat-8 satellite. 

This satellite was selected for its high spatial resolution in comparison with other satellites 

used in literature for similar purposes (such as MODIS) (Chen, J., Wang et al. 2011). Another 

reason is the guaranteed availability of datasets in the study area backed by an acquisition 

calendar. Landsat-8 satellite was launched on the 11th of February 2013, it has two sensors on-

board, Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), with a total of 10 

spectral bands and a panchromatic band. Landsat-8 data are acquired at 185 km swaths with a 

https://scihub.copernicus.eu/dhus/#/home
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revisit time of 16 days (Roy, Wulder et al. 2014).  Table 8 elucidates its technical specifications 

and the acquisition details of interest for this study: 

 Technical specifications of Landsat-8 

Sensor 

Band 

number 

Wavelen

gth 

(µm) 

Spatial 

resolution 

(m) 

Swath 

(km) 

Acquisition 

date 

Acquisition 

time 

O
p

er
a
ti

o
n

a
l 

L
a
n

d
 I

m
a
g
er

 

(O
L

I)
 

B1- Ultra Blue 
0.43-

0.451 
30 

183 

 

17/11/2017 

07/04/2018 

09/05/2018 

 

10:52 

10:25 

10:25 

B2- Blue 
0.452-

0.51 
30 

B3- Green 0.53-0.59 30 

B4- Red 0.63-0.67 30 

B5- Near infrared 0.85-0.87 30 

B6-Shortwave 

Infrared (SWIR) 1 
1.56-1.65 30 

B7-Shortwave 

Infrared (SWIR) 2 
2.56-2.29 30 

B8 - 

Panchromatic 
0.50-0.67 15 

B9 - Cirrus 1.36-1.38 30 

T
h

er
m

a
l 

In
fr

a
re

d
 

S
en

so
r 

(T
IR

S
) 

B10- Thermal 

infrared 1 

10.60-

11.19 
100 

B11- Thermal 

infrared 2 

11.50-

12.51 
100 
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All of the used Landsat-8 datasets were Level-1 data products downloaded from 

https://earthexplorer.usgs.gov/.  

It is quite apparent from observing Tables 7 and 8 that there are temporal gaps between the 

times of acquisitions. It was unfortunately unavoidable due to the revisit cycles of the different 

used satellites in this research. The longest temporal gap occurred in the Blackwell farms 

datasets (approximately 20 hours), while the other two datasets had a relatively shorter 

temporal gap (approximately 5 hours). Certain measures were taken to attempt to lower the 

temporal gap and the author of this research has scheduled ground truth measurements 

collection between the times of acquisitions. For Blackwell farms the start time of collection 

of SMC measurements was from 14:00 to 17:00, for Sidi Rached 1 the start time of collection 

was from 11:30 p.m. to 15:00, and for Sidi Rached 2, the start time of collection was from 

09:00 (a.m.) to 10:30 (a.m.). Furthermore, there were no significant weather changes in terms 

of temperature, precipitation, and humidity between the times of acquisitions. 

 Ground Truth Measurements 

After the selection of suitable study areas for this research, the next step was the collection 

of ground measurements. Two types of measurements were required for the proposed system: 

SMC levels and soil surface roughness. Three distinct instruments were used to gather such 

measurements, and the ML3 theta soil moisture probe was used for SMC level measurements 

while needle and laser profilometres were used to measure surface heights. 

4.4.1 ML3 Theta Soil Moisture Probe 

The instrument used for SMC level measurements is the ML3 Theta probe soil moisture 

sensor.  

The ML3 probe, when powered on, applies a 100 MHz waveform to an array of stainless-

steel rods, which transmits an electromagnetic field to the soil. Any water content present in 

the soil surrounding those rods will dominate the permittivity (ɛ) of soil (ɛ of water ≈ 81, while 

ɛ of soil is ≈ 4). The ML3 detects the influence of the permittivity on the transmitted 

electromagnetic field in terms of stable voltage output which represents a sensitive measure of 

SMC levels. The device has a measurement range of 0-100% with a 1% error for SMC values 

from 0 to 50%, and it is compatible with several data loggers such GP1, GP2, DL6, DL2.  In 

this research, the HH2 meter was used. The latter provides general calibrations of the ML3 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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readings for mineral and organic soils and the storage of those readings (ML3 ThetaProbe user 

Manual ). 

The condition of the ML3 theta probe condition was brand new at the first time of usage, 

and all soils used in this research were organic soils. 

 Given that point based SMC measurements are far from being an accurate representation 

of SMC and its variability, four measurements were collected every 30 metres. Then the mean 

of those measurements was assigned to its corresponding pixel of the earth observation data. 

The use of 30 metres distance between the points of measurements, in particular, is to match 

the spatial resolution of Landsat-8  in the multispectral bands which is a good compromise 

between the spatial resolutions of thermal bands (100 m) and Sentinel-1 (20.4 m x 22,5 m). 

Figure 25 represents the process of SMC measurements: 

 

 

 Process of measurements of Soil moisture content level using 

ML3 Theta probe soil moisture sensor. 

The process of SMC measurement was a demanding task; it took a tremendous deal of 

logistical planning and scheduling to collect such measurement in a timely fashion, an average 

of 2 hours to collect around 100 data samples, not to mention the amount of time and effort 

necessary to render the relevant data samples in the same order as their corresponding earth 

observation geocoded pixels. Consequently, the ground truth measurement campaigns did not 

yield a large number of data samples to use for the validation of this research. 

30 m 

3
0
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4.4.2 Profilometre 

Secondly, the surface roughness profile (RMS height and correlation length) of the said 

agricultural fields needed to be determined. Two different profilometres were used to recover 

such information at different stages of this research.  

Initially, a needle profilometer was solely used in the Blackwell farms field; this 

profilometer was built by technicians from the University of Surrey. To derive the 

measurements, the Profilometer is positioned in the point of interest, then, 78 needles (1cm 

distance from each other) are inserted into this structure, and their height in the main structure 

is regulated accordingly to represent the level of the soil in each point. Once this process is 

done to all needle, the profilometer is superimposed on an A0 paper where a curve of points 

representing the soil profile can be drawn, as elucidated in Figure 26: 

 

 The process of surface roughness parameters measurement 

using a needle profilometer. 

The second device used to measure surface roughness parameters was the laser 

profilometer. The device was built by the author of this research at the Surrey Space Centre 

laboratory. It consists of a metallic frame with a new BOSCH PLR 15 Laser rangefinder fitted 

to it. The laser device has a range of 0.5 to 15 metres, with a measuring error of 3 mm (User 
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Manual of, BOSCH PLR 15 ). The distance between the fitted laser device and a flat surface 

is 0.33 m (which is well within its range). The laser points towards the soil surface where the 

metallic structure is fixed. Then, a measurement is taken and recorded, and the laser device is 

moved along a rail one centimetre at a time, with 54 possible increments. Figure 27 illustrates 

the laser profilometer mentioned above: 

 

 The process of surface roughness parameters measurement 

using a laser profilometer. 

Table 9 showcases the measurements of different surface roughness parameters (s, l) 

expressed in cm, as collected for each study area: 

 The Values of the measured surface roughness parameters. 

Study area 
Profilometer 

type 
s (cm) l (cm) 

Blackwell Farms Needle 1.57 1.67 

Sidi Rached 1 

Laser 

2.85 5.08 

Sidi Rached 2 1.76 8.66 

By inspecting the values of s and l values obtained in Table 9, it is noticeable that Blackwell 

farms have a short correlation length compared to the other datasets, it can be explained by the 
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fact that the fields were recently ploughed and planted in the time of collection of 

measurements. 

 Conclusion 

Chapter 4 offered a detailed account of the different characteristics of the chosen study 

areas in terms of their locations, vegetation state and the rationale behind their selection, not 

to mention the initially encountered difficulties in the process of their selection. This chapter 

also offered a description of all used earth observation datasets; it presented Sentinel-1 as the 

active microwave sensor to be used for the IEM inversion, and it introduced Landsat-8 sensors 

OLI and TIRS as data sources to calculate PDI and TVDI. Then, chapter 4 went through the 

technical specifications all of the instruments used for proximal sensing, with said instruments 

being ML3 Theta probe and laser and needle profilometres. 

Chapter 4 also featured a presentation of another set of elements of novelty. The first 

element is that these areas of interest have never been the subject of an EO-related SMC 

estimation study, especially the regions in Algeria. The SMC ground truth data samples 

collected using this specific equipment (ML3-Theta Probe) from the areas of interests 

discussed above have never been used for the validation of any EO-based SMC estimation 

system before. Another element of novelty is the design and implementation of a laser 

profilometre and using its completely novel measurements to derive soil surface roughness 

profiles. Chapter 5: “Testing and Evaluation”, will review all the achieved results across the 

time of this research as well as a full analysis to interpret those results. 



Testing and Evaluation 

  

   70 

5. TESTING AND EVALUATION 

 Introduction 

Initially, this chapter showcases the results achieved by the proposed SMC estimation 

system and offers a deep analysis of each of its corresponding methods, the results and analysis 

are organised into three groups according to their corresponding study area. Finally, this 

chapter provides discussion and remarks about the results achieved by the proposed SMC 

estimation system as well as the performance issues it faces. 

 Results and Analysis 

The proposed SMC estimation system was developed and implemented in the Matlab 

environment. In order to analyse and evaluate the accuracy of the proposed system, the author 

of this research suggests the consideration of the followings metrics of evaluation: 

• RMSE, as it is one of the most reliable metrics for model performance evaluations 

(Willmott 1982).  

• The minimum value of the estimated and measured SMC (Min). 

• The maximum value of the estimated and measured SMC (Max).  

• The mean of the estimated and measured SMC values (Mean). 

• The standard deviation of the estimated and measured SMC values (SD).  

The results and analysis of the proposed SMC estimation system are organized into three 

distinct groups according to their study area; Blackwell farms, Sidi Rached 1, Sidi Rached 2. 

The analysed estimations are named according to their methods, as it is visible in Figures 23, 

24 and 25, where the measured SMC (%) is plotted as a function of estimated SMC (%), and 

the concerned methods of estimation are: 

(a). TVDI. 

(b).  PDI. 

(c).  EA-IEM inversion. 

(d).  Feature Level Fusion 1 (FLF1) which is the output of ANNFLF1. 

(e).  Feature Level Fusion 2 (FLF2) which is the output of ANNFLF2. 

(f).  Feature Level Fusion 3 (FLF3) which is the output of ANNFLF3. 

(g). Weight-Based Fusion (WBF) which the output of the fusion centre.  
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5.2.1 Blackwell Farms 

The first group of results are those corresponding to the Blackwell farms dataset, and Figure 

28 and Table 10 provide summaries of the results achieved by each estimation method: 
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  Results of each of the used SMC estimation methods in Blackwell farms datasets. 
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 The results of each of the used estimation methods in the Blackwell 

farms dataset. 

Estimation 

methods 

Blackwell farms (n=110) 

RMSE 

(%) 

Estimated SMC Measured SMC 

Min 

(%) 

Max 

(%) 

Mean 

(%) 

SD 

(%) 

Min 

(%) 

Max 

(%) 

Mean 

(%) 

SD 

(%) 

Estimations 

using a 

single 

method 

TVDI 1.82 37.16 43.9 39.91 0.87 

34.9 44.9 40.07 2.07 

PDI 1.9 34.88 43.2 40.04 0.8 

EA-

IEM  
1.7 36.52 44.21 39.96 1.23 

Estimations 

using 

feature-

level fusion 

FLF1 1.54 35.65 44.85 40.18 1.34 

FLF2  1.53 35.39 43.36 40.01 1.37 

FLF3 1.37 34.88 44.42 40.02 1.69 

Estimation 

using 

decision 

level fusion 

WBF 1.32 35.36 43.62 40.01 1.43 

In this dataset, although soil moisture content values in this field were greater than 35% 

(minimum measured SMC was 34.9%), the best estimation using a single method in terms of 

RMSE and degree of correlation was achieved using the EA-IEM inversion (RMSE=1.7% and 

R=0.57), which can be explained by the fact that the field had a non-flat surface, and it was 

composed mainly of bare soil and sparse vegetation cover, which puts PDI in a disadvantage 

due to the nature of the surface topography, and limits the performance of TVDI because of 

the absence of the full range from bare soil to full vegetation.  

It is also quite clear that the estimations using feature-level fusion outperform EA-IEM 

inversion in terms of RMSE, and that those methods have a stronger correlation as well.  
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For FLF1, the addition of the synergetic feature TVDI to the feature vector of EA-IEM 

inversion causes immediate improvements on the overall accuracy of estimation 

(RMSE=1.54%) and the correlation (R=0.66), that addition seems to balance out some of the 

inaccuracies that could be caused by the high SMC values and surface roughness of the site. 

For the FLF2, the elimination of radar features, and the addition of a feature (PDI) resistant to 

the limited range of vegetation cover of the study area have increased the accuracy and the 

correlation slightly further (RMSE=1.53% and R=0.67). 

 As for FLF3, the inclusion of all of the available features produced the best feature level 

fusion estimation in terms of accuracy and correlation (RMSE=1.37%, R=0.75), which is quite 

the improvement. Finally, the estimation produced by WBF has the best accuracy and the 

strongest correlation out of all of the used methods (RMSE=1.32%, and R=0.77), and the 

weights achieved for this study area were:  

𝑺𝑴𝑪𝑾𝑩𝑭 = 𝟎. 𝟎𝟖𝑺𝑴𝑪𝑻𝑽𝑫𝑰 + 𝟎. 𝟐𝟔𝑺𝑴𝑪𝑭𝑳𝑭𝟐 + 𝟎. 𝟔𝟔𝑺𝑴𝑪𝑭𝑳𝑭𝟑 (28)  
 

The WBF method disregards the PDI, EA-IEM inversion, and FLF1 estimations 

completely, and assigns the largest importance to FLF3 (weight= 0.66) which makes sense 

since it is the most accurate estimation, then the second-largest importance to FLF2 (weight = 

0.26) which is the also the second-best estimation in terms of RMSE values, however, it was 

quite interesting to find that it assigns importance to TVDI (weight =0.08).  

For this study area, the WBF method produced the best results in terms RMSE and R, with 

FLF3 a very close second. However, the latter does possess a slightly more accurate range of 

values in terms of minimum, maximum, and mean and standard deviation. 

5.2.2 Sidi Rached 1 

The second group of results are those corresponding to the Sidi Rached 1 dataset, and 

Figure 29 and Table 11 provide summaries of the results achieved by each estimation method: 
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   Results each of the used SMC estimation methods in the Sidi Rached 1 datasets. 
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 The results of each of the used estimation methods in the Sidi Rached 1 

dataset. 

Estimation 

methods 

Sidi Rached 1 (n=114) 

RMSE 

(%) 

Estimated SMC Measured SMC 

Min 

(%) 

Max 

(%) 

Mean 

(%) 

SD 

(%) 

Min 

(%) 

Max 

(%) 

Mean 

(%) 

SD 

(%) 

Estimations 

using a 

single 

method 

TVDI 4.41 25.16 40.07 31.14 2.52 

16.65 40.87 31.4 4.94 

PDI 4.4 25.85 36.08 31.25 2.26 

EA-

IEM  
4.1 22.91 41.55 31.12 2.67 

Estimations 

using 

feature-

level fusion 

FLF1 3.19 22.05 41.68 31.48 3.84 

FLF2  3.89 23.1 39.55 31.67 3.38 

FLF3 2.9 20.75 41.32 31.22 3.87 

Estimation 

using 

decision 

level fusion 

WBF 2.7 22.67 40.4 31.35 3.51 

In this dataset, the RMSE error values were higher due to the spatial variability in terms of 

vegetation cover intensity and soil moisture content (SD=4.94%) in this particular agricultural 

field, and the best estimation using a single method in terms of RMSE and degree of correlation 

was again achieved using the EA-IEM inversion (RMSE=4.1%, R=0.54). The relatively lower 

performance of TVDI could be explained by the fact that the number of pixels representing 

bare soil and low vegetation intensity was low, only 24% of all pixels had NDVI values less 

than 0.3, which caused a less accurate determination of the dry edge, and the opposite could 

be said about the performance of PDI,  due to the high number of pixels associated with dense 
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vegetation, the soil line is not accurately represented given that 76% of the pixels had NDVI 

values more than 0.3. 

It is also apparent that the estimations using feature-level fusion outperform EA-IEM 

inversion in terms of RMSE and degree of correlation in this study area as well. For FLF1, the 

addition of the TVDI to the feature vector of EA-IEM inversion has yet again, made a positive 

impact on the overall accuracy of estimation (RMSE=3.17%) and the correlation (R=0.76), 

that addition seems to lower the impact of the presence of dense vegetation cover on the 

accuracy of EA-IEM inversion estimation, not to mention increasing the accuracy of 

estimation for values that range from 28% to 33% (as visible in plot (d) in Figure 24). For the 

FLF2, unlike the results achieved in the first study area, the elimination of radar features did 

not produce a more accurate estimation (RMSE=3.89% and R=0.62), which could be for the 

same reasons affecting the estimations of PDI and TVDI individually. As for FLF3, the 

inclusion of all of the available features produced the best feature level fusion estimation in 

terms of accuracy and correlation (RMSE=2.9%, R=0.81) once again. 

 Finally, the estimation produced by WBF has again yielded the best accuracy and the 

strongest correlation out of all of the used methods (RMSE=2.7%, and R=0.84), and the 

weights achieved for this study area were:  

𝑺𝑴𝑪𝑾𝑩𝑭 = 𝟎. 𝟑𝟔𝑺𝑴𝑪𝑭𝑳𝑭𝟏 + 𝟎. 𝟎𝟖𝑺𝑴𝑪𝑭𝑳𝑭𝟐 + 𝟎. 𝟓𝟔𝑺𝑴𝑪𝑭𝑳𝑭𝟑 (29)  
 

The WBF method disregards the TVDI, PDI, EA-IEM inversion, and FLF1 estimations 

completely, indeed the WBF in this study area seems to assign weights according to the 

accuracy of each estimation, it assigns the largest weight to the most accurate estimation FLF3 

(weight= 0.56), then the second-largest weight to weight FLF1 (weight = 0.36) and the 

smallest weight to FLF2 (weight =0.08). 

For this study area, the WBF method produced the best results in terms RMSE and R, and 

range of values in terms of minimum, maximum, and mean and standard deviation.  

It is noticeable that the correlation of WBF estimation in this study area (R=0.84) is stronger 

than that of the Blackwell farms counterpart (R=0.77), which could be attributed to the longer 

temporal gap between the time of acquisitions of the Blackwell farms ground truth data. 
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5.2.3 Sidi Rached 2 

The third group of results are those corresponding to the Sidi Rached 2 dataset, This 

particular dataset is by far the smallest in terms of the number of samples (n=36), and Figure 

30 and Table 12 offer summaries of the results achieved by each estimation method: 
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 Results of each of the used SMC estimation methods in the Sidi Rached 2 datasets. 
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 The results of each of the used estimation methods in the Sidi Rached 2 

dataset. 

Estimation 

methods 

Sidi Rached 2 (n=36) 

RMSE 

(%) 

Estimated SMC 

 

Measured SMC 

Min 

(%) 

Max 

(%) 

Mean 

(%) 

SD 

(%) 

Min 

(%) 

Max 

(%) 

Mean 

(%) 

SD 

(%) 

SMCTVDI 2.32 26.09 39.32 33.73 2.34 

26.1 39.15 33.75 3.2 

SMCPDI 2.44 36.83 38.57 33.69 2.53 

SMCEA-IEM 2.74 29.78 35.9 33.92 1.69 

SMCFLF1 1.97 27.26 43.19 33.58 2.87 

SMCFLF2  1.98 26.09 38.51 33.56 2.77 

SMCFLF3 1.34  25.14 38.62 33.46  3.05 

SMCWB  1.23 26.93 38.27 33.51 2.72 

The best estimation using a single method in terms of RMSE and degree of correlation was 

achieved using the TVDI method this time (RMSE=2.32%, R=0.69), the potential reason for 

that is that the full range of vegetation cover intensity is present, with 41% of the overall pixels 

having NDVI values below 0.3. The performance of PDI was slightly poorer, which is 

understandable due to the presence of pixels with dense vegetation, which can have a negative 

impact on the determination of the soil line, another possible reason for TVDI and PDI 

outperforming EA-IEM inversion; is that the time of ground truth collection (09:00 a.m. to 

10:30 a.m.) was closer to the Landsat-8 acquisition time (10:25 a.m.) than that of Sentinel-1 

(05:45 a.m.). 

The estimations using feature-level fusion outperform TVDI estimation in terms of RMSE 

and degree of correlation in this study area too. FLF1 and FLF2, seem to perform almost 

identically with the same degree of correlation (R=0.79), with slightly different RMSE values 

(1.97% and 1.98% respectively).  As for FLF3, the inclusion of all of the available features 
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has generated the best feature level fusion estimation in terms of accuracy and correlation 

(RMSE=1.34%, R=0.91) for this dataset too. 

 The estimation produced by WBF has again produced the best accuracy and the strongest 

correlation out of all of the used methods (RMSE=1.27%, and R=0.93), and the weights 

achieved for this study area were:  

𝑺𝑴𝑪𝑾𝑩𝑭 = 𝟎. 𝟎𝟒𝑺𝑴𝑪𝑻𝑽𝑫𝑰 + 𝟎. 𝟏𝟒 𝑺𝑴𝑪𝑷𝑫𝑰 + 𝟎. 𝟎𝟖𝑺𝑴𝑪𝑭𝑳𝑭𝟏

+ 𝟎. 𝟎𝟐𝑺𝑴𝑪𝑭𝑳𝑭𝟐 + 𝟎. 𝟕𝟐𝑺𝑴𝑪𝑭𝑳𝑭𝟑 
(30)  

 

The WBF method disregards the EA-IEM inversion estimations completely, the WBF in 

this study area generates an interesting configuration of weights, it assigns the largest weight 

to the most accurate estimation FLF3 (weight= 0.72). However, the second-largest weight was 

the one assigned to PDI estimation (weight = 0.14), then smaller weights to the FLF1 

estimation (weight =0.08), the TVDI estimation (weight=0.04) and the smallest weight was 

assigned to the FLF2 estimation (weight=0.02).  

In this study area, the WBF method produced the best results in terms RMSE and R, and 

the closest to the measured SMC in terms of the range of the values of minimum, maximum, 

and mean.  

The strong correlation of WBF estimation in this study area (R=0.93) reinforces the 

assumption that the correlation could be attributed to the length of the temporal gap between 

the times of acquisitions. 
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 Remarks and Discussions 

The achieved results come in good agreement with the findings of (Yahia, Guida et al. 

2018a, Yahia, Guida et al. 2018b), the proposed SMC estimation system systematically 

improves the accuracy of SMC estimation in terms of lowered RMSE values in the orders of 

at least 0.38%, 1.4%, 1.09% for the datasets of Blackwell farms, Sidi Rached 1, and Sidi 

Rached 2 respectively, which is a great improvement on the accuracy of estimation achieved 

by a single method. However, more investigations are required to understand the signification 

of weight assignments.  

The time of execution of the proposed SMC estimation system is somewhat reasonable 

(Blackwell farms=895.79 seconds, Sidi Rached 1=880.11 seconds, Sidi Rached 2= 891.27 

seconds), and any future weights determinations will only be required if a new ground truth 

data is presented to the system (which would require further training).  

However, the performance of the proposed SMC estimation system is sensitive to the 

vegetation cover intensity, it seems to perform better in bare soil to low vegetation cover 

(Blackwell farms), or in datasets with a full range of vegetation cover intensity from bare soil 

to dense vegetation, as it is the case in Sidi Rached 2, but its performance is relatively poorer 

in fully vegetated areas (Sidi Rached 1). 

In addition to the performance issues described above, the author of this research is 

concerned that the low number of available samples for ANNs training could cause potential 

overfitting issues. Overfitting would limit the constraints of the use of the proposed SMC 

estimation system; it would render the latter specialised to areas with similar characteristics to 

those of the study areas in terms SMC distribution, the vegetation cover intensity and 

distribution, as well as soil compositions and surface roughness parameters. The temporal 

resolution of the used satellites is another concern, as large SMC changes could occur within 

the temporal gap between the times of acquisitions of the satellites. That will hopefully change 

by the inclusion of future satellite missions, especially the Landsat-9 mission (will be launched 

in December 2020), the mission largely replicates its predecessor Landsat-8 and in terms the 

on-board sensors (Markham, Jenstrom et al. 2016), which will reduce the temporal gap and 

increase the accuracy and correlation of the collected measurements to the earth observation 

data. 
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 Comparison of the fusion centre to methodologies in Literature 

In order to correctly gauge the value of this research, it is a good practice to compare its 

findings to those of the most relevant methodologies literature (available detailed description 

of said methodologies is section 2.6). However, each of these methodologies used different 

EO-data, auxiliary data, and ground truth data corresponding to a variety of study areas, at 

different spatial and temporal scales. It is extremely difficult to replicate these methodologies 

for the research presented in this thesis due to a variety of constraints. These numerous 

constraints could be any of these factors: the nature of the used satellites (active/passive), their 

frequency, their spatial resolution, the topography of the corresponding study, the intensity of 

vegetation cover, the species of vegetation cover, surface roughness parameters, and the 

instruments used for the validation. This renders the comparison of the results of these studies 

to the results of this research rather problematic. For instance, this research concentrates on 

SMC estimation for the regional scale at high spatial resolution. That rules out any 

methodologies based on coarse spatial resolution satellites such as SMAP, SMOS, AMSE-R, 

MODIS, which constitutes the majority of these studies. With that being said, it is still entirely 

crucial to the identity of the benchmark of accuracy associated with the state of the art EO-

based SMC estimation systems in order appreciate qualitatively the value of the proposed 

system results. The different results of these studies, as well as the mean of all the results 

achieved by the feature level fusion as well as the fusion centre, are illustrated in Table 13. 

 

 

 

 

 

 

 

 

 

 

 



Testing and Evaluation 

  

   84 

 Comparison between the results attained by relevant studies and the 

proposed SMC estimation system. 

Study RMSE (%) R Additional information 

(Kurucu, Sanli et al. 

2009)  
/ 0.72 

Image fusion of SPOT-2 

and Radarsat-1. 

(Bai, L., Long et al. 

2019) 
3.8 / 

Image fusion of MODIS and 

Landsat-8. 

(Bai, L., Long et al. 

2019) 
3.8 0.67 

Image fusion in the form of 

downscaled and blended 

MODIS-LANDSAT-8 data 

to use in the trapezoidal 

method.  

(Moran, Hymer et al. 

2000) 

(Absolute 

error) 

 2.51 

0.96 

Feature level fusion of data 

from Landsat-TM and ERS-

2 C-band. 

(Notarnicola, Posa 

2001) 

(Absolute 

Error) 

10% 

/ 

Feature level fusion using 

passive and active 

microwave data from 

RASAM truck-mounted 

radiometer-scatterometer at 

a frequency of 4.6 GHz. 

(Posa, Notarnicola et al. 

2004) 

BAY1: 1.94 

ANN1: 2.21 

BAY2: 5.08 

ANN2:3.28 

BAY1: 0.8 

ANN1: 0.78 

BAY2: 0.68 

ANN2:0.84 

Feature level fusion using 

passive and active 

microwave data from 

Truck-mounted radiometer 

and scatterometer, and C-

band scatterometer data. 

(Park, Im et al. 2017) / 
AMSR-E=0.53 

In-situ=0.77 

Feature level fusion using 

data from AMSR-E, 

MODIS, and TRMM.  



Testing and Evaluation 

  

   85 

(Van der Schalie, De 

Jeu et al. 2018) 

LS-reg=3 

LPRM=2 

ANN= 1.9 

0.7 

Feature level fusion using 

passive and active 

microwave data from 

AMSR-E validated by 

SMOS data. 

(Portal, Vall-Llosscra et 

al. 2018) 
7 0.8 

Feature level fusion using 

microwave data from 

SMOS and optical and 

thermal data from MODIS. 

(Xu, Yuan et al. 2019) 
(ubRMSE)  

7.1 
0.74 

Feature level fusion using 

passive microwave data 

from SMAP, data from 

MODIS, and data from the 

GEOS-5 model. 

(Yuan, Xu et al. 2020) 

(ubRMSE)  

5 
0.88 

Feature level fusion using 

passive microwave data 

from SMAP, data from 

MODIS, and data from the 

GEOS-5 model. 

(Huang, Liang et al. 

2019) 
13.1 0.89 

Feature level fusion of 

features derived from GNSS 

data (SNR). 

(Ren, Liang et al. 2019)   6 0.94 

Feature level fusion of 

features derived from GNSS 

data (SNR). 

Feature level fusion 

FLF3 (mean of the 

results of 3 study areas) 

1.87 0.82 / 

Fusion centre (mean of 

the results of 3 study 

areas) 

1.75 0.85 / 
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Inspecting Table 13 reveals, that the fusion centre outperforms all other studies when it 

comes the RMSE values (1.75 %), all while still offering a strong correlation (R=0.85). These 

RMSE values cannot be contested nor compared due to the absence of any other similar 

studies, especially in terms of estimation/decision level fusion systems in the literature. The 

same cannot be said about the proposed feature levels fusions, as numerous studies exploit that 

particular processing level albeit in different spatial scale, and sensors. The proposed feature 

level fusion in this research (FLF3) still outperforms all the other studies in the reviewed 

literature in terms of RMSE (1.87%), with relatively weaker correlation (R=0.82). the study 

authored by (Moran, Hymer et al. 2000) produces the strongest correlation out of all the 

reviewed literature (R=0.96), however, it is hard to evaluate its accuracy of estimation due to 

the study using another metric of accuracy (absolute error) instead of RMSE. Studies using 

GNSS (Huang, Liang et al. 2019, Ren, Liang et al. 2019) data seem to offer strong overall 

correlations to their respective validation data (R=0.94, R=0.89) while offering less than 

optimal RMSE values (6% and 13% respectively). The study proposed by (Posa, Notarnicola 

et al. 2004) seems also to produce a good compromise between the correlation and low RMSE 

values, but that could be explained by the fact that the used sensors are in fact more proximal 

than remote (Truck mounted radiometer and scatterometer). The study proposed by (Van der 

Schalie, De Jeu et al. 2018) produced low RMSE values (one of the methods achieved ANN 

RMSE=1.9%), however, it is important to note that these values are not consistent throughout 

the whole validation samples (only at specific NDVI intervals) and all pixels corresponding 

outside of that interval are not considered for the calculations of RMSE. 

In conclusion, it is an accurate statement to declare that the results achieved in this research 

are up to the standard of state of the art. Correlation wise, it could be argued that the reason 

that the correlation is not even stronger is due to the temporal resolution, or the heterogeneity 

of the used EO-data as well as the used methods. Despite that, the results achieved by the 

proposed methodology still produce the lowest RMSE values in all of the reviewed literature 

at the time of this research.  
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 Conclusion 

In chapter 5, the results achieved by the proposed SMC estimation system were analysed 

according to their study area, the proposed system has to achieve the best results in terms of 

RMSE values in the Sidi Rached 2 dataset (1.27%), followed by the Blackwell farms dataset 

(1.34%) and finally by Sidi Rached 1 dataset (2.7%), which suggest that the system performs 

its best in the presence of a full range of vegetation cover. However, it is worth noting that the 

most significant improvement of this system on estimations using single methods, was 

achieved in the Sidi Rached 1 data with lowered RMSE values in the order of 1.4%. Chapter 

5 also discussed and offered a few remarks on the factors that cause or could cause 

performance issues of the proposed SMC estimation system. 

The following and final chapter will be Chapter 6: Conclusions and Future Works. 
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6. CONCLUSIONS AND FUTURE WORK 

 Summary 

The objective of this thesis was to develop a novel multi-sensory data fusion system for 

soil moisture content estimation. 

 The designed system is composed of several distinct soil moisture content retrieval 

methodologies from different remote sensing technologies as described by the state of the art 

chapter, each of those methods, whether be it the IEM inversion, PDI or TVDI, suffer from 

several limitations that have an adverse effect on their respective performance in terms of 

accuracy, which prompted the authors of this research to propose the use of data fusion 

techniques as a possible solution to minimise those performance-related issues. Furthermore, 

the single scattering IEM has a limited validity range of surface roughness values, which 

caused the author to propose the use of the Empirically Adapted IEM with the addition of a 

semi-empirical calibration (Lopt) instead. 

The rationale behind the fusion scheme of the proposed SMC estimation system was 

explained in the methodology chapter. It was maintained that increasing the dimensionality of 

the feature space would increase the accuracy of SMC estimation. It was also argued that 

assigning weights to each of the individual estimations, including the feature level fusions, 

will ameliorate the accuracy of the final output of the proposed SMC estimation system. 

The novel SMC estimation system required ground truth measurements from study areas 

for tests and validations. Those study areas were subject to a detailed description in the study 

area chapter. That description included the different characteristics in terms of their locations, 

vegetation state and the reasons behind their selection, not to mention the experienced 

difficulties in the process of their choice. That description also included a detailed account of 

Sentinel-1 and Landsat-8 satellite missions as well as the ML3 Theta Probe and laser and 

needle profilometres. 

The novel SMC estimation system was evaluated and analysed according to their study 

areas. The proposed system produces the best results in terms of RMSE values in the Sidi 

Rached 2 dataset (1.27%), followed by the Blackwell farms dataset (1.34%) and finally by 

Sidi Rached 1 dataset (2.7%).  
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The author concludes that the accuracy of the proposed system is better than any of the 

individual estimations achieved by PDI, TVDI, and the updated EA-IEM inversion and that the 

system performs its best in the presence of a full range of vegetation cover. Despite these 

promising results, there were also some concerns regarding the performance of the proposed 

system. The low number of collected SMC measurements used for the ANN training phase 

could potentially cause overfitting. Another concern is the temporal gap between the 

acquisition time of the satellites that produce EO-data used in the proposed system, which can 

cause a massive effect on the correlation of EO-data to SMC levels. Another issue to consider 

is the revisit time of the satellites (the longest is Landsat-8: 16 days), especially, as it is the 

case in this research, if the idea is to monitor SMC levels for agricultural practices. The impact 

of the latter issue could be minimised by the inclusion of additional satellites such as Sentinel-

2, and the probable addition of Landsat-9 after its launch. Finally, further research is required 

to address the limitation of the system in the absence of the full range of vegetation cover.  

  Main Novelty Contributions 

In the time spent conducting this research, the author was able to attain the following 

achievements:  

• Acquired of the necessary backgrounds in remote sensing, especially multispectral, 

thermal and SAR imaging technologies. 

• Conducted a literature survey of the relevant soil moisture retrieval methods in remote 

sensing. 

• Designed a novel SMC estimation system using the knowledge acquired from the 

literature survey. 

• Addressed the limitations of IEM inversion in terms of the range validity of soil 

roughness parameters, by proposing the use of Lopt and a later version of the IEM 

(EA-IEM). 

• Got familiarised with the instrument used for SMC measurement (ML3 ThetaProbe). 

• Planned and conducted ground truth measurement campaigns in two different 

countries (the United Kingdom and Algeria). 

• Built a portable laser profilometer to measure surface roughness parameters. 

• Processed ground truth SMC measurements and matched them to their corresponding 

pixels in the earth observation data. 
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• Developed the novel SMC estimation system and all its relevant methodologies in the 

Matlab environment. 

• Achieved more accurate results in terms of lowered RMSE values across all the 

datasets. 

• Published two conference papers. 

The perceived novelty and contribution to the state of the art provided by the research done 

during this PhD course are the following sorted in order of signification: 

•  The design and implementation of the fusion centre, which consists of an EO-based 

SMC estimation through a decision level fusion of estimations from multiple 

methodologies (TVDI, PDI, and an updated EA-IEM inversion) as well as multiple 

feature fusions (FLF1, FLF2, and FLF3) by assigning a weight to each estimation. 

• Obtaining encouraging results manifested in high accuracy SMC estimation. These 

results were represented by the low RMSE values (mean of 1.75%), which were 

lower than any of the individual estimation methods, and slightly lower than those 

achieved by different variations of feature level fusions. Those results were also 

compared to the results achieved by the most relevant studies. The results achieved 

by the proposed system were proven to have lower RMSE values than those found 

in the relevant literature. However, the aforementioned results exhibited a relatively 

weaker correlation which could subject to further investigations.  

• The design and implementation of multiple feature level fusions using a different 

and completely novel combination of features extracted from different methods 

(PDI, TVDI, an updated EA-IEM inversion). 

• The semi-empirical calibration the EA-IEM model  (Song, Zhou et al. 2009) to 

include a wider range of surface roughness profiles by the replacement of the 

correlation length by a semi-empirical parameter Lopt (Baghdadi, Holah et al. 2006). 

• The alteration of the performance function of the used ANN from absolute error to 

RMSE. 

• The inception and implementation of a new Laser profilometre for surface roughness 

measurements. 

• The conception, planning, and execution of field campaigns for SMC and surface 

roughness truth measurements for validations and tests in 3 different study areas in 

Blackwell farms (UK), Sidi Rached (Tipasa, Algeria). These study areas have never 

been the subject of a research study before. 
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However, the author also recognises the potential improvement of the novel SMC 

estimation system, which will be discussed in section 6.3.  

 Future Work 

While the proposed system has produced satisfactory results, the system still has room for 

improvements, especially in terms of the subjectivity or overfitting of the ANN to the available 

data samples. That could be remedied by the acquisition of more ground truth measurements 

of SMC and surface roughness parameters. Another aspect to investigate is the process of 

weight assignment. The method should assign the weights only for the most accurate 

estimations (which it does). However, it sometimes assigns small weights to less accurate 

estimations at the expense of more accurate ones (it is apparent in the Blackwell farms and 

Sidi Rached 2 dataset).  

Another area that needs to be addressed is the temporal gap. While waiting for the launch 

of Landsat-9 satellite mission, it is worth investigating the effect of using Sentinel-2 data when 

the Landsat-8 data is unavailable, while that would sacrifice the thermal information that 

Landsat-8 provides, it would increase the frequency of having the satellites revisit the same 

area in the same day, which only occurs twice a month for the Landsat-8 and Sentinel-1, and 

the proposed system is designed to be reconfigurable enough to cope with the absence of 

Landsat-8 data. Even with the potential inclusion of Sentinel-2, the temporal gap of at least 3 

hours is too long, especially if the study area had extreme weather conditions. That could be 

addressed by the use of data assimilation techniques and the acquisition of better 

understanding the temporal variability of SMC. The proposed data assimilations methodology 

by authors in  (Zaman, McKee et al. 2012) seems quite interesting,  as it explores the possibility 

of using past and current data to predict soil moisture weather in a different spatial level i.e. 

root zone SMC, and different temporal intervals. Which could potentially be applicable in 

future iterations of the proposed system in this research. 

More evaluations are also required to judge the performance of the proposed system with 

different plant species as all study areas were grasslands. 

Another possible direction this research could take is the consideration of weather 

conditions factors like precipitation, air temperature, humidity and wind speed in future 

updates of the novel system. 
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Finally, the effect of SMC values in the lower layers of the soil surface on the surface SMC 

is yet to be investigated, the potential use an L-band SAR if available, as the latter is famed 

for its ability for surface penetration, it would provide SMC estimations at slightly deeper 

layers, which would clarify the degree of significance of those values on the performance of 

the novel SMC. 
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