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Abstract

Extraction of a target speech signal from the convolutive mixture of multiple sources 
observed in a cocktail party environment is a challenging task, especially when the room 
acoustic effects and background noise are present in the environment. Such acoustic 
distortions may further degrade the separation performance of many existing source 
separation algorithms. Algorithmic solutions to this problem are likely to have strong 
impact on many applications including automatic speech recognition, hearing aids and 
cochlear implants, and human-machine interaction. In such applications, to extract the 
target speech, it is usually required to deal with not only the interfering sound, but 
also the room reverberations and background noise.

To address this problem, several methods are developed in this thesis. For the blind sep
aration of a target speech signal from the convolutive mixture, a multistage algorithm 
is proposed in which a convolutive independent component analysis (ICA) algorithm is 
applied to the mixture, followed by the estimation of an ideal binary mask (IBM) from 
the separated sources obtained with the convolutive ICA algorithm. In the last step, 
the errors introduced due to estimation of the IBM are reduced by cepstral smoothing.

The separation performance of the above algorithm, however, deteriorates with the 
increase in surface reflections and background noise within the room environment. 
Two different methods are therefore developed to reduce such effects. In the first 
method which is also a multistage method, acoustic effects and background noise are 
treated together using an empirical-mode-decomposition (EMD) based algorithm. The 
noisy reverberant speech is decomposed adaptively into oscillatory components called 
intrinsic mode functions (IMFs) via an EMD algorithm. Denoising is then applied 
to selected high frequency IMFs using an EMD-based minimum mean squared error 
(MMSE) filter, followed by spectral subtraction of the resulting denoised high and 
low-frequency IMFs. The second method is a two-stage dereverberation algorithm in 
which the smoothed spectral subtraction mask based on a frequency dependent model 
is derived and then applied to the reverberant speech to reduce the effects of late 
reverberations. Wiener filtering is then applied such that the early reverberations are 
attenuated.

Finally, an algorithm is developed for joint blind separation and blind dereverberation. 
The proposed method consists of a step for the blind estimation of reverberation time 
(RT). The method is employed in three different ways. Firstly, the available mixture 
signals are used to estimate blindly the RT, followed by the dereverberation of the 
mixture signals. Then, the separation algorithm is applied to these resultant mixtures. 
Secondly, the separation algorithm is applied first to the mixtures, followed by the blind 
dereverberation of the segregated speech signals. In the third scheme, the separation 
algorithm is split such that the convolutive ICA is first applied to the mixtures, followed 
by the blind dereverberation of the signals obtained from convolutive ICA. Then, the 
T-F representation of the dereverberated signals is used to estimate the IBM followed 
by cepstral smoothing.
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Chapter 1

Introduction

1.1 Problem Description and M otivation

The extraction of a target speech signal from a mixture of multiple signals is classically 

referred to as the cocktail party problem (CPP), the concept of which was introduced 

for the first time by Cherry in 1953 [30]. It can be also formulated as: “How do 

we recognize what one person is saying when others are speaking at the same time”, 

which has turned out to be a highly complex problem when background noise and 

acoustic disturbance are taken into consideration. Although it poses big challenges in 

many signal processing applications, human listeners with normal hearing are generally 

very skilful in separating the target speech within a complex auditory scene [172]. It 

has been observed that people with perceptive hearing loss suffer from insufficient 

speech intelligibility [40,86]. It is difficult for them to pick up the target speech, in 

particular, when there exist some interfering sounds and background noise nearby. 

However, amplification of the signal is not sufficient to increase the intelligibility of the 

target speech as all the signals (both target and interference) are amplified. For this 

application scenario, it is highly desirable to produce a machine that can offer clean 

target speech to these hearing impaired people.

Despite being studied for decades, the CPP remains a scientific challenge that demands 

further research efforts [172]. Computational modelling and algorithmic solutions to 

this problem are likely to have strong impact on several applications including hearing

1



1.1. Problem Description and Motivation

¥Speaker 1

Microphone 1

¥
Micro phone 2

Speaker 2

Figure 1.1: A simplified scenario of the cocktail party problem with two speakers and 

two listeners (microphones).

aids and cochlear implants, human-machine interaction and robust speech recognition in 

uncontrolled natural environments. Figure 1.1 illustrates the cocktail party effect using 

a simplified scenario with two simultaneous conversations in the room environment.

The key challenge is to recover the target speech from the mixture of speech signals 

recorded in a cocktail party environment such that the interference of the competing 

speech signals is suppressed. One promising technique to address this problem is under 

the framework of blind source separation (BSS) where the mixing process is generally 

described as a linear convolutive model, and independent component analysis (ICA) 

[73, 97] can then be applied to separate the convolutive mixtures either in the time 

domain [32,45,46], in the transform domain [2,8,64,68,102,121,136,139,178,189], or 

their hybrid [90,98], assuming the source signals are statistically independent [8,44, 

102,107,120,121]. Although the convolutive BSS problem, i.e. separating unknown 

sources from their convolutive mixtures, has been studied extensively, the separation 

performance of many developed algorithms is still limited, and leaves much room for
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further improvement. This is especially true when dealing with reverberated and noisy 

mixtures.

Another technique proposed to tackle this problem is under the framework of computa

tional auditory scene analysis (CASA). It is the study of auditory scene analysis (ASA) 

by computational means. ASA is the process by which the human auditory system per

forms sound localization and recognition in order to pick up the target signal from the 

cocktail party environment. Recently in CASA, a technique called ideal binary mask 

(IBM), has shown promising properties in suppressing interference and improving in

telligibility of target speech. IBM is obtained by comparing the T-F representations 

of the target speech and background interference, with one/unity assigned to a T-F 

unit where the target energy is stronger than the interference energy and zero other

wise [168]. The target speech can then be obtained by applying the IBM to the T-F 

representation of the mixture, together with an inverse transform. The IBM technique 

was originally proposed as a computational goal or performance benchmark of a CASA 

system [168,172]. Recent studies reveal that by suppressing the interference signals 

from the mixtures, the IBM technique can significantly improve the intelligibility of 

the target speech [173]. This simple yet effective approach offers great potential for 

improving speech separation performance of ICA algorithms. Different from many ICA 

approaches with linear models [101], signals estimated in the T-F plane have mostly 

non-overlapping supports for different speaker signals and thus one can use IBM to 

extract the target speech from their mixture signal. The IBM is obtained by assuming 

both the target speech and interfering signal are known a priori. However, in practice, 

only mixtures are available, and the IBM must be estimated from the mixtures, which 

is a major computational challenge.

To overcome these limitations a computationally very efficient algorithm is developed in 

this thesis to estimate the IBM from intermediate separation results that are obtained 

by applying an ICA algorithm to the mixtures. The limitation of the aforementioned 

CASA methods, i.e., having to estimate the IBM directly from the mixtures, is mit

igated as the IBM can now be estimated from the coarsely separated source signals 

obtained by ICA algorithms. The estimated IBM can be further used to enhance the 

separation quality of the coarsely separated source signals. To deal with the estimation
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errors of the binary mask, a cepstrum based processing method was employed.

Another major challenge in addressing the CPP is the presence of acoustic effects in 

an enclosed cocktail party environment that can degrade the quality of the extracted 

target speech signal. As the listeners (or microphones) are not always located near 

the desired (target) speech signal and hence the signals received at the listeners (or 

microphones) are typically degraded by not only the interfering sound source nearby, 

but also the reverberations introduced by the multi-path propagation from the target 

source due to surface reflections within the room. Reverberation effects in speech can be 

described as sounding distant with noticeable colouration and echo. These detrimental 

perceptual effects generally increase with distance between the speaker and the listener 

(or microphone). Furthermore, with the spread in the time of arrival of reflections at 

the microphone, reverberation causes blurring of speech phonemes. These detrimental 

effects seriously degrade the intelligibility of the target speech and the performance of 

the speech separation algorithms. Therefore extraction of a target speech signal from 

a mixture is not sufficient to mitigate the CPP but there is a need to develop methods 

that can reduce the effects caused by the reverberations.

One more challenge is the ambient noise which is also the source of interference that 

degrades the quality of target speech while addressing the CPP. It is well known that 

background noise reduces the intelligibility of speech and that the greater the level of 

background noise the greater the reduction in intelligibility. Human listeners with nor

mal hearing are able to understand speech in a moderately noisy environment because 

speech is a highly redundant signal and thus even if part of the speech signal is masked 

by noise, other parts of the speech signal will convey sufficient information to make the 

speech intelligible, or at least sufficiently intelligible to allow for effective speech com

munication. There is less redundancy in the speech signal for a person with hearing 

loss since part of the speech is either not audible or is severely distorted because of 

the hearing loss. Background noise that masks even a small portion of the remaining, 

impoverished speech signal will degrade intelligibility significantly because there is less 

redundancy available to compensate for the masking effects of the noise. As a conse

quence, people with hearing loss have much greater difficulty than people with normal 

hearing in understanding speech in noise. Therefore, it is necessary to develop methods
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that can reduce the ambient noise in order to improve the intelligibility of the target 

speech extracted from the mixture in the cocktail party environment.

The separation performance of the algorithm developed in this thesis for the blind sep

aration of target speech from convolutive mixtures has been restrained due to acoustic 

effects and ambient noise. Hence an algorithm is developed which can reduce the ef

fects of reverberations and background noise resulting in improved speech intelligibility. 

The developed method is using empirical-mode-decomposition (EMD) based subband 

processing. Noisy reverberant speech is decomposed adaptively into oscillatory com

ponents called intrinsic mode functions (IMFs) via an EMD algorithm, followed by, 

denoising the selected IMFs using EMD-based minimum-mean squared error (MMSE) 

filter. Then spectral subtraction is applied to the resulting denoised high-frequency 

IMFs and low-frequency IMFs. Finally, the enhanced speech signal is reconstructed 

from the processed IMFs.

Another method is proposed to deal with the room reverberation separately. It is a two 

stage method, in the first stage a frequency dependent statistical model of the decay 

rate of the late reverberations (details about late reverberation are given in Chapter 2) 

is used to estimate the spectral variance of late reverberation, followed by estimation of 

the spectral mask containing the gain functions. Then, the smoothing filter is applied 

to the spectral mask to reduce the artifacts, and finally the smoothed gain function 

is applied to the reverberant signal to suppress the late reverberations. In the second 

stage, a dual-channel Wiener filter is used to deal with the early reverberations (details 

about early reverberation are given in Chapter 2).

Finally, a joint blind dereverberation and separation algorithm is proposed. The devel

oped method has been employed in three different ways. Firstly, the available mixture 

signals are used to estimate blindly the reverberation time (RT) based on a maximum- 

likelihood (ML) method and statistical modelling of the sound decay rate of the rever

berant speech, followed by the dereverberation of the mixture signals using the method 

based on the frequency dependent statistical model. Then, the separation algorithm is 

applied to these resultant mixtures so that the source (target) speech signals can be 

obtained. Secondly, the separation algorithm is applied primarily to the mixtures to
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segregate the speech signals, followed by the blind estimation of RT from the separated 

speech signal. Then, dereverberation is employed to the segregated (target) speech 

signals. In the third scheme, the separation algorithm is split such that the convolutive 

ICA is first applied to the mixtures to obtain the estimated source signals. Then, the 

signal obtained from the convolutive ICA is used to estimate the RT followed by the 

blind dereverberation of the signals obtained from convolutive ICA. Then, the T-F rep

resentation of dereverberant signals are used to estimate the IBM followed by cepstral 

smoothing to enhance the target speech signal.

This thesis is organized as follows: in Chapter 2, some background has been provided 

along with the literature review of the key techniques employed to address the CPP. 

The proposed algorithm based on convolutive ICA and IBM followed by the cepstral 

processing, for the blind separation of convolutive speech mixtures, with systematic 

evaluation and experimental results for both simulated and real data is described in 

Chapter 3. In Chapter 4, a novel algorithm is presented for the enhancement of noisy 

reverberant speech, using EMD based subband processing. It is shown in this chapter 

that the developed algorithm offers considerable performance improvement for both 

simulated and real data. Chapter 5 describes a new method for the reduction of room 

reverberations using the frequency dependent statistical model. The comparison of the 

algorithm with a related recent approach is given in this chapter based on experimental 

results for both simulated and real recorded data. In Chapter 6, a new algorithm is 

presented for blind estimation of RT which is then incorporated into the algorithms 

developed in Chapter 3 and 5 for performing blind dereverberation and separation from 

the speech mixtures. Experimental evaluation results are also provided in this chapter. 

Chapter 7 concludes the thesis with recommendations for future research.

1.2 Contributions

The major contributions of this thesis are summarized as follows:

1) An efficient algorithm is proposed for the blind separation of convolutive speech mix

tures. The proposed algorithm is a multistage algorithm with novel combinations of 

three steps, including the convolutive source separation algorithm adopted in the first
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step followed by the estimation of IBM from the separated sources obtained with the 

convolutive ICA algorithm in the second step, and the cepstral smoothing technique 

is employed in the third step for reducing the musical noise caused by estimation of 

IBM. Extensive evaluations have been performed on the proposed algorithm by com

parison with related recent approaches in terms of both objective performance indices 

and subjective listening tests. Results show that the multistage algorithm improves 

significantly the separation performance over these methods. Moreover, the proposed 

algorithm is a computationally more efficient one as compared to the recent approach. 

Pitch frequency is calculated in the proposed multistage algorithm from the segregated 

speech signal which is different from the method used previously utilizing the estimated 

mask for the pitch estimation.

2) A novel algorithm is developed to deal with the late reverberations and noise jointly 

using EMD based subband processing. The results show that this novel method leads 

to an improved enhancement performance in comparison to a related recent approach.

3) A new method is developed to suppress the room reverberations using the frequency 

dependent statistical model. In this algorithm, the spectral variance of the late rever

berations is estimated based on a frequency dependent statistical model of the decay 

rate of the late reverberations. For early reflections, a dual-channel Wiener filter is 

used to reduce their effects. The results indicate that this method performs consider

ably better in comparison with the most recent methods.

4) An algorithm is proposed for the blind dereverberation and separation together for 

the convolutive speech mixtures. The proposed algorithm consists of a new method for 

blind estimation of RT from the reverberant speech signal (i.e., mixtures). A Laplacian 

distribution based decay model is proposed in which an efficient procedure for locating 

free decay segments from reverberant speech is also incorporated.



Chapter 2

Background and Literature 

Survey

2.1 Cocktail Party Problem

This section is focusing on the discussion of one of the most challenging problems within 

the audio community called CPP [30]. It was proposed to address the phenomenon 

associated with the human auditory system that, in a cocktail party environment, 

humans have the ability to focus their listening attention on a single speaker when 

multiple conversations, background interferences and noise are present simultaneously. 

The main distortions need to be tackled in CPP are classified as, (1) distortion due 

to interfering sound, (2) distortion due to room reverberations, and (3) distortion due 

to background noise. Many researchers and scientists from a variety of research areas 

attempt to tackle this problem [10,21,23,49]. Despite all these works, CPP remains an 

open problem and demands further research effort.

As the solution to the CPP offers many practical applications, engineers and scientists 

have spent their efforts in understanding the mechanism of the human auditory system, 

and hoping to design a machine which can work similarly to the human auditory system. 

However, there are no machines produced so far that can perform as humans in a real 

cocktail party environment. Based on the three different types of distortions that need
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to be handled, background and literature review on related methods are provided in 

this chapter. However, the main contributions of this thesis focus on the first two types 

of distortions.

2.1.1 Audio sources in a cocktail party environment

Audio sources are usually classified as speech, music, or natural sounds. Each of 

the categories has its own specific characteristics which can be exploited during its 

processing. Speech sounds are basically composed of discrete phonetic units called 

phonemes [39,124]. Due to the co-articulation of successive phonemes, each signal that 

corresponds to a specific phoneme exhibits time varying properties. The resultant sig

nal is composed of periodic harmonic pulses which are produced due to the periodic 

vibration of the vocal folds, a noise part which is generated because of the air passing 

via lips and teeth, or a transient part due to the release of pressure behind the lips 

or teeth. Harmonics within the generated signal have periodic frequency components 

which are multiples of a fundamental frequency component. In real speech signals the 

fundamental frequency component of the periodic phonemes varies due to the artic

ulation, but typically for male speech is 140 Hz, and 200 Hz for female speech with 

variation of 40 Hz for each.

Music sources [63] generally constitute of sequences of notes or tones produced by 

musical instruments, singers and synthetic instruments. Each note is composed of a 

signal which further can be made of a periodic part containing harmonic sinusoids 

produced by blowing into a pipe, bowing a string, a transient part generated due 

to hitting a drum, plucking a string, or a wideband noise produced by blowing into 

wind instruments. For example, in western music the periodic frequencies of the notes 

generated typically remain constant or varying slowly. Musical instruments usually 

produce musical phrases which are composed of successive notes without any silence 

between the notes. Unlike monophonic music, polyphonic sounds are composed of 

several simultaneous notes that are generated by multiple musical instruments.

The third source comes from the environment, called natural sounds [59]. Their char

acteristic varies depending on the origin of the natural sound. Similar to the speech
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and music signals it can also be classified as periodic, transient and noise. For exam

ple, a car horn produces the natural periodic sound signal, a hammer thrashing the 

hardwood generates the transient signal and raining results in a wideband noise signal. 

The discrete structure of natural sound is simpler as compared with the organization 

of notes and phonemes. In this work, the focus will be on the first type of audio source 

signal i.e. speech signals.

2.2 Distortion Due to Interfering Sound

In order to deal with the distortions generated due to interfering sound in the vicinity, 

a variety of methods have been proposed. For example, the computational auditory 

scene analysis (CASA) approach attempts to simulate the human auditory system via 

mathematical modeling using computational means [142,168,172]. BSS is also used to 

address this problem by many researchers. [102,121,147,178]. BSS approaches are based 

on the ICA technique assuming that the source signals coming from different speakers 

are statistically independent [73,97]. Non-negative matrix factorization (NMF) and 

its extension non-negative tensor factorization (NTF) have also been applied to speech 

and music separation problems [151,155,166,176]. Another interesting approach is 

the sparse representation of the sources in which the source signals are assumed to be 

sparse and hence only one of the source signals in the mixture is active while others 

are relatively insignificant for a given time instant [16,128,191]. Some model based 

approaches have also been employed to address this problem [134,163]. The following 

sections provide a detailed review of these techniques.

2 .2 .1  C o m p u ta tio n a l a u d ito ry  scen e  a n a ly sis

CASA is the study of ASA by computational means [172]. It is believed that the 

human ability to function well in everyday acoustic environments is due to a process 

termed ASA, which produces a perceptual representation of different sources in an 

acoustic mixture [21]. In other words, listeners organize the mixture into streams 

that correspond to different sound sources in the mixture. The concept of ASA was



2.2. Distortion Due to Interfering Sound 11

coined by Bregman in 1990 [21]. According to Bregman, organization in ASA takes 

place in two main steps: segmentation and grouping. In segmentation, the acoustic 

input (mixture) is decomposed into sensory elements or segments, each of which should 

primarily originate from a single source. In grouping, the segments that are likely 

to arise from the same source are grouped together. Segmentation and grouping are 

guided by ASA cues that characterize intrinsic sound properties, including harmonicity, 

onset and offset, and location, as well as prior knowledge of specific sounds.

A typical CASA system is shown in Figure 2 .1 , which has four stages: external pro

cessing, feature extraction, segmentation, and grouping and reconstruction. External 

processing processes the input signal using an auditory peripheral model, resulting 

in a cochleagram which is a two-dimensional time-frequency (T-F) representation. A 

cochleagram is composed of T-F units, each of which corresponds to the response of 

a specific auditory filter within a time frame. The second stage extracts auditory fea

tures, producing a number of feature representations. In the segmentation stage, the 

system generates a collection of segments or contiguous regions in a cochleagram. On 

the basis of extracted features and segments, the grouping and reconstruction stage 

produces streams corresponding to individual sound sources. The grouping and recon

struction stage includes simultaneous grouping which organizes segments overlapping 

in time into simultaneous streams, and sequential grouping which organizes segments 

or simultaneous streams across time into complete streams [34,35,168,172].

In general, there are two types of approaches for the separation of the target signal 

in the cocktail party environment in the context of CASA. The first one is called 

signal-driven approach which is used for the segregation of the auditory scene into 

the different components belonging to the different sound streams [21]. The second 

one called knowledge-driven approach uses the prior knowledge of the unknown speech 

sources, so that the target signal can be separated from the interference. In 1994, Brown 

and Cooke investigated some of the key issues related to the early CASA methods [24]. 

Specifically they avoid the assumptions made about the type and number of sources. 

They proposed to model the human auditory system into separate parts. The key 

parts are ear filtering, cochlear filtering and central processing (combination of different 

auditory maps which show onset, offset, periodicities and frequency transitions). Wang
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processing

Figure 2.1: Schematic diagram of a typical CASA system

and Brown (1999) [170] extended the work of Brown and Cooke by replacing the central 

processing with a double layer oscillator network and applied simple computational 

methods for auditory feature extraction.

A technique called ideal binary masking has been recently used in CASA to segregate 

the target signal from the interference [172]. Consider a microphone signal recorded 

in a cocktail party: x{n) =  si(n) + S2 (n), where si(n) is the target speech signal and 

S2 (n) is the interference speech signal and n is the discrete time instant. Denote X , S\ 

and S 2 as the time-frequency (T-F) representation of x{n), Si(n) and S2 (n) obtained 

from some T-F transformation respectively. Then, the ideal binary mask (IBM) for 

si{n) with respect to S2 (^) is defined as follows,

1 if I Si{m,k)  |> | S 2 {m,k) |,
Mi(m, k) = (2.1)

0  otherwise .

where m, k are the discrete time frame and frequency bin indices respectively. The 

target speech si(n) can then be extracted by applying the IBM to X ,  followed by 

an inverse T-F transform. The decision is binary, and hence the intelligibility of the 

segregated speech signal is high. But on the other hand the resultant mask Mj entirely 

depends on the availability of the target and interference speech signals. In practice, the 

target and interference signals are usually unknown, and the mask has to be estimated 

from the mixtures.

Recently, some methods have been developed in which the limitation of the CASA 

methods, i.e., having to estimate the IBM directly from the mixtures, is mitigated.
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(see for example, [129,145]). In these methods a separation algorithm is applied to the 

available mixtures to estimate the source signals followed by the estimation of the IBM 

from these estimated source signals.

Similarly, for the estimation of IBM, spatial localization cues, i.e., interaural time 

difference (concerning humans, it is the difference in arrival time of a sound between 

two ears) and interaural level difference (sound from the right side has a higher level 

at the right ear than at the left ear, because the head shadows the left ear, such 

difference is called interaural level difference), have also been considered recently (see 

for example, [65,143]).

2.2.2 Blind source separation

Another technique to address the problem of speech separation is BSS, where the 

mixing process is usually described as a linear convolutive model and convolutive ICA 

algorithms can then be applied to segregate the source signals from their mixtures 

assuming the sources are statistically independent [8,102,107,120,121,129]. BSS is an 

approach used for the estimation of the source signals having only the information of the 

mixed signals observed at each input channel, without prior information about sources 

and the mixing channels. Its potential applications include speech segregation in the 

cocktail party environment, teleconferences and hearing aids. In such applications, the 

mixture signals are reverberant, due to the surface reflections of the rooms. ICA is 

a major statistical tool for the BSS problem, for which the statistical independence 

between the sources is assumed [73,97]. The mathematical model [1] used to describe 

ICA is given as,

xi(n) = a iisi(n ) +  a i2S2 (n) +  ...ai^SNin)

xuin) = aMiSi{n) + aM2S2{n) + ...UMivSiv(?̂ ) 

where si(n), ..,Siv(n) represent unknown source signals in the cocktail party environ

ment, xi{n), ..,XM{n) denote the mixture signals (e.g. microphone recordings). If the 

coefficients aij (i =  1, ..,M , j  = 1,..,N) are scalars, the resultant mixtures are referred
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Figure 2 .2 : Schematic diagram for a typical BSS system with two sources and two 

mixtures. Unknown source signals: s, observed signals: x, estimated signals: y

to as instantaneous mixtures, and if they are filters, the mixtures are referred to as 

convolutive mixtures. If N=M, i.e., the number of sources equals to the number of 

mixtures, it is called exactly determined BSS problem. If A > M , it is the under

determined case, and N  < M  the over-determined BSS problem. A schematic diagram 

of a typical two input two output BSS system is given in Figure 2.2, in which A  repre

sents the unknown mixing system and B is the demixing system used for the estimation 

of the unknown source signals.

For separating convolutive mixtures, the BSS approach using ICA can be applied ei

ther in the time domain [32,45,129] or in the frequency domain [8,102,121,136,178] 

or their hybrid [90,98], assuming that the source signals are statistically independent. 

The time-domain approaches attempt to extend the instantaneous ICA model to the 

convolutive case. They can achieve good separation performance once the algorithms 

converge, as the independence of segregated signals is measured accurately [102]. How

ever the computational cost for the estimation of the filter coefficients in the convolutive 

operation can be very demanding, especially when dealing with reverberant mixtures 

using long time delay filters [5,25,44,46,104].

To improve the computational efficiency, the frequency domain BSS approaches trans

form the mixtures into the frequency domain, and then apply an instantaneous but 

complex valued ICA algorithm to each frequency bin [8 , 111, 126, 147, 152, 178, 189]. 

In [8 ] the authors discussed why the separation performance of frequency domain BSS 

is poor when there is long reverberation. First, they have shown that it is not good to be 

constrained by the condition that the frame size of the FFT should be greater than the 

length of a room impulse response. This is because the lack of data causes the collapse 

of the assumption of independence between the source signals in each frequency bin
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when the data length is short, or when a longer frame size is used. On the other hand, 

they have shown that a short frame also results in a poor performance, because long re

verberation can not be covered by a short frame. Therefore, there is an optimum frame 

size determined by a trade-off between maintaining the assumption of independence 

and covering the whole reverberation in frequency domain BSS. Similarly a new type 

of non-linear function has been suggested in [147] for an ICA approach in order to pro

cess the complex numbers. The function has been derived from the probability density 

function of the signals in the T-F domain with the assumption of phase independence 

between these signals. The new non-linear function is obtained as a result, based on 

the polar coordinates of a complex number. The effect of this new function has also 

been analysed in [147] for separating speech signals in the convolutive environment. 

Another very interesting approach employed for frequency-domain BSS is adaptive and 

based on second order statistics [152]. The advantage of this method is that no param

eter tuning is required for separating the signals. As a result, many complex valued 

and instantaneous ICA algorithms that have already been developed can be directly 

applied to the frequency domain BSS. However, an important issue associated with 

this approach is the permutation problem, i.e., the permutation in each frequency bin 

may not be consistent with each other so that the separated speech signal in the time 

domain contains the frequency components from the other sources. Different methods 

have been developed to solve this problem. By reducing the length of the filter in the 

time domain [25,126] the permutation problem can be overcome to some extent. A 

source localization approach has also been employed to mitigate the permutation in

consistency [148,159]. Another technique for the alignment of the permutations across 

the frequency bands is based on correlation between the separated source components 

at each frequency bin using the envelope similarity between the neighboring frequen

cies [1 1 2 ]. Some other recently used methods are based on the physical behaviour of 

the acoustic environment [118] or coherent source spectral estimation [119], the method 

for modeling frequency bins using the generalized Gaussian distribution [105].

The third approach is the combination of both time and frequency domain approaches. 

In some methods [12,98], the coefficients of the FIR filter are updated in the frequency 

domain and the non-linear functions are employed in the time domain for evaluating the
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independence of the source signals. Hence no permutation problem exists any more, as 

the independence of the source signals is evaluated in the time domain. Nevertheless, 

the limitation of this hybrid approach is the frequent switch between two different 

domains at each step and thereby consuming extra time on these inverse transformation 

operations.

The separation performance of many developed algorithms is however still limited, 

and there is much room for improvement. This is especially true when dealing with 

reverberant and noisy mixtures. For example in the frequency-domain BSS framework, 

if the frame length of the DFT is long and the number of samples in each frequency 

bin is small, the independence assumption may not be satisfied. Similarly, if the short 

length DFT frame is used, the long reverberations cannot be covered and hence the 

segregation performance is limited [8 ].

Apart from the above discussed methods, some authors consider the assumption of 

W-disjoint orthogonality for speech signals in order to separate the source signals from 

the observed data. For example in [80], for a given windowing function W{n), two 

sources, Si{n) and Sj{n) are called W-disjoint orthogonal if the supports of the short- 

time Fourier transform of Si{n) and Sj(n) are disjoint [80]. The windowed Fourier 

transform of Si{n) is defined as,

N - l

s Y{ m,  k) =  ^  W{n — (2.2)
n —O

The W-disjoint orthogonality assumption can be expressed as below [80].

s Y ( m,  k ) s Y (m, k) = 0, Vz ^  j ,  VA;, m (2.3)

where k and m  are the frequency index and time frame index respectively. This equation 

implies that either of the sources is zero for any k and m as long as two sources do 

not come from the same source. l i W { n )  = 1 , then s Y  (m, k) can be interpreted as the 

Fourier transform of Sj(n), which can then be referred to as Si{k). Therefore, W-disjoint 

orthogonality can be written as,

Si{k)sj{k) = 0, Vi ^  j ,  Wk (2.4)

which represents the property of disjoint orthogonality [80].
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Another challenging problem is to separate moving sources rather than stationary in 

a cocktail party environment. A recent work [114] is devoted to the blind separation 

of moving sources. Here a multimodal approach is proposed for the segregation of 

moving speech sources. The key issue in blind estimation of moving sources is the 

time varying nature of the mixing and unmixing filters, which is hard to track in the 

real world. In this work the authors applied the visual modality for the separation of 

moving sources as well as stationary sources. The 3-D tracker based on particle filtering 

is used to detect the movement of the sources. This method performs well for the blind 

separation of moving sources in a low reverberant environment.

So far, two important techniques for convolutive speech separation were discussed in 

detail. It is interesting to make a comparison between these two techniques. In the case 

of BSS, the unknown sources are assumed to be statistically independent. However, no 

such assumption is required for CASA. On the other hand, the IBM technique used in 

the CASA domain needs to estimate the binary mask from the target and interference 

signals which should be obtained from the mixture in practice. Another difference is 

in the way how the echoes within the mixture are dealt with by these two techniques. 

In BSS algorithms [8,102,121,178], this is modeled as a convolutive process. On 

the other hand CASA approaches deal with echoes based on some intrinsic properties 

of audio signals, such as, pitch, which are usually preserved (with distortions) under 

reverberant conditions. However, the human auditory system has a remarkable ability 

of concentrating on one speaker by ignoring others in a cocktail party environment. 

Some of the CASA approaches [171] work in a similar manner i.e. extracting a target 

signal by treating other signals as background sound. In contrast, BSS approaches 

attempt to separate every source signal simultaneously from the mixture. Motivated 

by the complementary advantages of the CASA and BSS approaches, a multistage 

approach is developed in [76,77] where a convolutive BSS algorithm is combined with 

the IBM technique followed by cepstral smoothing. The details of this method will be 

discussed later in Chapter 3.
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2.2.3 M odel based approaches

Another method to address the speech separation problem is based on the statistical 

modeling of signals and the parameters of the model are estimated from the training 

data, e.g., [74,134,135,163]. In [163], a Gaussian mixture model (GMM) is employed for 

modeling of the joint probability density functions (pdf) of the sources by exploiting 

the non-Gaussianity and/or non-stationarity of the sources and hence the statistical 

properties of the sources can vary from signal to signal.

In [134] the model-based approach is used for single channel speech separation. The 

authors considered the problem as a speech enhancement problem in which both the 

target and interference signals are non-stationary sources with the same characteristics 

in terms of pdf. Firstly, in the training phase, the patterns of the sources are obtained 

using Gaussian composite source modeling. Then the patterns representing the same 

sources are selected. Finally, the estimation of the sources can be achieved using these 

selected patterns. Alternatively, a filter can be built on the basis of these patterns and 

then applied to the observed signals in order to estimate the sources.

Source separation in the wavelet domain by model-based approaches has been consid

ered in [74]. This method consists of a Bayesian estimation framework for the BSS 

problem where different models for the wavelet coefficients have been presented. How

ever there are some limitations with the model based approach. The trained model can 

only be used for the segregation process of the speech signals with the same probability 

distribution, i.e., the pdf of the trained model must be similar to that of the observa

tion data. In addition, the model based algorithms may perform well only for a limited 

number of speech signals.

2.2.4 N on-negative m atrix /tensor factorization

Non-negative matrix factorization (NMF) was proposed by Lee and Seung in 1999. 

Using the constraint of non-negativity, NMF decomposes a non-negative matrix V  into 

the product of two non-negative matrices W  and H, given as:

^m xn  — "^^mxrl^rxn (2.5)
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where (n +  m)r < mn. Unlike other matrix factorizations, NMF allows only additive 

operations i.e. no subtractions [92,95,96]. As NMF does not depend on the mutual 

statistical independence of the source components, it has a potential to segregate the 

correlated sources. NMF has been applied to a variety of signals including image, speech 

or music audio. In [33] the authors attempted to separate the general form of signals 

from the observed data i.e. both positive and negative signals using the constraints of 

sparsity and smoothness. For machine audition of audio scenes, NMF has also found 

some applications. For example, it has been applied to music transcription [157,167] 

and audio source separation [51,52,127,150,155,156,166,167,174,176,177]. In these 

applications, the audio data are usually transformed to non-negative parameters, such 

as spectrogram, which are then used as the input to the algorithms. The application 

of the NMF technique to speech separation is still an emerging area which attracts 

increasing interests in the research community.

2.2.5 Sparse representation and com pressed sensing

Separation of signals blindly from their under-determined mixtures has attracted a great 

deal of attention over the past few years. It is a challenging source separation problem. 

One of the most common methods adopted for this problem is based on the sparse 

representation of signals [37, 50,191,192]. Closely related to sparse representation, 

there is an emerging technique called compressed sensing, which suggests that a signal 

can be perfectly recovered based on information rate, instead of the Nyquist rate, and 

random sampling, instead of uniform sampling, under certain conditions. It has been 

observed that compressed sensing exploits two important properties [26-28,41]. The 

first one is sparsity, which means that many natural signals can be represented in some 

proper basis in sparse (compressible) form. The second property is incoherence, i.e. 

the signal which is represented in some proper basis in sparse form should be dense as 

compared to the original representation of the signal. It is basically the extension of 

duality property between time and frequency domain.

There are similarities between the compressed sensing and source separation and their 

connections have been explored by [15], and further investigated by [184,185]. It was
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found that the compressed sensing based signal recovery methods can be applied to 

the source reconstructions provided that the unmixing matrix is available or has been 

estimated [15,37,50,191,192].

2.3 Distortion Due to Room  Reverberation

2.3.1 Characteristics of reverberation

Reverberation is caused by the multi-path propagation of an acoustic signal from its 

source to the microphone. Room reverberation is introduced due to surface reflections 

within a room, as illustrated in the Figure 1.1. Both the speakers produce wavefronts 

propagating outward, with some reaching the microphones directly and some others 

reflecting off the walls and superimposing at the microphones. The energy and phase 

of the reflections reaching the microphones are different from those of the direct signals 

due to the differences in the length of the propagation paths. As a result, delayed and 

attenuated copies of the source signal are present in the microphone signals, described 

as reverberation [61,93,115].

The signal received at the microphone is generally composed of a direct sound com

ing from the source to the microphone, reflections that arrive shortly after the direct 

sound (also called early reflections), and reflections that arrive after early reverberation 

(commonly known as late reverberation). The combination of direct sound and early 

reflections are sometimes named as early sound component. Early reverberation is not 

perceived as a separate sound to the direct sound as long as the delay of the reflections 

does not exceed a limit of approximately 80-100 msec with respect to the arrival time 

of the direct sound, however it can be perceived to reinforce the direct sound and is 

therefore considered useful with regard to speech intelligibility. This phenomenon is 

often referred to as the precedence effect. Early reverberation mainly causes spectral 

distortion due to non-flat frequency response called colouration. Late reverberation 

which arrives at the microphone with longer delays is perceived as separate echoes 

or as reverberation and impairs speech intelligibility. This is due to the two masking 

effects introduced by the late reverberations, namely self masking where the speech
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Figure 2.3: Schematic diagram for room impulse responses.

spectrum is smeared by the late reverberations, and overlap masking where the en

ergy of the preceding phoneme overlaps with that of the subsequent phonemes. It can 

have severe effects on the performance of automatic speech recognition (ASR) systems. 

Also it is one of the main factor in performance degradation of the source separation 

algorithms [61,93,115].

The behaviour of the acoustic channel between the source and microphone can be char

acterized by a room impulse response (RIR). It represents the signal recorded at the 

microphone in response to a source that generates a sound impulse. As shown in Figure

2.3, the RIR can be split into three main sections, the direct path, the early reflections 

and late reflections. The direct sound, early reverberations and late reverberations 

are the convolution of these segments with the desired signal. Additionally, it is also 

observed that the energy of the reflections decays at an exponential rate. This expo

nential decay property of the RIR gives rise to the concept of reverberation time (RT). 

It is defined as the time required for the average sound-energy at a given frequency to 

reduce to one-millionth of its initial steady-state value after the sound source has been 

switched off and this corresponds to a decrease of 60 decibels (dB).

Now to explain the effects of reverberation on speech perception, an example is given
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in Figure 2.4. The effects of reverberation are clearly visible and audible in the spectro

gram and waveform of a speech signal. The Figure 2.4(a) shows the spectrogram and 

waveform for an anechoic speech signal taken from the TIMIT database sampled at 16 

kHz. The speech formants (resonance frequencies affiliated with the vocal tract [72]) are 

clearly visible in the spectrogram in this figure. Similarly, phonemes are differentiable 

in the waveform. The simulated room model [4] is used to generate the reverberant 

signal from the anechoic speech signal at RT =  0.5 sec with a source-microphone dis

tance of 1 m. The spectrogram and waveform of the reverberant speech signal are 

shown in Figure 2.4(b). The distortion caused by the acoustic channel is visible in 

both the spectrogram and the waveform. In the spectrogram a blurring effect is visi

ble, while in the waveform smearing of the phonemes can be seen. These distortions 

result in an audible difference between the anechoic and the reverberant speech, and 

hence degraded speech intelligibility. Hence methods should be developed to reduce 

such detrimental effects of reverberation on the speech signal. Therefore, in this thesis 

two algorithms are developed to deal with the reverberations. The details of both the 

developed methods will be discussed in Chapters 4 and 5 .

2.3.2 Approaches for reverberation suppression

In the literature many methods have been proposed to deal with the effects of room 

reverberation, including for example, the dereverberation algorithms based on inverse 

filtering [38,58,85,108,109,117,160,188], cepstral filtering [13,123,164], temporal en

velop filtering [11,91,110], information using source excitation [186,187], and methods 

based on spectral processing [3,53,94,125,179]. These methods can be broadly clas

sified into three categories, spectral processing methods such as spectral subtraction 

assisted methods, temporal processing methods such as inverse filtering, cepstral filter

ing, temporal envelop filtering, and methods based on excitation source information, 

and spectral-temporal methods such as methods based on the combination of temporal 

and spectral processings.
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Figure 2.4: Spectrograms and waveforms of (a) an anechoic speech signal taken from 

the TIMIT speech database, and (b) the reverberant version of this measured at a 

distance of 1 m, with a reverberation time of 0.5 sec using a simulated room model f4j.
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Temporal processing methods

Oppenhiem et al. [123] proposed a dereverberation method based on a low time cepstral 

liftering technique for a single microphone. Cepstral liftering in low time is equivalent 

to low-pass filtering in the time-frequency domain. The idea is based on the observation 

that the clean speech cepstrum is mainly concentrated in the low time, i.e., close to 

the origin unlike the acoustic channel impulse response which is located far away from 

the origin. However it is practically difficult to find the proper cutoff time for low time 

liftering [13,164].

Another technique used commonly to reduce the reverberation is based on inverse fil

tering. The key idea is to recover the original signal by passing the reverberant signal 

through a filter that inverts the reverberant signal [38, 58, 85,108,109,117,160,188]. 

Inverse filter can help in successful dereverberation if the room impulse response is 

known, or blindly estimated. This is known to be a difficult task. Recently, Kinoshita 

et al. [85] proposed a dereverberation algorithm that estimates the energy of late re

verberant components based on the concept of inverse filtering, named as long-term 

multiple step linear prediction. Firstly, they used long-term multiple step linear pre

diction to estimate the energy of late reverberations in the time domain. Then they 

convert the late reverberant signal into the frequency domain and subtract its power 

spectrum from that of the observed signal.

Temporal envelope filtering based algorithms were proposed in [11]. The main theme 

of this method is that the clean speech signal is produced inside an enclosure (enve

lope) having fine details of time-intensity distribution. Reverberations added to such a 

clean speech signal have a blurring effect on its envelope, because of the reflections of 

different intensities and delays added to the clean speech. Hence the average envelope 

modulation spectrum of the clean speech can be recovered from the reverberant speech 

by filtering the time trajectories of spectral bands in reverberant speech [11,91,110].

Yegnanarayana and Murthy developed a reverberant speech enhancement method by 

manipulating the excitation source information that is contained in the linear predic

tion (LP) residual signal, based on the characteristics of the LP residual of reverberant 

speech [186]. The processing method involves identifying and manipulating the resid
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ual signal in different regions of the reverberant speech, namely, regions ’which is high 

signal-to-reverberation ratio (SRR), low SRR, and only reverberant. A weight function 

is derived at gross and fine levels to modify the LP residual signal. In [187], Yegna

narayana et al. proposed a multichannel reverberant speech enhancement technique 

by exploiting the features of the excitation source in speech production. The authors 

use time-aligned Hilbert envelopes to represent the strength of the peaks in the LP 

residual. The Hilbert envelopes are then summed and used as a weight function which 

is applied to the LP residual of one of the microphones. In most of the LP residual- 

based methods, it is assumed that room reverberation would introduce only zeros into 

the microphone signals and, as a result, would primarily affect only the nature of the 

speech excitation sequence, having little impact on the all-pole filter [14]. Therefore, 

speech dereverberation can be accomplished by processing only the speech excitation 

signal, leaving the LP coefficients untouched.

Spectral processing methods

Spectral based processing of reverberant speech is another common approach used in 

the literature [3,53]. In [94], Lebart et al. introduced a single channel speech dere

verberation method based on spectral subtraction to reduce the reverberation effect. 

The reverberation suppression method based on spectral subtraction is not sensitive 

to fluctuations in the impulse response. The method estimates the power spectrum of 

the reverberation based on a statistical model of late reverberation and then subtracts 

it from the power spectrum of the reverberant speech. The authors assumed that the 

reverberation time is frequency independent and the energy related to the direct sound 

could be ignored. The authors also assume that the SRR of the observed signal is 

smaller than 0 dB which limits the use of the proposed solution to situations in which 

the source-microphone distance is smaller than the critical distance (The distance be

tween source and microphone at which the direct path energy is equal to the combined 

energy of the early and late reflections).

Wu and Wang [179] proposed a two-stage model to enhance reverberant speech. In the 

first stage, an inverse filter of the room impulse response is estimated, to increase the
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SRR by maximizing the kurtosis of the LP residual to reduce the early reflections. In the 

second stage, late reverberation effects are removed by a spectral subtraction approach. 

The maximum kurtosis part [58] employed in [179] requires at least 500 iterations 

to obtain the inverse filtered speech. However, as mentioned in [179], if the inverse 

filter is not precisely estimated, inverse filtering may even degrade the reverberant 

speech rather than improve it. In [56] a similar two-stage approach is proposed using 

multichannel blind deconvolution with spectral subtraction for the enhancement of 

reverberant speech.

Spectral-temporal methods

In [57], the authors proposed a reverberant speech enhancement algorithm using spatio- 

temporal and spectral processing. The speech signals are first spatially averaged fol

lowed by temporal larynx cycle averaging of the LP residual of the voiced speech to 

primarily attenuate the early reverberation. This is followed by spectral subtraction 

to attenuate the late reverberation. This method takes the advantage of a multi

microphone system for spatial averaging. A similar two-stage single-microphone system 

is also developed in [60]. In the first stage, the spectral processing technique proposed 

in [61] is used to suppress late reverberation. In the second stage, the early reflections 

are suppressed by the LP residual processing in a similar way as in [57]. The basis is 

that the waveform of the LP residual between adjacent larynx-cycles varies slowly, so 

that each such cycle can be replaced by an average of itself and its nearest neighboring 

cycles. The averaging results in the suppression of spurious peaks in the LP residual 

caused by room reverberation. The dynamic programming projected phase-slope algo

rithm (DYPSA) algorithm [116] is employed for automatic estimation of glottal closure 

instants in voiced speech. However, no attempt is made to eliminate spurious instants 

detected in the unvoiced and silence regions by the DYPSA algorithm. Therefore, a 

high and low SRR region detector needs to be incorporated in [57] and [60] to eliminate 

spurious instants.

Recently, an algorithm has been proposed in [8 8 ] for the enhancement of reverberant 

speech based on the combination of temporal and spectral processing. In this method.
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spectral processing is performed first, and in the second step the spectrally-processed 

speech signal is then subjected to temporal processing. The main reason behind this 

spectro-temporal processing is the identification of high SRR regions, primarily when 

the RT is high. Due to the convolutive nature of reverberant speech, low SRR and 

reverberation-only regions (late reverberant regions) also look like speech signals that 

makes it difficult to separate low and high SRR regions. Therefore, spectral processing 

is first performed in [8 8 ] to eliminate the late reverberant regions and then temporal 

processing is performed.

Another technique presented in [67] by Hazrati et al. proposed a multi-stage subband- 

based blind dereverberation algorithm suitable for reverberant speech enhancement. 

The proposed algorithm operates by first splitting the reverberant inputs into different 

subbands. In the second stage, the inverse filters are estimated using the blind decon

volution multiple input-output inverse-filtering theorem based approach, while in the 

third-stage power spectrum of the late impulse components are subtracted from the 

power spectrum of the inverse filtered speech in order to suppress the late reverberant 

energy.

Lebart et al. [93] proposed a statistical model for late reverberations. With this model, 

the spectral variance of the late reverberations can be estimated from the reverberant 

speech [93]. This work has been carried out further by Jeub et al. for the suppression of 

late reverberations [78]. This original model was developed as frequency independent 

where a fixed reverberation time (RT) was used for all the frequency channels in the 

estimation of the decay rate of room reverberations. However, it was suggested by 

Habets et al. [62] that the spectral variance of the late reverberations can be more 

accurately estimated if a frequency dependent statistical model is adopted. Such an 

idea will be explored in Chapter 5.

2.4 Distortion Due to Background Noise

Background noise is another form of interference affecting the speech quality and in

telligibility. Although, this thesis is not focussing on the distortions caused by the 

background noise, a novel algorithm is developed in this thesis to enhance the noisy
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reverberant speech (will be discussed in detail in Chapter 4), based on the EMD tech

nique. Therefore, it is necessary in this thesis to provide background and literature 

review of interference by background noise, with focus on the EMD technique.

2.4.1 Conventional m ethods for noise reduction

Before describing the EMD based denoising techniques, a brief overview of the classical 

methods for the enhancement of noisy speech is provided here. Different noise reduction 

methods have been proposed in the literarure, particularly in the case of additive white 

Gaussian noise [42,43,47,132,149,158]. When noise estimation is available, then filtering 

gives accurate results. Linear methods such as Wiener filtering [132], and the method 

based on MMSE filtering [47] are also used because linear filters are easy to implement 

and design. These linear methods are not so effective for signals presenting sharp 

edges or impulses of short duration. Furthermore, real signals are often nonstationary. 

In order to overcome these shortcomings, nonlinear methods have been proposed and 

especially those based on wavelets thresholding [42,43]. The idea of wavelet thresholding 

relies on the assumption that signal magnitudes dominate the magnitudes of noise in a 

wavelet representation so that wavelet coefficients can be set to zero if their magnitudes 

are less than a predetermined threshold [42]. A limitation of the wavelet approach is 

that basis functions are fixed, and thus do not necessarily match all real signals.

2.5 EM D for data analysis

EMD has been proposed recently as one of the versatile methods for the analysis of non

stationary and nonlinear data. The idea was given by Huang et al. [71] for analyzing 

non-stationary and nonlinear processes. The major benefit of the EMD is that basis 

functions are derived adaptively from the data itself unlike the traditional methods 

where basis functions are fixed. EMD extracts, sequentially and intrinsically, the energy 

associated with various intrinsic time scales in the signal. The output components 

after this extraction are named as intrinsic mode functions (IMF), starting from high 

frequency to lower ones. As the phenomena occurring naturally are non-stationary
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and nonlinear, EMD can be a useful tool for their analysis. In the literature many 

applications of EMD can be found towards the analysis of climate and speech data, as 

both of them are complicated and contain rich properties [55,71,181]. In the context of 

speech, literature shows that EMD plays an important role in the algorithms employed 

for the enhancement of noisy speech signals [18-20,54,83,141,180].

Historically, Fourier analysis has dominated the data analysis efforts since it has been 

introduced and still used for different kinds of data. Although Fourier analysis can 

be used for the data under very general conditions, it imposes some very important 

restrictions on the system under observation: the system must be linear and the data 

must follow a periodic pattern or must be stationary [71,181]. Besides Fourier analysis, 

other non-stationary methods were used by the research community for the analysis 

of data. For example wavelet analysis, smoothing by moving averaging, the spectro

gram and least squares estimation of the trend. Further details can be found in many 

fundamental data processing books, (see, for example, [2 2 ]).

2.5.1 EM D for noise reduction

Several works have explored the use of EMD for noise reduction and noisy speech 

enhancement. Rilling et al. in [141] examined the usefulness of the EMD technique 

towards the analysis of a more general form of white Gaussian noise, i.e., fractional 

Gaussian noise. The estimation of the scaling exponents has also been studied and 

explored. Similarly, Flandrin et al. in [55] investigated the advantages of EMD in the 

analysis of fractional Gaussian noise. They found that EMD behaves like a dyadic filter 

bank. Recently, a method is proposed in [29] for the enhancement of a noisy speech 

signal using adaptive EMD. The main idea is to combine adaptive noise cancellation 

with the EMD technique in order to improve the performance in terms of enhancement. 

The noisy signal is decomposed into its IMFs and adaptive noise cancellation is applied 

on an IMF level.

In [83] the authors proposed a method for the enhancement of noisy speech signals 

based on the idea of thresholding the IMFs obtained from noisy speech using hard or 

soft shrinkage. They proposed two strategies for the noise reduction named as EMD-
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shrinkage in which EMD is incorporated with hard shrinkage, and EMD-MMSE in 

which EMD has been combined with minimum mean squared error (MMSE) filter. 

The enhanced signal is reconstructed from the processed IMFs. The method based 

on an EMD-MMSE filter in [83] will be explored in the method proposed in Chap

ter 4 of this thesis. Similarly in [20] an algorithm has been developed for the noisy 

speech enhancement based on EMD. The Savitzky-Golay filter and soft thresholding 

are investigated in this method.

Another recent technique investigated in [82] explores the performance of EMD for 

the enhancement of noisy speech signals. The adaptive centre weighted average filter 

which works in the time domain is combined with EMD. The authors claimed that 

in the context of noise reduction, an adaptive weighted average filter works better on 

IMF components rather than the full-band noisy speech signal. Similarly, in [81] an 

algorithm was proposed for the denoising of the voiced speech based on EMD associ

ated with an appropriate sifting process. The noisy speech signal is decomposed into 

its corresponding IMFs. As the noise is mainly occupying the lower order IMFs (high 

frequency components), whereas the speech signal energy is focussed into the low fre

quency IMF components. Hence an adaptive weighting average filter has been used 

for the high frequency IMFs only rather than all the derived IMF components. In this 

thesis, the interesting IMFs properties are exploited, and an algorithm is developed for 

dealing with both additive noise and late reverberations, as explained in Chapter 4.

2.6 Summary

In this chapter a general review has been provided for the issues related to CPP and 

the different solutions proposed. Firstly, classification of audio source in a cocktail 

party has been discussed. Then, different types of distortions present in a cocktail 

party environment have been analysed. The distortions generated due to interfering 

sound in the vicinity and the different methods proposed to deal with such distortions 

have been discussed, i.e., CASA approaches, methods under the framework of BSS, 

NMF/NTF based methods, sparse representation and compressed sensing, and model 

based approaches. Similarly, room reverberations also caused distortions and as a result
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affected the speech quality and intelligibility. Therefore, in this chapter characteristics 

of the room reverberations have been discussed in detail followed by the different meth

ods proposed in the literature for the treatment of such reverberations. Another source 

of distortion is the background noise and hence different methods used for the reduc

tion of such noise have been reviewed, with a particular emphasis on the EMD based 

denoising methods. In subsequent chapters, contributions will be presented for dealing 

with each of the above three types of distortions.



Chapter 3

A M ultistage Approach to Blind  

Separation of Convolutive Speech  

M ixtures

This chapter addresses the problem of separating convolutive speech mixtures using 

the two-microphone recordings, based on the combination of independent component 

analysis (ICA) and ideal binary mask (IBM), together with a post-filtering process in 

the cepstral domain. The proposed algorithm consists of three steps. First, a convo

lutive ICA algorithm is applied to separate the source signals from two-microphone 

recordings. In the second step, an IBM is estimated by comparing the energy of the 

corresponding time-frequency (T-F) units from the separated sources obtained with 

the convolutive ICA algorithm. The last step is to reduce musical noise caused by T-F 

masking using cepstral smoothing. The performance of the proposed approach is evalu

ated using both reverberant mixtures generated using a simulated room model and real 

recordings in terms of both objective measurements and subjective listening tests. The 

proposed algorithm offers considerably higher efficiency and improved speech quality 

while producing similar separation performance compared with a recent approach.

3 2
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3.1 Introduction

As discussed in Chapter 2, both ICA and IBM techniques can be used to address the 

problem of the separation of source signals from their convolutive mixtures. How

ever the separation performance of many developed algorithms based on ICA is still 

limited, and leaves much room for further improvement, especially when dealing with 

reverberant and noisy mixtures. Similarly, the separation algorithms developed for 

the convolutive speech mixtures based on IBM technique required prior knowledge of 

both the target speech and interfering signal. However, in practice, only mixtures are 

available, and therefore only the IBM estimated from the mixtures can be used, which 

itself is a major computational challenge. To overcome the limitations of both the ICA 

and IBM techniques, an effective algorithm is developed in this chapter in which both 

the methods are combined such that the IBM can be estimated from the intermediate 

separation results that are obtained by applying an ICA algorithm to the mixtures. 

The errors generated due to estimation of the IBM are mitigated by cepstrum based 

processing method.

The proposed approach in this chapter is essentially motivated by Pedersen et al. [129] 

who proposed a method for the blind separation of source signals in which the IBM 

has been estimated from intermediate separation results that are obtained by applying 

an ICA algorithm to the mixtures. The limitation of the CASA methods as mentioned 

in Chapter 2 , i.e., having to estimate the IBM directly from the mixtures, is mitigated 

as the IBM can now be estimated from the coarsely separated source signals obtained 

by ICA algorithms. The estimated IBM can be further used to enhance the separation 

quality of the coarsely separated source signals. Such a combination was shown to 

achieve good separation performance. However, both the mixing model and separation 

algorithm considered in [129] are instantaneous, which in practice may not be sufficient 

for real recordings. In this chapter, combination of ICA and IBM techniques is explored 

for the separation of convolutive speech mixtures by using a convolutive mixing model 

and a convolutive separation algorithm. Another related work was proposed in [145] 

where the target speech is extracted from the mixture using ICA and time-frequency 

masking. However, a common problem with T-F masking is the errors introduced in
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the estimation of the binary mask which has not been well addressed. To deal with the 

estimation errors of the binary mask, a cepstrum based processing method is employed 

here.

In the algorithm proposed in this chapter, first a convolutive ICA method is applied 

[178] to the microphone recordings. As is common with many other existing ICA 

algorithms, the separated target speech from this step still contains a considerable 

amount of interference from other sources. The performance steadily degrades with an 

increase of reverberation time. In order to reduce the interference within the target 

speech, the IBM is estimated by comparing the energy of the corresponding T-F units 

from the outputs of the convolutive ICA algorithm, and then applied to the original 

mixtures to obtain the target speech and interfering sources. As will be confirmed 

in the experiments, this process considerably improves the separation performance by 

reducing the interference to a much lower level. However, a typical problem with the 

binary T-F masking is the introduction of errors in the estimation of the masks. The 

errors may result in some isolated T-F units, causing fluctuating musical noise [7,101].

The estimated IBM is further processed using cepstral smoothing [101]. More specif

ically, the binary mask is transformed into the cepstral domain, and the transformed 

mask is smoothed over time frames using the overlap-and-add technique. In the cep

strum domain, it is easier to distinguish between the unwanted isolated random peaks 

and mask patterns resulting from the spectral structure of the segregated speech. 

Therefore, different levels of smoothing can be applied to the binary T-F mask in 

different frequency ranges. The smoothed mask, after being transformed back into the 

T-F plane, is then applied to the outputs of the previous step in order to reduce the 

musical noise.

The proposed approach is essentially a multistage algorithm, as depicted by a block 

diagram in Figure 3.1 for two microphone mixtures. In the first stage, convolutive 

speech mixtures xi{n) and X2 {n) are processed by the convolutive ICA algorithm in 

[178], where n represents the discrete time index. The resultant estimated source 

signals of this stage are denoted as yi{n) and 2/2 (n). In the second stage, the T-F 

representations of yi{n) and y2 {n) are used to estimate the IBM, and the resultant
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Figure 3.1: Block diagram of the proposed multistage approach. In the first stage, a 

convolutive ICA algorithm (denoted as “Conv ICA”) is applied to the mixture signals 

Xj{n) (j =  1,2) to obtain the coarsely separated signals yi{n) (i =  1,2). In the second 

stage, yi{n) is first normalised (denoted as “Norm”) to obtain yi{n),  which is then 

transformed to Ÿi{k, m) using the STFT followed by the estimation of the binary masks 

M-{k,m). In the third stage, cepstral smoothing is applied to the estimated masks 

M-{k,m,) and the smoothed masks M^{k,m) are then used to enhance the separated 

speech signals obtained from the second stage.
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masks are denoted by M({k, m) and M^Çk, m), where k represents the frequency index, 

and m  is the time frame index. The final stage is to perform smoothing of the estimated 

IBM in the cepstral domain to reduce the musical noise. The smoothed version of the 

estimated IBM is denoted by M{{k,m) and M 2 (A:, m), as shown in Figure 1. Finally, 

the smoothed masks (after being converted back to the spectral domain) are applied 

to the outputs of the previous step, followed by an inverse T-F transform to obtain the 

estimated source signals in the time domain.

The remainder of the chapter is organised as follows. The convolutive ICA approach 

and its utilization in the first stage of the proposed method is presented in Section 3.2. 

Section 3.3 describes in detail the second stage of the algorithm, i.e., how to estimate 

the IBM from the outputs of the convolutive ICA algorithm. Musical noise reduction 

using cepstral smoothing, i.e., the final stage of the proposed algorithm, is explained 

in Section 3.4. Section 3.5 thoroughly evaluates the proposed method and compares 

it with two related methods [129] and [178]. Further discussions about the results and 

some conclusions are given in Section 3.6.

3.2 BSS of Convolutive M ixtures in the Frequency D o

main

In a cocktail party environment, N  speech signals are recorded by M  microphones, 

which can be described mathematically by a linear convolutive model

N  P

W  = hji(p)si{n - p  + 1) (j = 1 , M)  (3.1)
i=l p—1

where si and Xj are the source and mixture signals respectively, hji is a f-po in t room 

impulse response [4] from source si to microphone xj. The BSS problem for convolutive 

mixtures in the time domain is converted to multiple instantaneous problems in the 

frequency domain by applying the short time Fourier transform (STFT) to equation 

(3.1), see e.g. [2,8,64,68,126,136,139,146,148,154,178,189], and using matrix notations, 

as follows

X{k,m ) = Jl{k)S{k,m)  (3.2)
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where X(A:, m) =  [Xi{k,m), with its elements Xj{k ,m )  being the T-F

representations of the microphone signals Xj { n) ,  S{k,m) = [Si{k,m),..., SN{k,m)]'^ 

whose elements Si{k,m) are the T-F representations of the source signals Si(n), and 

[*]̂  denotes vector transpose. The mixing matrix FL{k) is assumed to be invertible and 

time invariant. In this study a two-input two-output system has been considered, i.e., 

N  = M  = 2.

To find the sources, an unmixing filter W(A:) can be applied to the mixtures, also shown 

in Figure 3.2

Y(A;, m) =  W(A;)X(A;, m) (3.3)

where Y {k ,m ) = [Yi{k,m),Y2 {k,m)]^ represents the estimated source signals in the 

T-F domain and W{k)  is denoted as [[Wnik),Wi2 (k)]'^',[W2 i{k),W 2 2 {k)]'^]'^, which 

can be estimated based on the assumption of independence. Many algorithms have 

been developed for this purpose [6 , 8,9,32,126,146]. In this work a convolutive ICA 

approach in [178] is used for the estimation of 'W{k). Applying an inverse STFT 

(ISTFT), Y (k ,m )  can be converted back to the time domain denoted as

y(n) =  ISTFT(Y(A:,m)) (3.4)

where y(n) =  [yi{n),y2 {n)]'^ denotes the estimated source signals in time domain. This 

inverse transform is for the purpose of applying a scaling operation to the estimated 

sources, as explained in the next section. Similar to many existing ICA approaches, 

e.g., [126], however, the separation performance of [178], especially the quality of the 

separated speech, is still limited due to the existence of a certain amount of interference 

within the separated speech. The performance further degrades with an increase of the 

reverberation time (RT). Such degradation is caused partly by the tradeoff between the 

filter length used in the convolutive model and the frame length of the STFT within the 

frequency-domain algorithms. For a high reverberation condition, an unmixing filter 

with long time delays is usually preferred for covering sufficiently the late reflections. 

On the other hand, the frequency domain operation usually requires the frame length 

of the STFT to be significantly greater than the length of the unmixing filter, in order 

to keep the permutation ambiguities across the frequency bands to a minimum. The 

filter length constraint may be relaxed when other techniques, such as beamforming
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Figure 3.2: Block diagram showing

the first stage of the proposed ap

proach. The mixture signals in T-F 

domain, i.e., Xj{k,m )  are the input 

to a frequency-domain BSS algorithm. 

The unmixing filter Wij{k) {i,j =  1,2) 

is then estimated in the frequency do

main, and Yi{k, m) is the T-F represen

tation of the separated signals.
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otherwise

MHk m) = F ’ ^  \y2{k,m)W,{k,m)\, 
otherwise

Figure 3.3: Flow chart showing the sec

ond stage of the proposed method. The 

separated signals from the first stage 

i.e., yiin) {i =  1 , 2 ) are scaled to ÿi(n), 

which are transformed to the T-F do

main Ÿi{k,m) using the STFT. The fi

nal step is to estimate the binary masks 

M / (k,m) from F)(/c,?n).

and source envelope correlations [112,148,159], are used for solving the permutation 

problem; however the performance of such techniques deteriorates considerably for 

highly reverberant acoustic conditions. To improve the quality of the separated speech 

signals, it is considered to further apply the IBM technique, as detailed in the next 

section.

3.3 Combining Convolutive ICA and Binary Masking

In order to explain the connection of this stage with the previous stage, a flow chart 

is shown in Figure 3.3. The two outputs ^i(n) and y2 {n) obtained from the first stage
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are used here to estimate the binary masks. Since these outputs are arbitrarily scaled, 

it is necessary to reduce the scaling ambiguity using normalisation, given as follows

where max  denotes the maximum element of its vector argument •••5

and L  is the length of the signal. After this, the two normalized outputs are transformed

into the T-F domain using the STFT as

Ÿi{k,m) = STFT{ÿi{n)) ï =  1,2 (3.6)

Without the scaling operation, the processing by (3.4), (3.5) and (3.6) can be omited 

within the algorithm. By comparing the energy of each T-F unit of the above two 

spectrograms, the two binary masks are estimated as [169]

I 0  otherwise Wk,m.

I 0  otherwise VA:, m.

where r  is a threshold for controlling the sparseness of the mask, and t = 1 has been 

used in the experiment. For example if r  >1, then the two estimated masks will be 

having fewer unity/one values in comparison to the two estimated masks obtained 

above for r  =1, and hence become more sparse. The masks are then applied to the T-F 

representation of the original two-microphone recordings in order to recover the source 

signals, as follows

Y /  (k,m) = m /  {k,m)Xi{k,m) i = 1,2 (3.9)

The source signals in the time domain are recovered for the purpose of pitch estimation 

in the next section, using the inverse STFT (ISTFT).

yi{n) = lSTVT(Y/{k ,m ))  « =  1 , 2  (3.10)
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As observed in the experiments, the estimated IBM considerably improves the sepa

ration performance by reducing the interference to a much lower level, leading to the 

separated speech signals with improved quality over the outputs obtained in Section

3.2. However, a typical problem with the binary T-F masking is the introduction of 

errors in the estimation of the masks causing fluctuating musical noise [7,101]. To 

mitigate this problem, a cepstral smoothing technique is employed [1 0 1 ] as detailed in 

the next section.

3.4 Cepstral Sm oothing of the Binary Mask

The basic idea is to apply different levels of smoothing to the estimated binary mask 

across different frequency bands. Essentially, the levels of smoothing are determined 

based on the speech production mechanism. To this end, the estimated IBM is first 

transformed into the cepstral domain, and the different smoothing levels are then ap

plied to the transformed mask. The smoothed mask is further converted back to the 

spectral domain. Through this method, the musical artifacts within the signals can 

be reduced, and at the same time, the broadband structure and pitch information of 

the speech signal are well preserved [1 0 1 , 1 2 2 ], without being noticeably affected by the 

smoothing operation. Representing the binary masks of (3.7) and (3.8) in the cepstrum 

domain given as

M?(/,m) =  £>Fr-yin(M /(fc,m )) U=o..„j^-i} (3.11)

where I and k are the quefrency bin index and the frequency bin index respectively 

[101], D F T  represents the discrete Fourier transform. In denotes the natural logarithm 

operator and K  is the length of the DFT. To avoid the infinity error due to In, a 

lower bound is applied to m / (k,m) in (3.11). After applying smoothing, the resultant 

smoothed mask is given as

(Z,m) =  (Z,m -  !) +  ( ! -  Az)M^(Z,m) % =  1,2 (3.12)
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where A; is a parameter for controlling the smoothing level, and is selected according 

to different values of I

Xi =  <

Xenv if Z € {O, •••Fenu})

Xpitch if Z =  Ipitchi (3.13)

Xpeak if Z € {(Zgnu T 1), • • • 5  7T} \  ̂ pitch

where 0  < Xenv < XpUch < Xpeak < I 5 lenv IS the quefrency bin index that repre

sents the spectral envelope of the mask defined as [m/(A:, m), m/(A:, m)]^,

and Ipitch is the quefrency bin index showing the structure of the pitch harmonics 

in M-f(A:, m). The principle employed for this range of Xi is illustrated as follows. 

M ‘̂ (Z,m)=[Mf(Z,m),M2 (Z,m)]^, Z € {0,.., Zenu}? basically represents the spectral en

velope of the mask M-Ẑ (A:, m). In this region the value selected for Xi is relatively low 

to avoid distortion in the envelope. Similarly, low smoothing is applied if I is equal 

to Ipitcĥ  so that the harmonic structure of the signal is maintained. The symbol “\ ” 

is used to exclude IpUch from the quefrency range {lenv +  1),..., JT. High smoothing is 

applied in this last range in order to reduce the artifacts without harming the pitch 

information and structure of the spectral envelope. Different from [101], the pitch fre

quency is calculated in this work by using the segregated speech signal obtained in 

Section 3.3. Specifically, pitch frequency can be computed as

Ipitch = argmaxf{y^(Z, m) | how < Z < Ihigh}, (3.14)

where Y^{1, m) is the cepstrum domain representation of the segregated speech signal 

y (n )  obtained in (3.10). Note that the subscript i in symbols A/, I and Y^[l,m)  within 

(3.13) and (3.14) have been omitted for notational convenience. The range liowi^higk is 

chosen so that it can accommodate pitch frequencies of human speech in the range of 

50 to 500 Hz. The final smoothed version of the spectral mask is given as

M{{k,m) = exp{DFT{Ml{l,m) |z=o,...,K-i}), (3.15)

This smoothed mask is then applied to the segregated speech signals of Section 3.3, as 

follows

Y{(k,m)  = M {(k ,m )Y /{k ,m )  i =  l,2  (3.16)
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Table 3.1: The proposed multistage algorithm

1) Initialize the parameters, such as M ,  N ,  overlapfactor, and read the speech mixtures into æ(n).

2) Convert x ( n )  to the T-F representation X(fc, m) using STFT, and apply the convolutive ICA algorithm in [178] to 

the mixture X(fc,m) for estimating W(fc). Obtain Y { k , m )  according to (3.3).

3) Use (3.4), (3.5) and (3.6) to calculate Ÿ i { k , m ) .

4) Estimate m / ( fe,m) according to (3.7) and (3.8), where z =  1,2.

5) Compute Y / { k , m )  based on (3.9) and y j ( n )  using (3.10). Compute the cepstrum domain representation of y l { n ) ,  

i.e., T^(i,m).

6) Calculate using (3.11).

7) Use (3.12) to calculate M|(Z,m), where Xi is chosen according to (3.13), and I =  IpUch is determined by (3.14).

8) Compute M { { k , m )  based on (3.15), and Y { ( k , m )  according to (3.16).

9) Apply the ISTFT t o  y {  { k , m )  to obtain the separated signals in the time domain.

By further applying the ISTFT to Y{(k ,m),  the separated source signals can then

be obtained in time domain. According to the explanation in the above sections, the 

algorithm presented in this chapter is summarized in Table 3.1.

3.5 Results and Comparisons

In this section, the performance of the proposed method is evaluated using simulations. 

The algorithm is applied to both artificially mixed signals and real room recordings.

3 .5 .1  E x p er im en ta l se tu p  an d  ev a lu a tio n  m etr ic s

A pool of 12 different speech signals from the TIMIT database has been used in the 

experiments. These speech signals were uttered by six male and six female speakers 

with 11 different languages [129]. All the signals have the same loudness level. The 

Hamming window is used with an overlap factor set to 0.75. The duration of the speech 

signal is 5 seconds with a sampling rate of 10 KHz. The rest of the parameters are 

set as: ienv~^j 16, lfiigji—120, 0, XpUcji—O.A, and Xpg(if.—0.8. Performance

indices used in evaluation include signal to noise ratio (SNR), the percentage of energy 

loss (PEL) and the percentage of noise residue (PNR) [70,129]. The expressions of 

PEL and PNR are given below
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where y(n) and /(n ) represent the estimated signal and the signal resynthesized after 

applying the ideal binary mask [129]. ei(n) stands for the signal present in J(n) but 

absent in ÿ(n) while 62 (n) shows the signal present in y(n) but absent in J(n). SNR^ is 

the ratio of the desired signal to the interfering signal taken from the mixture, where i 

refers to the input. SNRo is the ratio of the desired signal resynthesized from the ideal 

binary mask to the difference of the desired resynthesized signal and the estimated 

signal, where o refers to the output [129]. Notations mSNR^, mSNRo and ASNR are 

also used in the evaluation where mSNRj and mSNRo are the average results for fifty 

random tests and ASNR=mSNRo—mSNRj. All the SNR measurements are given in 

decibels (dB) in the subsequent experiments.

3 .5 .2  A  sep a ra tio n  ex a m p le

To show the performance of the proposed method for interference suppression, an exam

ple is given here when applying the algorithm to the separation of two speech mixtures 

obtained by mixing two sources from the pool described in the above section using 

the simulated room model [4], with R T  set to 100 msec. The spectrograms of the two 

source signals are shown in Figure 3.4(a) and (b), and the two mixture signals in Figure 

3.5(a) and (b). For the computation of the spectrograms, the FFT frame length was 

set to 2048 (i.e., 204.8 msec), and the window length (or frame shift) was fixed to 512 

giving, 75% overlap between neighboring windows. Other parameters were the same 

as those specified in the above section. Figure 3.6(a) and (b) show the spectrograms 

of the output signals obtained from the first stage of the proposed algorithm. The 

results obtained from the second stage of the proposed algorithm are shown in Figure 

3.7(a) and (b), and from the third stage in Figure 3.8(a) and (b). For the convenience 

of comparison, some T-F regions within the spectrograms are highlighted to show the 

performance improvement for interference suppression at each stage. In particular, 

three regions are shown in one of the two source signals, which are marked os A, B  and 

C for the original one (i.e. the source signal before the mixing operation) and as A , 

Bi and Q  for the separated one (i.e. the source signals estimated from the mixtures).
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Figure 3.4: Spectrograms of the two original speech signals used in the separation 

example. Three areas in each are highlighted for purposes of comparison with Figures 

3.5-3.8 .

where i =  1,2,3 is the stage index. Similarly three regions in the other source are 

marked as D, E  and F  for the original one and as Di, Ei and Fi for the separated 

one after each stage of the algorithm. From the highlighted regions, it can be observed 

that the interference within one source that comes from the other is reduced gradually 

after the processing of each stage. Compared with the output of the first stage, the 

interference within the estimated sources from the output of the third stage has been 

reduced significantly.

I

T im e  (s) T im e  (s)

( a ) (b)

Figure 3.5: Spectrograms of the mixture signals that were generated by using the 

simulated room model with RT  set to 100 msec. Both signals in (a) and (b) are the 

mixtures of two speech sources but with different attenuation and time delays.
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Figure 3.6: Spectrograms of the separated speech sources obtained from the output 

of the first stage of the proposed algorithm, i.e., by applying the convolutive ICA 

algorithm. It can be observed that a considerable amount of interference from the 

other source still exists in the highlighted regions.
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Figure 3.7: Spectrograms of the separated speech sources obtained from the output of 

the second stage of the proposed algorithm, i.e., by applying the estimated IBM. The 

interferences in the highlighted regions have been considerably reduced as compared 

with those in Figure 3.6.
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Figure 3.8: Spectrograms of the separated speech sources obtained from the output of 

the third stage of the proposed algorithm, i.e., by applying cepstral smoothing to the 

estimated IBM. The interferences in the highlighted regions have been further reduced 

as compared with those in Figures 3.6 and 3.7.

3 .5 .3  O b jec tiv e  ev a lu a tio n

First, the performance of the proposed algorithm has been evaluated for the separation 

of convolutive mixtures that were generated artificially by using the simulated room 

model [4], for which the R T  can be specified explicitly and flexibly. The robustness of 

the proposed algorithm has been assessed to the changes of the key parameters used 

in the algorithm, such as the window length and the FFT frame length, as well as 

to evaluate the performance variations against different conditions for generating the 

mixtures, such as the reverberation time and the noise level. In each of the subsequent 

experiments, change is made only to one parameter, i.e., the one that has to be tested, 

but keep all the other parameters fixed (as those already specified in Section 3.5.1). 

For each of these evaluations, the results obtained were the averaged performance of 

the results for 50 different convolutive mixtures, with each consisting of two speech 

sources randomly picked up from a pool of 12 speech signals [129]. In the experiments, 

it has been observed that ASNR measured from the output of the third stage is slightly 

lower (hence negligible) than that measured from the output of the second stage of the 

proposed algorithm, although subjective listening tests suggest that the quality of the 

separated speech has been improved (as shown in Section 3.5.4). For this reason, the
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results of mSNRo shown in this section are measured from the output of the second 

stage (as shown in our preliminary work [76]). However, more comprehensive results 

for mSNRo measured at each stage of the proposed algorithm are given in Section 3.5.5. 

Analysis of variance (ANOVA) based statistical significance evaluation ( [69], chapter 

11) of the performance difference between the second and third stage of the algorithm 

is also given in Section 3.5.5.

In the first experiment, the window length was varied from 256 to 2048 samples, while 

the other parameters were set identical to those in Section 3.5.1 and 3.5.2. The results 

are given in Table 3.2. It can be seen that the highest ASNR is obtained for the 

window length of 512. Therefore, the window length equal to 512 samples was used in 

the following experiments.

In the second experiment, the FFT frame length was changed from 512 to 2048. The 

average results for different FFT frame lengths are given in Table 3.3. It can be seen 

that by increasing the FFT frame length from 512 to 2048 samples, the performance 

of the proposed algorithm in terms of SNR, PEL and PNR is all improved. The best 

performance is obtained at 2048. Hence, the FFT frame length used for the subsequent 

experiments was fixed to 2048 samples.

In the third experiment, the reverberation time of the simulated room has been changed 

when generating the mixtures. The average results in terms of PEL, PNR and ASNR 

for the various RTs  are summarized in Table 3.4, where the unit for R T  is msec. 

A noticeable trend in this table is that the performance degrades gradually with an 

increase of RT,  which is not unexpected due to the increasing sound reflections for 

higher room reverberations.

In the fourth experiment, different levels of microphone noise is considered by adding 

white noise to the mixtures, where the noise level was calculated with respect to the 

level of the mixtures, with a weaker noise corresponding to a smaller number [129]. 

The average ASNR values for different noise levels are given in Table 3.5, It can be 

observed that the performance of the algorithm decreases as the noise level is increased, 

and similar to [129], the algorithm can tolerate the noise levels up to -20 dB.

Lastly, the performance of the proposed algorithm is evaluated (without considering
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Table 3.2: Separation results for different window lengths

Window

Length

PEL PNR mSNRi mSNRo ASNR

256 9.10 15.30 1.10 7.11 6.01

512 8.60 14.48 1.10 7.44 6.34

1024 9.30 14.70 1.10 7.11 6.01

2048 10.92 15.92 1.12 6.32 5.20

Table 3.3: Separation results for different FFT frame lengths

NFFT PEL PNR mSNRi mSNRo ASNR

512 9.06 14.96 1.10 7.17 6.06

1024 8.65 14.53 1.10 7.40 6.30

2048 8.60 14.48 1.10 7.44 6.34

noise) by varying the values of Agnu, ipitch and Xpeak with the other parameters fixed 

as: R T  =100 msec, window length=512, and NFFT=2048. The values of Agnr , XpUch 

and Xpeak as discussed in section 3.4, were chosen in the range [0,0.9]. The results 

measured by mSNRo are given in Figures 3.9, 3.10 and 3.11 respectively. From Figure 

3.9, it is observed that mSNRo after the third stage increases slowly for Xenv ranging 

from 0 to 0.4 and then starts decreasing. Figure 3.10 shows a very slight increase in 

mSNRo when XpUch is between 0 and 0.5 followed by a very slight decrease. In Figure 

3.11, mSNRo first increases slowly when Xpeak varies from 0 to 0.4 and then a sharp 

decrease is observed when Xpeak is between 0.5 and 0.9. These experiments show that 

the separation performance varies to some extent when different values for Xenv, XpUch 

and Xpeak are used.

Table 3.4: Separation results for different R T

R T PEL PNR mSNRj mSNRo ASNR

40 2.16 2.24 1.13 13.22 12.08

60 3.79 4.12 1.15 10.94 9.79

80 5.50 8.30 1.14 9.42 8.27

100 8.60 14.48 1.10 7.44 6.34

120 10.99 19.53 1.03 6.30 5.26

140 13.36 24.14 0.94 5.48 4.53

150 13.86 25.38 0.90 5.29 4.39



3.5. Results and Comparisons 49

Table 3.5: Separation results for different noise levels

Noise PEL PNR mSNRj mSNRo ASNR

-40 dB 8.60 14.48 1.10 7.45 6.34

-30 dB 8.60 14.48 1.10 7.44 6.34

-20 dB 8.62 14.52 1.10 7.43 6.33

-10 dB 9.46 16.49 1.09 6.91 5.81
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Figure 3.9: Separation performance measured by mSNRo with different values of Ag
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Figure 3.10: Separation performance measured by mSNR^ with different values of XpUch-
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Figure 3.11: Separation performance measured by mSNRo with different values of Apeak- 

3 .5 .4  L isten in g  te s ts

As mentioned in the above section that ASNR measured from the output of the third 

stage of the proposed algorithm appears to be slightly lower than that measured from 

the output of the second stage of the proposed algorithm (see more results and detailed 

analysis in the next section). This suggests that cepstral smoothing actually does 

not improve the objective performance in terms of SNR measurement (see also [169]). 

Nevertheless, the informal listening tests seem to contradict the SNR measurements 

and confirm that the cepstral smoothing does improve the quality of the separated 

speech, especially for the musical noise removal. To show this, subjective listening 

tests have been conducted by recruiting 15 participants with normal hearing. Each of 

these listeners was asked to give an integer score ranging from 1 (musical noise clearly 

audible) to 5 (noise not audible) for the final segregated speech signals, as suggested 

in [7]. During these tests, each participant was asked to listen to 2 groups of separated 

speech signals obtained in the experiments where R T  was set to 50, 100, 150 and 200 

msec respectively, with one group containing yj and the other group containing yÿ. A 

total of 8 groups of speech signals were evaluated subjectively by these participants. 

Each group was composed of 3 speech signals, i.e. the estimated source obtained 

from the output of the second stage, the one from the third stage, and the source 

signal estimated by Pedersen et al.’s method. Note that the listeners had no prior 

knowledge on which signal was obtained from which algorithm. This ensures a fair
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Table 3.6: MOS obtained from subjective listening tests

R T MOS before 

smoothing

MOS after 

smoothing

MOS for Pedersen 

e t  al.

ANOVA based statistical significance 

evaluation of MOS before'& after smoothing

F-value F crit p-value

50 3.26 3.90 3.01 5.0948 4.1960 0.0320

100 2.12 2.62 2.29 4.7094 4.1960 0.0386

150 1.87 2.39 2.02 5.0995 4.1960 0.0319

200 1.09 2.07 1.82 50.2059 4.1960 0.0000

comparison between the algorithms. The mixtures used in these tests were generated 

by the simulated room model with R T  equal to 50, 100, 150 and 200 msec, respectively. 

The scores given by the listener are provided on the basis of how clean the separated 

signals from the two stages are in comparison to each other, or how much musical noise 

is present in the separated signals. A signal with less musical noise is cleaner, and hence 

is given a higher mean opinion score (MOS) [7]. The average results of MOS for the 15 

listeners are given in Table 3.6. It indicates that using cepstral smoothing gives higher 

MOS, suggesting the improved quality of the separated speech. To examine whether 

the improvement in MOS after smoothing is statistically significant, one-way ANOVA 

based F-test [69] has been performed for the MOS obtained before and after smoothing. 

The results are given in Table 3.6. The critical value (Fcrit) is the number that the 

test statistic must overcome to reject the test. The p-value stands for the probability 

of a more extreme (positive or negative) result than what is actually achieved, given 

that the null hypothesis is true. F-value can be defined as the ratio of the variance 

of the group means to the mean of the within group variances. All the F-tests in this 

work have been carried out at 5% significance level. If F  < Fcrit and p-value is greater 

than 0.05 (5% significance level), then the given results are statistically insignificant. 

It can be observed that the p-values obtained for all the cases of R T  in Table 3.6 are 

smaller than 0.05, suggesting that the improvement in all the four cases is statistically 

significant.

Additional listening tests have been carried out using the speech signals randomly 

selected from the experimental results employed for the objective evaluation of the pro

posed method. 20 volunteers have been recruited to participate the subjective listening 

tests, including the 15 listeners mentioned earlier. The results have been evaluated
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Table 3.7: MOS obtained from subjective listening tests for different window lengths

For R T = 1 0 0  msec
Window MOS before MOS after MOS for ANOVA based statistical significance
Length smoothing smoothing Pedersen e t  al. evaluation of MOS before & after smoothing

F-value F c r i t p-value

256 2.35 3.70 2.57 64.4233 4.0980 0.00000

512 2.70 3.65 2.90 16.5277 4.0980 0.00023

1024 2.60 3.65 2.81 24.1470 4.0980 0.00001

2048 2.40 3.10 2.64 7.0000 4.0980 0.0118

For R T = 2 0 0  msec

Window MOS before MOS after MOS for ANOVA based statistical significance
Length smoothing smoothing Pedersen e t  al. evaluation of MOS before & after smoothing

F-value F c r i t p-value

256 1.70 2.80 1.94 16.7810 4.0980 0.00021

512 1.75 2.70 2.04 21.5016 4.0980 0.00004

1024 1.75 2.65 2.01 15.1626 4.0980 0.00038

2048 1.55 2.35 1.78 15.6903 4.0980 0.00031

for different window lengths in Table 3.7, for different FFT frame lengths in Table 3.8 

and for different noise levels in Table 3.9. The R T  has been set to 100 and 200 msec, 

respectively. The criteria used in Table 3.6 for the MOS have also been employed here. 

The results given in Table 3.7 show that for different window lengths at R T  =100 and 

200 msec, cepstral smoothing offers higher MOS scores, indicating that the quality of 

the segregated speech signal has been improved. A similar trend can be observed in 

Table 3.8 and 3.9 where using cepstral smoothing achieves a higher MOS. In all cases 

the differences of MOS before and after smoothing are statistically significant.

3.5.5 Comparison to  other m ethods

In this section, the proposed multistage method has been compared with two related 

approaches in [129] and [178]. In [178] speech signals were separated from convolutive 

mixtures by exploiting the second order non-stationarity of the sources in the frequency 

domain, where the cross-power spectrum based cost function and a penalty function 

have been employed to convert the separation problem into a joint diagonalization 

problem with unconstrained optimization. Pedersen et aVs method [129] combines an 

instantaneous ICA algorithm with the binary T-F masking for underdetermined blind
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Table 3.8: MOS obtained from subjective listening tests for different FFT frame lengths

For i2T= 100 msec
NFFT MOS before 

smoothing

MOS after 

smoothing
MOS for 

Pedersen e t  al.

ANOVA based statistical significance 

evaluation of MOS before &: after smoothing

F-value Fcrit p-value

512 3.30 4.10 2.88 17.3714 4.0980 0.00017

1024 3.20 4.15 2.87 17.3646 4.0980 0.00017

2048 2.70 3.65 2.90 16.5277 4.0980 0.00023

For R T —20 0  msec

NFFT MOS before 

smoothing

MOS after 

smoothing

MOS for 

Pedersen e t  al.

ANOVA based statistical significance 

evaluation of MOS before & after smoothing

F-value F crit p-value

512 2.05 2.80 1.89 8.8509 4.0980 0.00510
1024 1.75 2.50 1.96 10.3012 4.0980 0.00270

2048 1.75 2.70 2.04 21.5016 4.0980 0.00004

Table 3.9: MOS obtained from subjective listening tests for different noise levels

For AT=100 msec

Noise MOS before MOS after MOS for ANOVA based statistical significance
smoothing smoothing Pedersen e t  al. evaluation of MOS before & after smoothing

F-value F c r i t p-value

-40 dB 3.30 4.20 2.84 15.8660 4.0980 0.00029

-30 dB 3.20 4.15 2.70 19.3211 4.0980 0.00008

-20 dB 2.70 3.70 2.09 14.3939 4.0980 0.00051

-10 dB 1.80 2.55 1.84 10.6079 4.0980 0.00240

For R T = 2 0 0  msec

Noise MOS before MOS after MOS for ANOVA based statistical significance
smoothing smoothing Pedersen e t  al. evaluation of MOS before & after smoothing

F-value F c r i t p-value
-40 dB 2.00 2.80 2.01 16.0000 4.0980 0.00028
-30 dB 2.15 2.85 1.93 12.3311 4.0980 0.00120

-20 dB 1.70 2.50 1.76 18.4242 4.0980 0.00011

-10 dB 1.30 1.90 1.49 9.7714 4.0980 0.0034
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Table 3.10: Comparison results for different window lengths

Window

Length

mSNRi mSNRo after 

the 1st stage

mSNRo after 

the 2nd stage
mSNRo after 

the 3rd stage

ANOVA test for the difference 

between the SNRoS from the 

2nd and 3rd stage

F-value F c r i t p-value

256 1.10 2.98 7.11 6.81 0.9085 3.9380 0.3429

512 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068

1024 1.10 3.01 7.11 6.09 11.4642 3.9380 0.0010

2048 1.12 2.95 6.32 5.32 12.8289 3.9380 0.0005

source separation, where the outputs of the ICA algorithm were used to estimate the 

binary mask in an iterative way to extract multiple speech sources from two mixtures.

Comparison between the proposed method and the method in [178] is essentially equiv

alent to the comparison between the outputs from the third (and/or second stage) and 

those from the first stage, as the method in [178] is employed in the first stage of the 

proposed approach. Therefore, without performing additional experiments, more re

sults are shown that were obtained from the experiments already conducted in Section

3.5.3. In parallel with the results shown in Tables 3.2, 3.3, 3.4, and 3.5, the comparison 

results in terms of mSNRo is shown in Tables 3.10 for different window lengths, 3.11 for 

different FFT frame lengths, 3.12 for different R T  values and 3.13 for different noise 

levels. All the results were measured based on 50 random tests. Note that mSNRo 

obtained after the first stage of the proposed method is approximately calculated. This 

is because, according to the definition of SNRo in Section 3.5.1, the masked output 

signals should be used for the calculation of output SNR, while the obtained signal 

from the output of the first stage [178] is not a masked signal. The results in Table 3.10 

clearly indicate that the output SNR has been improved at the second and third stage 

in comparison to the first stage for different window lengths. The objective results from 

the third stage in terms of mSNRo measurement are slightly worse than those of the 

second stage, due to the smoothing operation. According to the subjective listening 

tests in the previous section, the quality of the speech source from the third stage is 

actually improved, due to the reduced level of audible musical noise.

Table 3.11 compares the results of the proposed method and the method in [178] for 

different FFT frame lengths, where the window length was fixed to 512, the overlap
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Table 3.11: Comparison results for different FFT frame lengths

NFFT mSNRj mSNRo after 

the 1st stage

mSNRo after 

the 2nd stage
mSNRo after 

the 3rd stage

ANOVA test for the difference 

between the SNRqS from the 

2nd and 3rd stage

F-value Fcrit p-value

512 1.10 3.01 7.17 6.46 5.8298 3.9380 0.0176

1024 1.10 3.02 7.40 6.57 7.4946 3.9380 0.0074

2048 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068

Table 3.12: Comparison results for different R T

R T mSNRi mSNRo after 

the 1st stage

mSNRo after 

the 2nd stage

mSNRo after 

the 3rd stage

ANOVA test for the difference 

between the SNRqS from the 

2nd and 3rd stage

F-value F c r i t p-value

4 0 1.13 3.70 13.22 9.44 100.2190 3.9380 0.0000

60 1.15 3.47 10.94 8.48 40.4630 3.9380 0.0000

80 1.14 3.36 9.42 7.75 23.1972 3.9380 0.0000

100 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068

120 1.03 2.70 6.30 5.82 3.7015 3.9380 0.0573

140 0.94 2.47 5.48 5.23 0.9266 3.9380 0.3381

150 0.90 2.42 5.29 5.11 0.5210 3.9380 0.4721

Table 3.13: Comparison results for different noise levels

Noise mSNRi mSNRo after 

the 1st stage

mSNRo after 

the 2nd stage

mSNRo after 

the 3rd stage

ANOVA test for the difference 

between the SNRqS from the 

2nd and 3rd stage

F-value F c r i t p-value

-40 dB 1.10 3.02 7.45 6.60 7.6297 3.9380 0.0069

-30 dB 1.10 3.02 7.44 6.60 7.6186 3.9380 0.0069

-20 dB 1.10 3.02 7.43 6.59 7.5950 3.9380 0.0070

-10 dB 1.09 3.06 6.91 6.09 8.2232 3.9380 0.0051
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factor and R T  remained the same as those used for Table 3.10. Prom this table, we 

can also observe the improved performance of the proposed method in terms of SNR 

measurements, as compared with the method in [178]. Subjective listening tests also 

show that the results have considerably improved quality over those in [178] for different 

FFT frame lengths, which are consistent with the SNR measurements. In Table 3.12, 

comparison has been made for different values of RT,  where the window length and 

the overlap factor were identical to those used in Table 3.11, and the FFT frame length 

was the same as that in 3.10. The results show that the output SNR decreases with 

an increase in RT,  and the proposed method has better performance in terms of the 

averaged output SNR. Specifically, when R T  equals to 100 msec, mSNR^ of the third 

stage is approximately 4 dB higher than that of the first stage. The improvement is 

more prominant when R T  is relatively low. In Table 3.13 experiments are performed 

by considering the microphone noise in the mixture, as discussed already in Table 3.5. 

In this table, R T  was set to 100 msec, and other parameters were the same as those 

in Table 3.12. It can be observed that the proposed method performs better than the 

method in [178] for the separation of noisy mixtures. Specifically, comparing mSNRo 

between the first and third stages, it has been observed that there is about 3 dB 

improvement for noise level at -10 dB, and 3.6 dB for noise level at -30 dB, The results 

discussed above show that the proposed method outperforms the method in [178] in 

terms of SNR measurements.

To determine whether the relatively small differences of mSNRo between the second and 

third stage of the proposed method are statistically significant, one-way ANOVA based 

F-test [69] is performed as described in Section 3.5.4. The testing results are given in 

Tables 3.10, 3.11, 3.12 and 3.13. To explain how the F-test was applied to the results, 

consider the case of NFFT equal to 512 (in Table 3.11) as an example, where mSNRo 

after the second and third stage is 7.17 dB and 6.46 dB respectively. Both mSNR^s 

were calculated by averaging 50 individual SNR^s obtained from the 50 random tests. 

Each group of 50 SNR^s forms a vector, and hence two vectors can be formed from 

the second and third stage. The F-value was then computed from these two vectors, 

which is 5.8298. The F-values in other cases and tables were computed in the same 

way. From the results in these tables, it can be observed that in many testing cases the
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differences of mSNRo between the second and third stage of the proposed algorithm, 

although small, are statistically significant whereas in some cases the differences are 

insignificant.

The performance of the proposed method is also compared with the algorithm in [129] 

in terms of both computational complexity and separation quality. The separation 

quality is measured objectively using SNR measurement as in the above experiments, 

and subjectively by listening tests. To conduct this comparison, the real room record

ings were used which were obtained in [129]. The real recordings were made in a 

reverberant room with R T  = 400 msec. Two omnidirectional microphones vertically 

placed and closely spaced are used for the recordings. Different loudspeaker positions 

are used to measure the room impulse responses. Details about the recordings can be 

found in [129] and are not given here. Clean speech signals from the pool of 12 speak

ers were convolved with the room impulses to generate the source signals [129]. The 

specifications of the computing facilities that were used to perform the experiments in

clude Intel(R) Xeon(TM) 3.00GHz CPU and 31.48 GB memory. The results are given 

in Table 3.14. The results show that the proposed algorithm is 18 times faster than 

the Pedersen et al. method. Their method requires 700 minutes for 50 random tests 

and 14 minutes per test. In contrast the proposed method is much faster and requires 

40 minutes for 50 tests and 0.8 minutes per test. The time computational complexity 

of both methods was also approximately calculated. The order of complexity of the 

proposed method is 0 { h {M F K lo g K  -f M)) -f 0 { h K M N ( 2 N  +  M))  -f 0 {M N IsK )  +  

0{FKlogK)  -f 0 { N K F )  + 0{L),  where F  is the number of frames^, L  is the length 

of the signal, and I 3  denotes the required number of iterations for the convolutive ICA 

algorithm [178] to converge. Similarly, the complexity of the Pedersen et al. method is 

0 {FKlogKl2) +  0 {NKFl2)  +  0 {NMIil2),  where is the iteration number for the 

INFORMAX algorithm (used as a first stage in their method) to converge, while I 2  

denotes the total number of iterations for the Pedersen et al. method to segregate the 

speech mixtures. Although the results for ASNR are comparable, listening tests given 

in Table 3.6 suggest that our results have a better quality than those in [129]. Some 

demos are available on the website [175] for both real and artificial recordings.

^If there is no overlap between adjacent frames then  F • K  fn L.
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Table 3.14: Comparison of separation performance and computational cost between the proposed method

and Pedersen Et AL.’s method

Algorithm PEL PNR ASNR Total

time

Time 

per test

Run time 

memory requirement^

Proposed 30.56 9.73 2.50 40min 0.8min 223.28 MB

Pedersen e t  al. 17.14 49.33 2.64 700min 14min 255.17 MB

'Note that the results also include the memory required for the matlab software

3.6 Summary

The proposed approach consists of three major steps. A convolutive ICA algorithm [178] 

is first applied in order to take into account the reverberant mixing environments based 

on a convolutive unmixing model. Binary T-F masking is used in the second step for 

improving the SNR of the separated speech signal, due to its effectiveness in rejecting 

the energy of interference by assigning zeros to the T-F units in the masking matrix in 

which the energy of the interference is stronger than the target speech. The artifacts 

(musical noise) due to the error in the estimation of the binary mask in the segre

gated speech signals are further reduced by applying the cepstral smoothing technique. 

Compared with smoothing directly in the spectral domain, cesptral smoothing has the 

advantage of preserving the harmonic structure of the separated speech signal while 

reducing the musical noise to a lower level by smoothing out the unwanted isolated 

random peaks.

In comparison to [178], considerable improvement achieved by the proposed method 

in terms of both objective measurements using SNR and subjective listening tests is 

mainly due to the introduction of the binary T-F masking operation and the cepstral 

smoothing. The binary masking contributed mostly to the improvement of interference 

cancellation, and cepstral smoothing further improves the perceptual quality of the 

separated speech. For a reverberation time of 100 msec, the proposed algorithm achieves 

approximately 4 dB SNR gain over the typical convolutive ICA algorithm in [178]. 

Compared with [178], the computational complexity of the proposed algorithm is higher 

due to the additional processing of IBM and cepstral smoothing. It is however still 

computationally efficient as FFT and its inverse are used for the transforms in all the
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steps.

Note the difference between the proposed method and Pedersen et aVs method [129] 

despite a similar combination of an ICA algorithm with the IBM technique. First, 

the proposed algorithm directly addresses the convolutive BSS model based on the 

frequency-domain approach, while Pedersen et aUs method is based on an instanta

neous model and an instantaneous ICA algorithm, even though their algorithm has also 

been tested for convolutive mixtures. Second, the algorithm in [129] is iterative, which 

is computationally demanding. Moreover, cepstral smoothing has been introduced in 

the proposed method, which has the advantage of reducing the musical artifacts caused 

by the IBM technique.

As observed in the results, reverberation and noise degrade the performance of the 

separation for the convolutive speech mixtures. One could analyse reverberation and 

noise effects and reduce such effects present in the microphone signals before applying 

the ICA and IBM approaches. This issue will be addressed in the subsequent chapters.



Chapter 4

Empirical M ode D ecom position  

for Joint Denoising and 

Dereverberation

In Chapter 3, an algorithm for blind separation of convolutive speech mixtures is pro

posed. However, the room reverberation effects on the convolutive speech mixtures 

deteriorate the separation performance of the algorithm developed in Chapter 3. Also 

the microphone noise could affect the separation performance. Therefore, in this chap

ter an algorithm is developed to deal with the room reverberation and noise together. 

The proposed method is for the enhancement of noisy reverberant speech using em

pirical mode decomposition (EMD) based subband processing without any prior in

formation. The proposed algorithm is a one-microphone multistage algorithm. In the 

first step, noisy reverberant speech is decomposed adaptively into oscillatory compo

nents called intrinsic mode functions (IMFs) via an EMD algorithm. Denoising is 

then applied to selected high frequency IMFs using an EMD-based minimum-mean 

squared error (MMSE) filter, followed by spectral subtraction of the resulting denoised 

high-frequency IMFs and low-frequency IMFs. Finally, the enhanced speech signal is 

reconstructed from the processed IMFs. The method was motivated by the observation 

that the noise and reverberations are disproportionally distributed across the IMF com

ponents. Therefore, different levels of suppression can be applied to the additive noise

60
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and reverberation in each IMF. This leads to an improved enhancement performance 

as shown later in this chapter in comparison to a related recent approach, based on the 

measurements by the signal-to-noise ratio (SNR).

4.1 Introduction

As already discussed in Chapter 2 that room reverberation is one of the main causes of 

performance degradation in automatic speech recognition (ASR) systems. It has also 

been discussed in detail in Chapter 2 that room reverberation is commonly modeled as 

the combination of three parts, the direct signal, early reflections and the late reflec

tions. Late reflections degrade the quality and intelligibility of speech and can cause 

serious problems to ASR performance. Therefore, it is very important to deal with the 

late reverberations so that ASR performance can be enhanced.

The late reverberations are usually treated as diffusive noise whose variance is estimated 

and then subtracted from the reverberant speech, for which the spectral subtraction 

(SS) technique has been widely used [179]. To estimate the late reverberations, a 

method based on an exponential decay function has been developed in [84]. The main 

challenge in suppression of late reverberations is to estimate accurately its variance. The 

presence of noise from the acoustical environments make it more difficult to estimate 

the power of late reverberations. Therefore, in this chapter, it is considered to enhance 

the noisy reverberant speech by jointly dealing with the late reverberations and the 

additive acoustic noise having a Caussian distribution and white spectrum. Note that 

early reflections are not considered here and the method developed deals with the late 

reverberations which can be treated as diffusive noise unlike early reverberations.

A new method is developed here using EMD based subband analysis. An EMD algo

rithm is used to decompose the noisy reverberant speech into a linear combination of 

the so-called IMFs, ranging from the high-frequency to low-frequency bands [71], [140], 

[180], [181], [182]. Then the IMFs that have higher levels of noise are selected and 

the EMD based MMSE filter [83] is applied to reduce the additive noise. In the next 

step, the denoised IMF components and the remaining IMF components are used to 

estimate the power of late reverberations. It has been observed that the energy of the
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Figure 4.1: Block diagram of the proposed denoising and dereverberation system.

late reverberations is spread over the different IMFs with different magnitude. For this 

reason, spectral subtraction is applied to each IMF according to the energy of the late 

reverberations present in the IMF components. The proposed method is evaluated on 

the simulated and real noisy reverberant speech data, and an improved performance 

has been observed on the basis of SNR measurements. The next section presents the 

proposed approach in detail. Section 4.3 shows the evaluation results, followed by a 

conclusion in Section 4.4.

4.2 System  Description

The proposed joint dereverberation and denoising system is depicted in Figure 4.1. 

First, the EMD algorithm [71] is applied to the noisy reverberant speech x(n) to de

compose the signal adaptively into C IMF components Zj{n), j  =  1,..., C. In the next 

step R  components are selected from the C IMF components of %(n) for denoising. 

Then, an EMD based MMSE filter [83] is applied to each of the selected IMFs to re

duce its noise level. Spectral subtraction with variable scaling factors is applied to the 

denoised IMFs and the remaining IMFs separately. Finally, the signal is reconstructed 

as s{n).

4 .2 .1  E M D  a n a lysis  and its  R ev iew

The concept of EMD was introduced by Huang et al. in 1998 [71]. The EMD algorithm 

describes the signal details at certain frequency bands in the form of different IMFs [55].
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Each IMF has a distinct time scale and acts as a basis function [71], [140], [182]. There 

are two main conditions that need to be satisfied by each IMF [71]. First, the difference 

between the number of extrema and the number of zero crossings should not exceed 

one. Second, the average value for the envelope assigned to the local maxima and 

minima is zero.

EMD is a powerful technique for data analysis. In practice, data obtained is an amal

gamation of signal and noise such as signals acquired by microphones. Once the noise 

contaminates the data, it is not a trivial task to remove it. When the acquisition pro

cesses are linear and the noise has a distinct time or frequency scale from those of the 

signal, the spectral filtering method based on Fourier analysis can be employed to sep

arate the noise from the signal. However, the filtering methods will not work properly 

when the processes are nonlinear. Even if the signal has distinct fundamental frequency 

from that of the noise, the harmonics of the signal can still mix with the noise. Such 

type of mixing of harmonics with noise will render the method based on Fourier filtering 

ineffective as compared to a noise separating method. In such a scenario, the EMD 

method can offer some benefits [71,180]. EMD is an adaptive method to decompose 

data into its IMFs, which act as the basis components for the representation of the 

given data. While the basis is adaptively obtained, it usually offers a physically mean

ingful representation of the underlying processes. Also because of the adaptive nature 

of the basis, there is no need of harmonics and therefore EMD is suitable for analysing 

data from nonlinear and nonstationary processes.

Neverthless, in [55] and [180] it has been found empirically that EMD works as a dyadic 

filter bank for the white Gaussian noise and is capable of separating the white noise 

into IMF components having mean periods, with each having exact twice the value of 

the previous one. It has also been found that all the IMF components are normally 

distributed [180]. Hence these findings are the motivation for using EMD to enhance 

the reverberant speech signal contaminated by white Gaussian noise in this chapter.

EMD is implemented through a sifting process that is summarized as follows [55], [71], 

[140], [182]:

(1) For the given noisy reverberant signal (data), x{n), identify all the local extrema.
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(2) Connect all the maxima and minima separately by applying natural cubic spline 

interpolation to form the upper envelope u{n) and lower envelope l{n).

(3) Calculate the mean of the envelopes as m(n) =  [u(n) +  Z(n)]/2.

(4) Find the early-IMF by taking the difference between the data and the mean as 

h{n) =  x(n) — m{n).

(5) Check the early-IMF whether it fulfils the two conditions as mentioned in the 

begining of this section, to be a candidate IMF.

(6) If the early-IMF does not satisfy the conditions, repeat steps 1-5 on h(n) as many 

times as required until it satisfies the conditions.

(7) If the early-IMF does meet the conditions, assign the early-IMF as an IMF compo

nent, z{n).

(8) Repeat steps 1-7 on the residue signal r(n) =  x{n) — z(n), i.e., replacing x{n) in 

step 1 by r(n).

(9) The iteration terminates when the residue, rc(n), becomes a monotonie function 

from which no more IMF can be extracted.

Now the mathematical details are given below to further clarify how the EMD algorithm 

works. The following equations show the sift process that finds the first IMF component 

zi{n), assuming steps 1-5 are repeated I times before this component is found.

x{n) -m i,i(n )  =  hi,i(n); 

hi,i{n) -  mi,2 (n) =  hi,2 (n);
(4.1)

If hi^i{n) satisfies the sifting conditions, then it is selected as an IMF, i.e., zi{n) <- 

hyi{n). It is straightforward to reach from (4.1) that

zi{ri) = x{n) -  { m y i + m y 2  +.. . + rnyi) (4.2)
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The other IMF components can be similarly extracted, i.e.,

x{n) -  zi(n) = ri(n)] 

ri(n) -  Z2 (n) =  T2 (n);
(4.3)

r c - i ( n )  -  zc{n)  =  rein)]

As a result, x{n) is decomposed into a sum of C IMFs and a residue rc{n) (assuming 

rc'(n) is a monotonie function),

c
^(n) =  ' ^ Z j i n )  4-rc{n)  (4.4)

j = i

where %(n) represents the j th  IMF component. Typically, C  was set to 15 in the 

simulations, where different values of C have also been tested which however give 

similar results.

4.2.2 IM Fs o f speech signals for denoising

Only part of IMFs are selected for the denoising in the next subsection 4.2.3. In order 

to explain the reason behind the selection of these IMFs, an example is given here in 

which first the noisy speech signal is generated by adding white Gaussian noise to the 

clean speech signal at S N R =  4 dB. Then, the EMD algorithm is used to derive the 

IMF components of the clean and its corresponding noisy signal. In Figures 4.2 and

4.3, all the IMF components (ranging from high to low frequencies) derived from the 

clean speech and its corresponding noisy speech are shown respectively. From the 

comparison of these two figures, it can be observed that the noise is mainly present in 

the high frequency components. Motivated from this observation the high frequency 

IMF components Zjin),j  =  1, ...,R have been chosen for denoising. In this work ,R=10 

is used in the experiments, which is found empirically to be a suitable number.

4.2.3 EM D-M M SE filtering for noise reduction o f speech

In this step, denoising is performed for the selected high frequency IMF components 

Zjin), where j  =  1, ...,R, using the MMSE filter [83]. In general, speech noise can be
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Figure 4.2: The IMF components derived from the clean speech signal. There are 15 

IMF components ranging from high to low frequencies.
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estimated using Boll’s method [17]. The silence periods of the signal are detected and 

then the noise power spectrum is estimated by averaging the power spectra of the noisy 

signal on the M  first temporal frames corresponding to the silence period. Here the 

first R  IMFs are used separately in order to estimate the noise power, following the 

relation [83]
- M—1

I ^ j i ^ )  ^  I 1^5 3 — 1)  ' ^  ( 4 - 5 )
i—Q

where | Bj{k\ i) | represents the magnitude spectrum of the j th  IMF component at the 

discrete frequency k and time frame i (index used for the silence period), and | Bj{k) ^ 

is the estimated noise power of the j th  IMF component at frequency bin k.

The combined operation of EMD and MMSE filter [47,48] is named as EMD-MMSE. 

Hence each IMF is filtered by the MMSE filter as follows:

Zj{k;m) = Hj{k]m)zj{k]m), j  = l , . . . ,R  (4.6)

where Zj {k;m)  and Zj {k\m)  are the spectra of the j th  estimated IMF and noisy IMF 

components respectively, observed at the discrete frequency k and the time frame m. 

H j { k \ m)  can be defined as follows [47]

'« I
The signal to noise ratio, SNRprio can be estimated based on the previous frame of the 

estimated Zj{k\ n — 1) and a local estimation of SNRinst, given as [47]

z^(k] m — 1)
SNRprio(k] m) = a ---- ^  H (1 -  a)max{SNRinst(k] m), 0) (4.8)

Bj (k)

where a  is a weighting factor (chosen empirically to be 0.98 in this work), max  denotes 

the maximum element of its argument, and SNRinst represents the instantaneous S N R ,  

and can be defined as the local estimation of SNRprio,

(4.9)
B j  (k)

Hence Zj{k',m) with j  =  1,..., obtained in equation (4.6) are the denoised IMF 

components which are further processed in the next step in order to remove the late 

reverberations from these components.
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4 .2 .4  IM F s b ased  sp ec tra l su b tra c tio n  for th e  su p p ressio n  o f  la te  re

v erb era tio n s

It has been observed that the late reverberations lead to the blurring effect on the 

speech spectrum in the frequency domain, resulting in a smoothed spectrum [179]. 

Therefore, the power spectrum of the late reverberation components can be estimated 

as the smoothed and shifted version of the power spectrum of the denoised reverber

ant IMF components Z j { k , m ) , j  = 1,..., jR and remaining low frequency components, 

Z j { k , m ) , j  = R-\- 1,...,C. For notational simplicity, all of these components are now 

represented by z j { k ,  m) where j  = 1 ,..., C.

\Si.{k\m)Ÿ p)^ \z j(k]m)Ÿ  (4.10)

where \Sij{k',m)\‘̂ is the short term power spectrum of the late reverberations in the 

j th  IMF component, 7  is the scaling factor specifing the relative strength of the late 

reverberation components, the symbol * denotes the convolution operation, uj{m) is a 

smoothing window, and p refers to the relative delay of the late reverberations. The 

short-term speech spectrum can be obtained by using the Hamming window of length 

16 msec with 8  msec overlap for the short-term Fourier analysis.

To estimate the power spectrum of the original speech, the power spectrum of the 

late reverberation components can be subtracted from that of the IMF components 

Zj, j  =  1 ,..., R. Spectral subtraction can be employed for each selected component as 

follows [179],

\zj{k]m)Ÿ‘ -  7 j 0;(m — p) * |%(/c;m)p
\sj{k]m)^ = \zj{k\m)Ÿ‘max (4.11)

where \sj{k’,m)^‘ represents the power spectrum of the j th  IMF component of the 

estimated version of the original speech, e stands for the floor parameter which was set 

to be 0.001 in the experiments, corresponding to the maximum attenuation of 30 dB and 

7 j is a scaling factor, discussed below. The spectral subtraction procedure discussed 

above in equation (4.10) and (4.11) were also used for all the IMF components including 

the remaining low frequency IMFs Zj, j  =  -f 1,..., C.
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Figure 4.4: The spectrograms of the subtracted IMFs shown in the descending order 

of frequency patterns with the highest frequency component on the top left and the 

lowest frequency component on the bottom right.

4.2.5 Selection of variable scaling factor

The variable scaling factor j j  is used for the estimation of the late reverberations 

from the IMF components. To show the motivation for using variable 'jj, an example 

is provided here in which the IMF components of the reverberant speech signal (at 

RT=  200 msec) and the clean speech signal are taken. Then, the IMF components 

of clean speech signal are subtracted from the corresponding IMF components of the 

reverberant signal to obtain the distribution of the energy of late reverberations. The 

spectrograms of the subtracted IMF components are shown in Figure 4.4. From this 

figure, it can be observed that the late reverberations tend to spread over the different
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Figure 4.5: Variable scaling factor j j ,  j=l,...,15. Note that the first 7 IMF components 

contain more diffusive noise, and therefore scaling factor has high values for them.

IMFs with variable energy, i.e. having high energy in the first few high frequency IMFs 

and decreases in the lower IMFs. Motivated by this fact, it is proposed to use variable 

scaling factors yj instead of a fixed one (as used in method [179]). The high values of 

7  are selected for the first few high frequency IMF components while being decreased 

for the lower frequency components. Different values for 7  have been tested. The 

optimized values of 7  for each corresponding IMF component are shown in Figure 4.5 

where the R T  is equal to 200 and 500 msec respectively.
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Table 4.1: The proposed EMD based method for joint denoising and dereverberation

Task: Use EMD for the enhancement of noisy reverberant speech.

Input: x(n).

O utput: s(n).

In itialization: 1 ) In (4.4), x { n )  is split into the sum of C =  15 IMFs.

2) In (4.5), A — 10 IMFs are used.

3) In (4.8), a  =  0.98 is used.

P art A: The goal is to denoise x { n ) .  The steps are:

1) Use (4.1)-(4.4) to split x { n )  into the sum of C  IMFs, i.e., %(n), j  — 1, . . . , C .

2) Use (4.5)-(4.9) for the R IMFs (i.e., Z j ( n ) ,  j  =  1, ...,R) in order to reduce noise, leaving 

(C — R) IMFs (i.e., Z j ( n ) ,  j  = R + 1 , . . . ,C )  unprocessed.

P art B: The goal is to dereverberate x { n ) .  The steps are:

•  Use (4.10) and (4.11) for the processed R IMFs from Part A (i.e., Z j { n ) ,  j  =  1, ...,R) and 

the unprocessed IMFs (i.e., Z j ( n ) ,  j  =  R +  1,..., C), to achieve dereverberation, j j  in (4.11) 

is used in two ways, i.e., for low and high reverberation conditions.

(a) For low reverberant condition

• If { j  =  1, ...,4), then j j  =  1.2

•  Else if { j  =  5 ,6 ,7), then =  1.1,1.0,0.9

•  Else if ( j  =  8 ,..., C ) ,  then j j  =  0.1

(b) For high reverberant condition

• If { j  =  1, ...,4), then 'yj =  2.9

•  Else if {j =  5 ,6 ,7), then -yj =  2.8,2.7,2.6

• Else if ( j  =  8 ,..., C ) ,  then 7 -̂ =  0.1 

O utput: Compute l(n ) according to (4.12).

4 .2 .6  S ign a l r ec o n stru c tio n

Finally, the enhanced signal s(n) can be reconstructed by the superposition of the

processed IMFs, and the residue, given as follows,
R c

=  Sj{n) + r c { n )  (4.12)
j —l j=R+l

where Sj{n)  is computed as the inverse FFT of S j{k \m)  obtained in (4.11). The pro

posed algorithm is summarized in Table 4.1.

4.3 Experimental Results and Discussions

In this section, the performance of the proposed method is evaluated using simulations. 

Four clean speech utterances, 2 male and 2 female all sampled at 16 kHz were used. The
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simulated RIRs from the image model [4] and the real RIRs from the AIR database [79] 

were used to generate the reverberant signals from the clean speech signals with different 

RTs,  which were then added by white Gaussian noise with SNR values ranging from 

-12 dB to 4 dB. The size of the room used in the case of simulated RIRs is 10 x 10 x 10, 

and the microphone and speaker were positioned at [3, 8, 5] and [2, 2, 5] respectively 

(the unit is meter) [4]. The performance index used in the evaluations is the SNR [133]. 

The SNR in dB can be defined as,

where s(n%) and s{r i i )  are the original signal and the enhanced signal respectively, and 

N  is the length of the signal.

First, an experiment has been carried out using the proposed method for the noisy 

speech signals without room reverberations. Four clean speech signals described above 

have been used in this experiment to generate noisy speech signals with SNR ranging 

from -12 dB to 4 dB. In total 50 independent random tests have been conducted for 

each SNR, and the average results were computed. The results are shown in Figure 

4.6. It can be observed from this figure that, for the input SNR ranging from -12 dB 

to 4 dB, the output SNR ranges from 1.5 dB to 6.1 dB (approximately), which shows 

the reasonably good performance of the proposed method for denoising.

In a further experiment, numerical simulations have been performed using simulated 

RIRs for RT=  200 and 500 msec respectively, with SNR ranging from -12 dB to 4 dB 

for each RT.  In total, 50 independent random tests have been conducted for each SNR, 

and the average results were calculated. In order to ensure a fair comparison between 

the proposed approach and the method in [179] (called for short Wu et al. method 

hereafter), EMD-MMSE has also been applied as a preprocessing step to the Wu et al. 

method. Figure 4.7 shows the comparison of the methods for the signals in terms of 

SNR obtained for RT=  200 and 500 msec respectively, and for different noise levels. 

From Figure 4.7, it can be observed that the proposed algorithm offers improvement 

over the Wu et al. method with EMD-MMSE preprocessing, especially for R T  equal 

to 500 msec, and comparable performance is observed for R T  equal to 200 msec. As 

compared to the results obtained by Wu et al. method without incorporating EMD-
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Figure 4.6: Average gain in SNR for the proposed method with different initial noise 

levels without room reverberation. Results are the average of 50 random tests.
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Figure 4.7: Average gain in SNR for RT=  200 msec and 500 msec with different initial 

noise levels. Results are the average of 50 random tests.

MMSE preprocessing, the proposed method has shown considerably higher performance 

improvement.

Another set of experiments have been carried out using simulated RIRs from the image 

model in which the performance of the proposed approach and the Wu et al. method 

is evaluated and compared with and without EMD-MMSE filtering on the basis of 

different source-microphone distances. The RT  used in this set of experiments for all 

the four signals is 500 msec with initial SN R =  -4 dB. Average results for all the speech 

signals based on 50 random tests, are depicted in Figure 4.8. It can be observed that as 

the distance between the source and the microphone decreases the average performance 

of both algorithms increases. In addition, it should be noted that the proposed method 

performs better for larger source-microphone distances.

Now the performance of the proposed method is evaluated based on the real data
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Figure 4.8: Average gain in SNR for different source-microphone distances where RT=  

500 msec with initial noise level equal to -4 dB. Results are the average of 50 random 

tests.
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from the AIR database [79]. Five different types of RIRs have been used from the 

AIR database recorded in five different types of room environments, namely booth, 

office, meeting, lecture, and stairway. For each room environment, a shorter source- 

microphone distance and a longer source-microphone distance are used in the experi

ments, denoted in pair as {Di ,D 2 } m respectively. Specifically the pair {Di, D2 } used 

for each room is, {0.5,1.5}, {1,3}, {1.45,2.8}, {2.25,7.1}, and {1,3} m, respectively. 

Four clean speech signals are then convolved with each of these RIRs, with SNR ranging 

from -12 dB to 4 dB for each RIR to generate the noisy reverberant speech signals. In 

total 50 independent random tests have been conducted for each SNR, and the average 

results were computed. The results obtained for the proposed method in comparison 

to the Wu et al. method with and without EMD-MMSE preprocessing are shown for 

the five different types of rooms at {Di, D2 } m in Figures 4.9, 4.10, 4.11, 4.12, and 4.13 

respectively. It can be observed that for different rooms the proposed method offers im

provement over the Wu et al. method with EMD-MMSE preprocessing, especially for 

low direct-to-reverberant ratios (i.e., at D 2 ), and comparable performance is observed 

at shorter source-microphone distance (i.e., Di), where the direct-to-reverberant ratio 

is higher. As compared to the results obtained by Wu et al. method without incorpo

rating EMD-MMSE preprocessing, the proposed method has shown considerably higher 

performance improvement for all the five rooms at both distances (i.e., at Di  and D 2 ).

4.4 Summary

In this chapter a novel approach has been presented for speech denoising and dere

verberation, based on the EMD decomposition of the noisy reverberant speech. EMD 

based MMSE and spectral subtraction have been applied to process the IMF com

ponents separately. It has been observed that both the additive noise and the late 

reverberations are spread over the different IMF components in varying magnitudes. 

As shown in the experiments, performing MMSE and spectral subtraction on individ

ual subband components offers better denoising and dereverberation performance as 

compared with a related method that directly uses the noisy reverberant speech.

Although it has been shown in this chapter that EMD performs very well in enhance-
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Figure 4.9: (a) Average output SNR, for the booth room from the AIR database with

different initial noise levels, based on 50 random tests, at source-microphone distance
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Figure 4.11: (a) Average output SNR for the meeting room from the AIR database with

different initial noise levels, based on 50 random tests, at source-microphone distance
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Figure 4.12: (a) Average output SNR for the lecture room from the AIR database with

different initial noise levels, based on 50 random tests, at source-microphone distance
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ment of the noisy reverberant speech, in particular, for the reduction of additive white 

Gaussian noise, its performance in mitigating the reverberation distortion, as observed 

in the experiments, is still limited. Therefore, in the next chapter, dereverberation 

problem is further studied where new solutions are developed to enhance the reverber

ant speech.



Chapter 5

Suppression of Late and Early 

Reverberations Using a 

Frequency D ependent Statistical 

M odel

Suppression of room reverberations is a challenging problem in reverberant speech en

hancement. A promising recent approach to this problem is to apply a spectral subtrac

tion mask to the spectrum of the reverberant speech, where the spectral variance of the 

late reverberations was estimated based on a frequency independent statistical model 

of the decay rate of the late reverberations, followed by a dual-channel Wiener filter to 

mitigate the early reflections. In this chapter, a two stage dereverberation algorithm is 

developed by following a similar process. Instead of using the frequency independent 

model, however, in this work the frequency dependent reverberation time and decay 

rate are estimated, and then used for the estimation of the spectral subtraction mask. 

In order to remove the processing artifacts, the mask is further filtered by a smooth

ing function, and then applied to reduce the late reverberations from the reverberant 

speech. In a second stage, a dual-channel Wiener filter is applied such that the early 

reverberations are attenuated. The performance of the proposed algorithm, measured

84
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by the segmental signal to reverberation ratio (SegSRR) and the signal to distortion 

ratio (SDR), is evaluated for both simulated and real data. As compared with the 

related frequency independent algorithm, the proposed algorithm offers a considerable 

performance improvement.

5.1 Introduction

As mentioned in Chapter 2 the room reverberations degrade speech quality and in- 

telligibilty. Hence a method should be developed to reduce their effects. Different 

methods have been proposed in the literature (as discussed in Chapter 2) to deal with 

the detrimental effects of room reverberations. Recently, Lebart et al. [93] proposed 

a statistical model for late reverberations. With this model, the spectral variance of 

the late reverberations can be estimated from the reverberant speech [93], which was 

further used by Jeub et al. for the suppression of late reverberations [78]. This original 

model was developed as frequency independent where a fixed reverberant time (% )  

was used for all the frequency channels in the estimation of the decay rate of room re

verberations. However, it was found by Habets et al. [62] that the spectral variance of 

the late reverberations is frequency dependent. In this chapter, a new dereverberation 

algorithm is proposed with a frequency dependent model for the late reverberations in 

the first stage followed by a dual-channel Wiener filter to reduce the early reflections in 

the second stage, which is based on the coherence model of the reverberant sound field. 

Section 5.2 formulates the problem and its model. Section 5.3 describes the first stage 

of the proposed approach which includes the estimation of frequency dependent Tqq 

from room impulse responses (RlRs), the estimation of the spectral subtraction mask, 

and the filtering (smoothing) of the mask. Section 5.4 describes the second stage of the 

proposed method. Section 5.5 presents the evaluation results, followed by a conclusion 

in Section 5.6.
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5.2 Problem Formulation and M odelling

The reverberant speech signal x{n) can be modelled as the convolution of the anechoic 

speech signal s(n) and the RIRs h{n) [117],

oo
x{n) = ' ^ h { l ) s { n  — I) (5.1)

l—O

where n is the discrete time index. Note that the mathematical formulation provided 

here will be for single channel case. However, an extension for each of the two channels 

can be performed in a similar way. The RIR of length in seconds can be modelled 

as [93]

hearly{n) for 0 < n < Tie' /s,

=  1 hiatein) f o r  T i e - f s < n < T r -  u  ( 5-2)

0 otherwise

where hearly{n) denotes the direct and early path, hiatei'n) is the late reflection path, 

fs is the sampling frequency, and Tie is the time after which we assume that the late 

reverberation starts. The range of Tie usually lies within 50 to 100 ms.

The reverberant speech signal can now be represented as the combination of two main 

parts, i.e., xearly{n) and xiate{n),

Tiefs-l Trfs
x{n) = ^  s(n — ï)h{ï) +  ^  s{n — l)h{l) (5.3)

1 = 0  l=Ti f̂s
---------- V------------------  V---^

êarly{f̂ ) l̂ateif )̂

In order to reduce the effects of early reflections {xearly{n)), inverse filtering may be 

used as in [179] and [13]. For the suppression of late reverberations (%(e (?%)), a spectral 

subtraction technique such as [93], [179], [61] is usually employed, where the spectral 

variance of the late reverberations is estimated from the reverberant speech. A recent 

technique for the spectral variance estimation was proposed by Lebart et al. [93], [94] 

in which the late impulse responses are statistically modelled as

p(n)e~°‘̂ '  ̂ for n > 0, 
hiatein) = { (5.4)

0 otherwise
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where /3(n) is a sequence of zero-mean mutually independent and identically distributed 

(i.i.d.) Gaussian random variables, and ai  denotes the decay rate given as

™  (S'S)
where In is the natural logarithm. Using the above model originally proposed by Lebart 

et al. in [93], [94], Jeub et al. [79], [78] have recently presented a dereverberation 

algorithm with a frequency independent o;i. However, it was shown in [62] that a 

frequency dependent a± may provide more accurate estimation of the spectral variance 

of the late reverberations. In the next section the first stage of a new dereverberation 

algorithm is presented using this frequency-dependent model.

5.3 The Proposed Frequency Dependent Dereverberation  

M ethod for Late Reverberation

5 .3 .1  F req u en cy  d ep en d en t R IR  m o d e l

Applying the short-time Fourier transform (STFT), equation (5.2) can be rewritten in 

the T-F domain as

H e a r l y { m ,  k) for 0 < m < N i e ,

if(m , & ) = \  Hiateim, k) for Nie < m  < Nr, (5-6)

0 otherwise

where Nie and Nr are the number of frames corresponding to Tie and Tr respectively. 

Hiatei'm,k), the STFT OÎ hiatein), is represented as
T r - f s

H,ate{m,k)= /i(n)«;(n -  (5.7)

where m is the time frame index, k is the frequency bin index, w is the analysis window 

of length N,  and R  denotes the hop size.

With the statistical model (5.4) and a frequency-dependent ai,  F7we(?u, k) can also be 

written as [62],

I ^(m, for m > 1,
Hiate{'m,k) = < (5.8)

0 otherwise



5.3. The Proposed Frequency Dependent Dereverberation Method for Late Reverber

ation 88

where ^{m,k)  is a sequence of zero-mean mutually i.i.d. Gaussian random variables, 

and ai{k) denotes the decay rate which can be obtained from the frequency dependent 

reverberation time TQo{k) as below

“■«‘ H I
5 .3 .2  E stim a tio n  o f  freq u en cy  d ep en d en t rev erb era tio n  t im e

Robust estimation of TQo{k) directly from the reverberant signal is a challenging task 

to be discussed further in Chapter 6. As a proof of concept in this chapter, TQQ{k) is 

estimated from the RIRs which are assumed to be available. To this end, a method 

similar to the one defined in ISO standard (ISO 3382-1:2009) is used. First, h{n) is 

passed through a Gammatone filter-bank to obtain sub-band signals h{p, n), where p is 

the sub-band index. Subsequently, h{p, n) are analysed using Schroeder’s method [153] 

to estimate the reverberation time Tqo(p ) in each sub-band p. Since this filterbank 

(indexed by p) is different from the one used in the above section (indexed by k), the 

Tqo{p) values need to be inter- and extra-polated to obtain the estimate of TQo{k) in 

each frequency bin k.

First interpolation is applied to feo{p) so that Tqo{p) from each sub-band p is mapped 

to Teo(/), where /  € [ /c  — / c +  ^ ]  denotes the frequency range (in Hz) of sub-band

p, fc and bw are the centre frequency and the bandwidth of this sub-band respectively. 

Then, smoothing is applied across the overlapped regions between the neighbouring 

sub-bands

% ( / )  =  % ( / i )  +  (5.10)

where f i  and / 2  are the frequency points of the neighbouring sub-bands at which 

their overlap begins and ends respectively. % ( / i )  and Teo(/2 ) are the reverberation 

times at frequency points f i  and / 2  respectively. For non-overlapped regions, no such 

interpolation as (5.10) is required for % ( / ) .  Finally, % ( / )  is then mapped to the 

STFT sub-bands by an extrapolation method as

E  Î 60(/)
1) (5.11)
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Note that, /  =  1,2, where F  is the whole frequency range and K  denotes the 

number of frequency bins (indexed by k). An alternative method without using the 

inter- and extra-polation process is to set the hop size as a single sample when calcu

lating the STFT, and then calculate Teo{k) directly for each frequency band k, which 

provides similar performance but is computationally more expensive.

5 .3 .3  S p ec tra l su b tra c tio n  m ask  e s t im a tio n

The statistical model discussed above in equation (5.8) is valid when the energy of the 

direct signal is low in comparison to that of all the given reflections. As a result the 

spectral variance of the late reverberant speech can be estimated as [62]

' (7^(m -  A;) (5.12)

where a^{m,k) is the variance of the reverberant speech which can be estimated by

recursive averaging

cr^(m, k) = . cr^(m — 1, A:) -i- (1 — t)  • I JA(m, k) f] (5.13)

where r  € [0,1] is a forgetting factor and X{m,k)  is the T-F representation of x(n)

in (5.3). Note that Nie is the number of samples after which the late reverberation

begins and measures the reverberation decay rate. The posteriori signal-to-

distortion ratio (SDR) can then be estimated as follows [78]

To reduce the late reverberations, apply the following spectral subtraction mask [78] 

to X{m,k )

Glateipi'ik) =  1 / = (5.15)
Vy)(m, A;)

In order to avoid over-estimation of a^^^^^{m,k), a lower bound is applied to all 

the weighting gains in the mask.
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5 .3 .4  S p ectra l ga in  sm o o th in g

A common problem with spectral masking is the processing artifacts, i.e. the so- 

called musical noise. Therefore, similar to [78], a moving average operation is applied 

to G late ('ITT', k). To this end, the power ratio between the enhanced signal and the 

reverberant signal is calculated. However, different from [78] in this work, this power 

ratio is computed at each frequency bin k  and each time frame m

p i ( m ,k )  =  I G , M m , k ) - X r e f i m , k )  f  ( 5 . 1 6 )
I Xref(TTT, k^ |

where Xj-efi'in, k)  is the reference signal and can be obtained from the left channel and 

right channel microphone signals given as

Xref(m,k) = ( X i ( m , k ) X r ( m , k ) )  (5.17)

In the case of a single channel mixture X ( m , k ) ,  Xref( 'm,k)  is simply replaced by 

X(m, k).  Then a moving average window can be generated, as follows:

I 1, i i p i ( m , k ) > C ,

1̂ 2 • L(1 — PT{rn,k)^ . -p 1, otherwise.

where G is a constant controlling the trade off between the speech distortion and

reduction of musical noise, -0 is a scaling factor for determining the level of smoothing,

and [-J rounds the argument to its nearest integer. This window function can now be 

used to create a smoothing filter as

^  (5.19)
otherwise

By convolving Giatei'nn, k)  with Fs(m,  k),  a smoothed mask can be obtained as follows:

Giatei'm, k) = Giatei'm, k)  *  Fs(m,  k )  (5.20)

Finally, the smoothed mask is applied to the T-F representation of the reverberant 

signals as follows:

S i (m ,k )  = X i ( m , k )  - Giate(m,k) (5.21a)
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Table 5.1: The proposed dereverberation method for late reverberation

Task: Use frequency dependent RIR model to suppress the late reverberation.

I n p u t :  X i ( m , k )  a n d  X r ( m , k ) .

O utput: S i { m , k )  and S r { m , k ) .

In itialization: 1) In (5.6), Ni^  =  13 is used.

2) In (5.13), r  =  0.1 is used.

3) In (5.18), C  =  2.5 and ■0 =  25 are used.

P art A: The goal is to estimate T e o{ k )  from the RIR. The steps are:

1) Use h ( n )  from (5.2) and pass it through Gammatone filter-bank to obtain h { p , n ) .

2) Apply Schroeder’s method to h{ j p , n)  to estimate T6 o(p).

3) Use (5.10) and (5.11) to map T qq(jp) to T e o { k ) .

P art B: The goal is to estimate spectral subtraction mask. The steps are:

1) Use (5.12) and (5.13) to estimate the spectral variance of late reverberant speech,

2) Use (5.14) and (5.15) to estimate the spectral subtraction mask, i.e., Gi a t e i ' m^k) .

P art C: The goal is to reduce the musical noise from the spectral subtraction mask. The steps are:

1) Use (5.16)-(5.19) to generate a smoothing filter.

2) Use (5.20) to obtain the smoothed spectral subtraction mask, i.e., G i a t e { i r t , k ) .

O utput: Compute S i { m , k )  and S r { m , k )  according to (5.21).

Sr(m, k) = Xr{m, k) • Giatei'm, k) (5.21b)

In the single channel case, similar operation is performed as Equation (5.21) by discard

ing the subscript (/,r). The proposed dereverberation algorithm used for suppressing 

late reverberation is summarized in Table 5.1.

5.4 The Dereverberation M ethod for Early reverberation

The spectral subtraction rule described in Section 5.3 is employed mainly to reduce the 

late reverberations, and hence the early reverberation remains. Therefore, a second 

processing step is incorporated here to deal with the effects of early reverberations. 

Note that the method discussed below will only be applicable to the case of two-channel 

(stereo) recordings. The subsequent coherence based method exploits the low coherence 

of the sound field between different microphones to estimate the (direct) speech power 

spectral density (PSD) and to remove all non-coherent signal parts while keeping the 

coherent parts unaffected. Since only the direct speech shows a high coherence among
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sensors, of. [78], this approach also reduces early reverberations.

In order to derive this method, consider two general microphone signals æi|2 (n) under 

the assumption that the source-microphone distance should be smaller than the critical 

distance (The distance between source and microphone at which the direct path energy

is equal to the combined energy of the early and late reflections). The coherence

between the two signals æi|2 (^) is deflned as [78],

c o / i x i x 2 ( / )  =  ( 5 .22)

where Tx^xiif) and Ta;2æ2 (/)  are the auto-power spectral densities of xi{n) and X2 {n) 

respectively, TæiæaC/) denotes the cross-power spectral density between xi{n) and 2:2 (n), 

and /  is the frequency range of signals in Hz. The relation between the frequency bin 

index k and /  can be described by the bin resolution as f s / k  [Hz], where fs is the 

sampling frequency.

Unlike Equation (5.3) in section 5.2, the reverberant signal here can be decomposed into 

its direct components, early reverberant components, and late reverberant components. 

For the sake of simplicity, decomposition provided here will be for monaural case only, 

as an extension for each of the binaural channels can be performed in the same manner. 

Note that this method can be used for two channel case only. The input signal x{n) 

can be decomposed as [78]

Tdfs-l TiJs-l Trfs
~ l)h{l) -F ^  s{n — l)h{l) -t- ^  s(n — l)h{l) (5.23)

1 = 0  l=Tdfs l—Tiefs
'---------- V---------- '  V---- -'  V---------- '

d̂irectiri) X̂ arlyip) l̂ateip)

where T^ denotes the time span of the direct sound (including sound propagation). Note 

that in Section 5.3, the early speech component Xearly{n) was the target signal, now 

the direct speech component Xdirect{n) is the target signal. As a further remark, the 

early and late reverberant components received by the microphones can be represented 

by two additive, uncorrelated noise sources, cf. [78,179], hence the terms noise and 

reverberant components are used interchangeably in the following discussion. Also 

the first stage of dereverberation method proposed in this chapter does not affect the 

coherence and therefore the outputs of the first stage can be used in this second step.
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Having described the basic idea of the coherence based dereverberation method, a dual

channel Wiener filter is derived now which takes into account dual-channel coherence. 

A common framework for speech enhancement is based on the minimum mean square 

error criterion, cf. [165]. As a result the optimal weighting gains are provided by the 

Wiener solution [78]

G,{m,k)  =  r , , ( r n ^ k t f r l { r n , k )  

where Tss{m, k)  and Tnn{m, k)  are the auto-power spectral density of the original (clean) 

signal and the additive noise component respectively. As discussed previously, the term 

Ynn{m, k)  is referred to the auto-power spectral density of the reverberant components.

For computing the optimal postfilter coefficients in multichannel system, several ap

proaches have been presented in the past. They all have in common that the estimation

procedure is optimized for a specific sound field model. A very well known method de

veloped by Zelinski in [190] assumes a perfectly incoherent sound field and therefore, 

uncorrelated noise at different sensors. Since this assumption does not hold in real 

sound fields, an improved approach was developed by McGowan in [106], in which he 

proposed to use a model of the coherence for diffuse sound field.

First, a brief derivation of this algorithm will be given and second, the estimation of 

the required power spectra is discussed. Under the assumption of the same noise power 

spectrum across sensors, the power spectra can be described as

% s y ( m ,  k) = Tss{m, k)  - f  Tnn{m, k)  ( 5 .25)

Tsisi ( m ,  k) = Tss{m, k) +  T „ n ( m ,  k)  ( 5 .26)

'^sisrir^, k) = Tss{m, k)  -f- cohs^s'r k)  ( 5.27)

Note that Equations (5.25) and (5.26) under the assumption of the same noise power 

spectrum across sensors are used to derive Equation (5.29) of the spectral weights of 

the Wiener filter. An estimate of the original (clean) signal auto-power spectral density 

can be obtained as [78,106]

R e  I  fs^s\(m, k ) ] - ^ R e ( coks^s,( / ) |  (m, k) + 2%;^;(m, /c))
Tss im,k)  = - - - - - ^ ^ ^ - - - - - - - - - - - - - - - - - - - - - - - - - - - - A  (5.28)

1 -R e i^cohs^s , . { f ) j
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where the tilde-operator indicates an estimate as shown later. The function {•} 

returns the real part of its argument. Since the estimated auto-power spectral density 

of the signal may not be negative, a maximum threshold (cohmax) for the coherence 

function has to be applied to ensure that 1 — Re j  >  0 holds for the de

nominator. The resulting spectral weights of the Wiener filter can now be computed 

by
Gc(m,fc)= ;   (5 29)

2 - ( m ,  A;) - h  ( m ,  A;) j

The spectral weights are further confined by a lower threshold for robustness

against overestimation errors (i.e., biases in measurements) and to control the amount 

by which reverberation is attenuated. The spectral weights are then applied to each of 

the two channels (i.e., left and right) by

Si{m, k) = Si{m, k) • Gc(m, k) (5.30a)

Sr{m, k) =  Sr{m, k) • Gc(m, k) (5.30b)

After transforming Si(m,k)  and Sr(m,k) back to the time domain using the inverse 

STFT, the dereverberated signals si(n) and Sr{n) can be obtained.

The calculation of the weighting gains Gdjn, k) comprises an estimation of the auto

power spectral densities, i.e., Tsisi{m,k), T§^§^{m,k) and cross-power spectral density 

Tsisri'fn^k) of the two input channels (i.e., left and right). A recursive approach has 

been used here for this purpose given as [78]

^ , 5 ! | 5 r 5 r ( ^  -  1, A:) -| - (1 -  d g )  | ("%, A:) 1̂  ( 5.31)

fsiSr{'m,k) = a 2 f §^§^{m- l , k)  + (1 -  a 2 )Si{m,k) • S*(m,k)  (5.32)

where « 2  € [0,1] is a smoothing factor, 5^p(m, k) are the left/right microphone signals

obtained in (5.21), and S*(m, k) is the complex conjugate of Sr(m, k).

The essential part of this work is to choose a suitable model for the sound field coherence 

in (5.28). The coherence model selected here is baaed on the binaural sound field and 

can be expressed as [78]

c i h f y f  ( /)  =  . a .  j  (5.33)
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Table 5.2: Coefficients and order of the binaural coherence model

9 Ojq Cq

1 1 18.97 291.1

2 14.5 • 10-3 875.2 105.7

3 2.38 • 10-3 1371 151.5

ttg, bq, and Cq are the coefficients of the model, while q shows the order of the model. 

Note that this model is based on the sum of Gaussians and provide an approximation 

of the sound field coherence. The coefficients Ug, bq, Cq for natural ear spacing of 0.17 

m and a mixture of Q =  3 Gaussians are calculated using the MATLAB Curve Fitting 

Toolbox. The values used here for Uq, bq, Cq, for Q =  3 are given in Table 5.2 (Further 

details can be found in [78]). The dereverberation algorithm used for reducing early 

reverberation is summarized in Table 5.3.

Table 5.3: The dereverberation method for early reverberation

Task: Use Wiener filtering approach to suppress the early reverberation.

I n p u t :  S i { m , k )  a n d  S r { m , k ) .

O utput: S i { m , k )  and S r ( m , k ) .

In itialization: In (5.31) and (5.32), 0 2  — 0.8 is used.

Case: The goal is to estimate the spectral weights of the Wiener filter. The steps are:

1) Use (5.31) and (5.32) to estimate (m, k), fg^g^(m, A), and fgjg^(m, fc).

2) Use (5.33) to obtain the sound field coherence, i.e., coh^^s'ri f ) -

3) Use (5.28) to obtain T^s(m, fc).

4) Use (5.29) to estimate the spectral weights of the Wiener filter, i.e., G c { m ,  fc).

O utput: Compute S i { m , k )  and S r { m , k )  according to (5.30).

5.5 Experimental Results and Discussion

In this section, the performance of the proposed method is evaluated using the simulated 

RIRs from the image model [4] and the real RIRs from the acoustic impulse response 

(AIR) database [79]. Ten different anechoic speech signals from the TIMIT database, 

uttered by 5 males and 5 females all sampled at 16 KHz, are convolved with the RIRs to
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generate the reverberant speech files. The size of the room used in the case of simulated 

RIRs is 10 X 10 X 10 (m3). The Hanning window of 256 samples is used with an overlap 

factor set to 50%. The STFT length is 256. The rest of the parameters are set as: r=  

0.1, C= 2.5, Nie=13, R=128, 25, 2.22x10-^^ ctg =  0.8, cohmax =  0.99,

Gmin =  0.3 . Performance indices used in the evaluations are the segmental signal 

to reverberation ratio (SegSRR) [88], and the signal to distortion ratio (SDR) [103]. 

SegSRR is defined as,
Y ^ m R + N - l  2 /  \

SegSR R(m ) =  Wlog^o (5-34)
X n = m R  ~  S [ n ) )

where Sd{n) = s(n) * hd{n) represents the direct signal (delayed version of the clean 

signal), hd(n) is obtained from the known impulse response and s(n) is the enhanced 

speech signal. N  and R  are the number of samples per frame and frame rate in samples 

respectively. The mean SegSRR can be obtained by averaging (5.34) over the total 

frames. The SDR can be defined as [103],

where s(n) and s(n) are the original signal and the enhanced signal respectively, and 

L  is the length of the signal. Note that, SegSRR  and S D R  are calculated in this work 

for si{n) and Sr{n) separately and then averaged.

For performance comparison the method in [78] (called for short Jeub et al. method 

hereafter) is used as the baseline which represents the state-of-the-art and uses the 

frequency-independent model for decay rate estimation.

First, a dereverberation example is presented here for the real data recorded in a booth 

and lecture room [79], where the Tqq is approximately 400 ms and 900 ms respectively, 

and the source-microphone distance is 1 m and 2.25 m respectively. The spectrograms of 

the signals for the booth and lecture room are shown in Figure 5.1 and 5.2 respectively. 

For comparison 3 different regions are highlighted which are marked as Ai, and Ci, 

where i =  1 is for the clean signal, i = 2 for the dereverberated signal by Jeub et al. 

method and i = 3 for the dereverberated signal from the proposed method. From the 

highlighted regions it can be observed that the signal obtained by the proposed method 

is closer to the clean one as compared to the Jeub et al. method in both the cases.
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Figure 5.1: Comparison of the spectrograms of the clean signal (top left) with the 

enhanced signals obtained by the proposed method (bottom right) and the Jeub et al. 

method (bottom left) for the real data recorded in a booth. The top right plot shows 

the reverberant signal. The RIRs used to generate the reverberant signal were recorded 

from the booth room with source-microphone distance equal to 1 m.
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Figure 5.2: Comparison of the spectrograms of the clean signal (top left) with the 

enhanced signals obtained by the proposed method (bottom right) and the Jeub et al. 

method (bottom left) for the real data recorded in a lecture room. The top right plot 

shows the reverberant signal. The RIRs used to generate the reverberant signal were 

recorded from the lecture room with source-microphone distance equal to 2.25 m.
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In a further experiment, the performance of the proposed method is evaluated in com

parison to the Jeub et al. method using SDR and mean SegSRR. First the simulated 

RIRs are used to generate the reverberant signals from the anechoic speech signals 

at three different reverberation times, i.e., Tqq = {300, 500, 600} ms, and two differ

ent source-microphone distances, i.e., 0.5 and 2.5 m respectively. For each Tqq and 

source-microphone distance, 5 different source-microphone positions and the 10 ane

choic signals from the TIMIT database, resulting in 100 different reverberant signals 

for both left and right channel, were used for testing the algorithms. In total, 300 

independent tests were run for the simulated data generating 600 different reverberant 

signals for both left and right channel. Figure 5.3 shows for each Tqq and source- 

microphone distance the results (mean values ±  standard deviations) averaged over 

the 100 tests. The results indicate that the proposed method gives consistently higher 

SDRs and SegSRRs than Jeub et al. method for various source-microphone distances 

and reverberation times.

In another set of experiments, the real binaural RIRs from the AIR database [79] 

are used which contain five different types of RIRs, recorded in five different room 

environments, namely booth, office, meeting, lecture, and stairway. For each room 

environment, a pair of source-microphone distances {Di, D2 } m, {0.5, 1.5}, {1, 3}, 

{1.45, 2.8}, {2.25, 7.1}, and {1, 3} are selected respectively. The 10 anechoic signals 

from the TIMIT database are then convolved with each of these RIRs, resulting in 

200 reverberant signals in total for both left and right channels. For each room type 

and source-microphone distance, the average results of SDR and SegSRR over the 10 

different signals, are given in Figure 5.4. The proposed method performs significantly 

better than Jeub et al. method for shorter source-microphone distances. For example, 

for the booth and D\ = 0.5 m, both SDR and SegSRR obtained by the proposed 

method are about 8 dB higher than those by Jeub et al. method. Such an improvement, 

observed for nearly all the testing cases, decreases when the source-microphone distance 

increases. Averaged over all the 200 tests, the SDR and SegSRR of the proposed 

method are respectively 1.82 dB and 1.90 dB higher than those of the Jeub et al. 

method. These results demonstrate the advantage of the frequency dependent model 

in particular for shorter source-microphone distances. Note that the output SDR and
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I

Reverberation time (ms)

Figure 5.3: SDR and SegSRR of the proposed method (green bars) and Jeub et al. 

method (yellow bars) for the simulated data. The labels on the horizontal axis represent 

different reverberation times, namely, 1 - 300 ms, 2 - 500 ms, 3 - 600 ms. For each of the 

reverberation times, two different source-microphone distances were tested, respectively 

D\ — {0.5} rn and D 2 — {2.5} m. The standard deviations are also plotted as short 

lines on top of the bars.
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Figure 5.4: SDR and SegSRR for the AIR database of the proposed method (green 

bars) and Jeub et al. method (yellow bars). The labels on the horizontal axis repre

sent different room types, namely, 1 - booth, 2 - office, 3 - meeting, 4 - lecture, 5 - 

stairway. For each of the five rooms, two different source-microphone distances were 

tested, respectively Dj = {0.5, 1, 1.45, 2.25, 1} m and D2 = (1.5, 3, 2.8, 7.1, 3} m. 

The standard deviations are also plotted as short lines on top of the bars.
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SegSRR are reported here in the results. It has been observed in the experiments that 

ASDR and ASegSRR for the proposed method is higher when direct to reverberation 

ratio is negative (i.e., for higher source-microphone distances) in comparison to when 

direct to reverberation ratio is positive (i.e., for shorter source-microphone distances). 

Also the proposed method is giving improvement over the Jeub et al. method in terms 

of ASDR and ASegSRR for both positive and negative direct to reverberation ratio.

5.6 Summary

In this chapter a dereverberation algorithm based on a frequency dependent statistical 

model of the reverberation time has been proposed. The algorithm is composed of 

the estimation of the decay rate of the late reverberations based on this model, the 

estimation of the mask containing spectral subtraction gains, the smoothing of the 

spectral mask by a frequency dependent filter, followed by Wiener filtering for reducing 

early reflections. It has been shown that the proposed algorithm offers considerably 

higher dereverberation performance as compared with a related recent approach using 

the frequency independent model. However, the frequency dependent reverberation 

time and decay rate required in the proposed model are estimated from the RIRs, 

which can be limited in practical applications, where RIRs may not be available. To 

this end, the next chapter further addresses this problem and proposes a method that 

can directly estimate them from reverberant speech signals.



Chapter 6

Blind Estim ation of 

Reverberation Tim e For Blind  

Dereverberation and Separation  

of Speech M ixtures

In previous chapters source separation and dereverberation issues have been analysed 

separately. This chapter proposes a method for performing blind dereverberation (BD) 

and blind source separation together for the speech mixtures. It is common that the 

performance of the speech separation algorithms deteriorates with the increase of room 

reverberations. Therefore in this chapter the dereverberation algorithm developed in 

Chapter 5 is combined with the separation method presented in Chapter 3 to mitigate 

the effects of room reverberations on the mixtures and hence to improve the separation 

performance. The dereverberation algorithm presented in Chapter 5 assumes that 

the RIRs are known as a pnori, which however are not directly accessible from the 

speech mixtures in practice. To address this problem, a method consisting of a step 

for blind estimation of reverberation time (RT) is proposed to estimate the decay rate 

(i.e., a{k) in Equation (5.9)) of reverberation directly from the reverberant speech 

signal (i.e., mixtures). Based on the analysis of an existing RT estimation method.

103
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which models the reverberation decay as a Gaussian random process modulated by 

a deterministic envelope, a Laplacian distribution based decay model is proposed in 

which an efficient procedure for locating free decay from reverberant speech is also 

incorporated. Hence the developed algorithm works in a blind manner, i.e., directly 

dealing with the reverberant speech signals without the information from the RIRs. 

Evaluation results in terms of SDR and SegSRR reported in this chapter reveal that 

using this method the performance of the separation algorithm developed in Chapter 

3 can be further enhanced.

6.1 Introduction

The speech signals captured by the microphone in a closed environment are often re

verberated and also contaminated by the intereferences from the nearby sound sources. 

The separation of the target speech from the microphone signal is a challenging task 

because of the interfering speech signals, and the presence of reverberation makes it 

more challenging. Therefore, it is very important to devise a method which can sepa

rate the target speech from the interfering ones and can also reduce the adverse acoustic 

disturbances.

In Chapter 3, a source separation algorithm has been developed, however its perfor

mance deteriorates in the presence of room reverberations. Therefore, in Chapter 5 

of this thesis a dereverberation algorithm has been developed to suppress the room 

reverberation, and here this dereverberation algorithm is combined with the separation 

algorithm developed in Chapter 3 to enhance the separation performance. However 

the dereverberation algorithm developed in Chapter 5 assumes the RIRs to be known 

a pnon, which in reality are not available. To address this problem, a method is pro

posed in this chapter for the blind estimation of RT and then incorporated with the 

algorithm developed in Chapter 5. The proposed blind RT estimation method uses 

the reverberant speech (i.e., mixture) directly to estimate the decay rate instead of the 

RIRs as done in Chapter 5. In the proposed method, a Laplacian distribution based 

decay model for room reverberation is used along with an efficient procedure for locat

ing the free decay in reverberant speech. Finally, the proposed RT estimation method
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is incorporated with the algorithms developed in Chapters 3 and 5 to obtain a joint 

blind dereverberation and separation algorithm for the speech mixtures.

The developed joint algorithm which is a two channel method has been employed in 

three different ways. Firstly, the available mixture signals are used to estimate blindly 

the RT based on a maximum-likelihood (ML) method and statistical modelling of the 

sound decay rate of the reverberant speech, followed by the dereverberation of the 

mixture signals using the method based on the frequency depenedent statistical model 

as described in Chapter 5. Then the separation algorithm proposed in Chapter 3 is 

applied to these resultant mixtures so that the source speech signals can be obtained. 

Secondly, the separation algorithm is applied first to the mixtures to segregate the 

speech signals, followed by the blind estimation of RT from the separated speech sig

nal. Then dereverberation is employed to the segregated speech signals. In the third 

scheme, the multistage separation algorithm proposed in Chapter 3 is split such that 

the convolutive ICA is first applied to the mixtures to obtain the estimated source 

signals. Then, the signal obtained from the convolutive ICA is used to estimate the 

RT followed by the blind dereverberation of the signals obtained from convolutive ICA. 

Then the T-F representation of dereverberated signals are used to estimate the IBM 

followed by cepstral smoothing to enhance the separated speech signals.

The rest of the chapter is organized as follows. Section 6.2 presents the proposed 

and related method for blind estimation of RT from the reverberant speech signal. In 

Section 6.3, the proposed blind dereverberation method will be described and evaluated. 

Section 6.4 evaluates the performance of the proposed joint blind dereverberation and 

separation algorithm and reports the experimental results followed by a conclusion in 

Section 6.5.

6.2 Blind Reverberation Tim e Estim ation

The concept of measuring RT was coined for the first time by Sabine in 1922 [144]. 

Robust estimation of RT directly from the reverberant signal is a challenging task. In 

this work a method is proposed to estimate RT directly from the reverberant signal, 

which is based on the ML estimation of the unknown sound decay rate modelled by
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a Laplace distribution. Before describing the proposed method, a brief overview is 

provided for the RT and its measurements.

6 .2 .1  T h eo ry  an d  b ack grou n d

Estimation of RT has been investigated for a long time. The RT of an enclosed en

vironment is defined as the time for which a sound prevails after it has been turned 

off, due to its multiple reflections from the different surfaces within the enclosed envi

ronment. The RT is usually referred to as the time for the sound level to drop to 60 

dB below its original value [137], [138], [144]. Reverberation leads to speech distortion 

both in terms of its envelop and fine structure, therefore RT is an important parameter 

that measures the listening quality of the enclosed environment, i.e., room. The effect 

of reverberation is most perceptible when speech recorded by microphones is played 

back via headphones. The distortions previously unseen in the sound pattern are now 

clearly noticed even by normal listeners, pointing the extraordinary echo suppression 

and dereverberation capabilities of the normal auditory system when the ears receive 

sounds directly [66]. For hearing impaired listeners, the reception of a reverberant sig

nal via the microphone of a hearing aid intensify the problem of listening in challenging 

environments.

Although dereverberation is an active area of investigation, state-of-the-art hearing aids 

or other audio processing instruments, apply signal processing strategies complying to 

specific listening environments. These instruments are anticipated to have the ability 

to assess the characteristics of the environment, and to trigger the most suitable signal 

processing strategy. Hence a method that can characterize the RT of a room from 

passively received microphone signals represents an important area of research.

In the early days of 20th century, Sabine [144] implemented an empirical formula for 

the calculation of RT based entirely on the geometry of the environment (i.e., volume 

and surface area) and the absorption attributes of its surfaces. Later on, Sabine’s RT 

equation has been greatly modified and its accuracy improved (refer to [89] for the 

details of the modifications), and thats why currently it has been used in numerous 

commercial software packages for the acoustic design of interiors, anechoic chamber
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measurements, design of concert halls, classrooms, and other acoustic environments 

where the quality of the received sound is of high importance and magnitude of rever

berations must be controlled. However, such methods require that the room geometry 

and absorptive characteristics of the room be determined first. When these can not be 

determined easily, it is important then to find some method which is based on the test 

sound signal radiated in the enclosed environment.

Methods using the test sound signal for measuring RT are based on sound decay curves. 

In the interrupted noise method [75], a burst of noise having broad or narrow band is 

radiated into the test room. In the time instant where the sound field attains the steady 

state, the noise source is switched off and the decay curve is obtained. The slope of 

the decay curve is used to estimate the RT. As the noise source signal has fluctuations, 

the decay curve obtained will differ from trial to trial. Hence to estimate the reliable 

RT averaging must be applied to the large number of obtained decay curves. In order 

to overcome this issue, Schroeder developed an integrated impulse response method in 

1965 [153] in which the excitation signal is a pulse either broad band or narrow band. 

The enclosure (room) output for a pulse is simply the impulse response of the room in 

the specified frequency band. Schroeder proved that the impulse response of the room 

is related via a certain integral to the overall average of the decay curve obtained using 

the interrupted noise method, and hence the repeated trials were inessential. Both 

the methods require controlling environment for the experiment, specifically a suitable 

excitation signal must be available a priori.

While Schroeder’s method has been used immensely over the past few decades for the 

estimation of RT, and has been improved over the years (see for example, [31,183]), 

there is a need of some blind method that can estimate room RT from the available 

microphone signals, i.e., without any information about the room geometry and ab

sorption attributes, or when the test sound signal is not available. Such blind method 

which works with speech sound directly will be very useful for incorporating in hear

ing aids or hands free telephony devices. Some partial blind methods have also been 

developed in which the room characteristics are learned using neural network ap

proaches [36,113,162], or some sort of segmentation procedure is used for detecting 

gaps in the sounds so that the sound decay curve can be tracked [94]. Several meth
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ods have been developed recently that can estimate RT blindly, i.e., directly from the 

recorded reverberant signals [99,100,137,138]. These methods are based on the statisti

cal modelling of the sound decay such that the ML estimator can be used to determine 

the RT.

Ratnam et al. [138] developed an algorithm for the blind estimation of RT based en

tirely on the available recorded sound. The estimator is based on a noise decay curve 

model explaining the reverberation characteristics of the enclosure. Sounds in the test 

environment are processed such that a running estimate of RT is achieved by the sys

tem employing the ML parameter estimation procedure. A decision making step is 

then applied to collect the estimate of RT over a period of time and attains the most 

likely RT using an order statistics filter. However detecting the correct sound decay 

from a reverberant speech signal is a challenging problem and a method in [138] used 

an iterative approach for that purpose, which makes the algorithm computationally 

expensive. Later on Ratnam et al. presented another algorithm in [137] based on their 

original model in [138] in order to improve the computational efficiency of the original 

method. Very recently Lollmann et al. [100] presented an algorithm for the blind esti

mation of RT from reverberant speech signals. The method is using a statistical model 

for the sound decay based on the sound decay model developed in [138], followed by 

the ML estimation approach to estimate the decay rate presented in [137]. However, 

the method of Lollmann et al. is employing a pre-selection mechanism to detect the 

possible sound decay which makes it robust and computationally efficient. The method 

presented in this chapter for the blind estimation of RT is based on Lollmann et al. 

method. Therefore, the next subsections will describe in detail the sound decay model 

and ML estimation approach presented in Ratnam et al. method, the pre-selection 

mechanism to detect the possible sound decay presented in Lollmann et al. method, 

and our proposed method based on using Laplace distribution for modelling the decay 

rate.
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6 .2 .2  S o u n d  d eca y  m o d e l an d  M L  e s t im a tio n

The sound decay model used by the Lollmann et al. method [100] is based on the 

original model presented in [138]. The model is based on the assumption that the 

reverberation tail of a decaying sound denoted here as y is the product of a fine structure 

denoted as x  that is a random process, and an envelop a that is deterministic. Suppose 

x{n) is a random sequence for n > 0, of independent and identically distributed (i.i.d.) 

random variables having normal distribution with zero mean and variance <j, A7(0, cr). 

Similarly for each n a deterministic sequence is defined as a{n) > 0 .  As a result the 

model is obtained for the room decay in which the observations y are represented as 

y{n) = a{n)x{n). As a{n) is a time varying term, therefore y{n) are independent but 

not identically distributed, and hence their probability density function is A7(0, cra(n)).

In order to estimate the decay rate, consider a finite sequence of observations, n =  

0,..., N  — 1. For notational convenience, V-dimensional vectors of y and a are denoted 

as y and a respectively. Hence the likelihood function of y  (the joint probability 

density), parameterized by a and a, is [138]

where a and a are the (V  + 1) unknown parameters that are required to be estimated 

from the observation y . As the main goal here is to model the sound decay in a room and 

the likelihood function obtained in Equation (6.1) can be further simplified. Suppose 

a single decay rate p2 define the damping of the sound envelop during the regions of 

free decay (i.e., the period following the sharp offset of a speech sound) instead of those 

regions where sound is actually ongoing, onset, or gradually declining speech offsets. 

As a result the sequence a(n) is determined by

a{n) = exp{—nlp 2 ) (6.2)

Hence, the V-dimensional parameter a{n) can be replaced by a single scalar parameter 

a which is denoted by p2 as

a = e x p { - l lp 2 ) (6.3)
;

As a result Equation (6.2) can be written as

a(n) =  dP' (6.4)
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Now Equation (6.1), after incorporating Equation (6.4) becomes

_ - 2 n.
(6.5)

ML approach is then used to estimate the parameters a and a [131,138]. Firstly, the 

logarithm of Equation (6.5) is taken to obtain the log-likelihood function

lnL{y; a, a) =  ^ h n(a) -  ^ I u{2'kg^) -  ^  ^  a~‘̂ ^y{n f  (6.6)
n —O

To find the maximum of ln{L), differentiate the log-likelihood function in Equation

(6.6) with respect to a to obtain the score function SFa [131]

^  E  n a - , ( „ ) ^  (6.7)
n —O

Let dlnL{y] a, a)/da = 0, then the log-likelihood function achieves the extremum, given 

as [138]

+ & Ë  n a -^ " y (n f  = 0 (6.8)
n = 0

The zero of the score function achieves the best estimate in the sense that jE'[<S'Fa] =  

0, which is denoted by It can be demonstrated that the second derivative

dHnL{y^]a,a)/doP 0, i.e., the estimate maximizes the log-likelihood

function.

Similarly, the variance cr̂  can be estimated by differentiating the log-likelihood function 

in Equation (6.6) with respect to cr,

SFa{cT]y, a) = ^  a~‘̂ ^y{n f  (6.9)
n = 0

Now again the log-likelihood function achieves the extremum when dlnL{y\a,<j)/da =  

0, which results in
.. iV - l

cr^ =  —  ^  a~‘̂ ^y{n f  ( 6 .1 0 )

n = 0

As done above, it can be also shown here that E[SFo-] =  0, which leads to the optimal
- (ML)

estimate of the variance, denoted by . It can be shown that the second derivative

d‘̂ lnL{y',a,a)/da‘̂ 0, i.e., the estimate  ̂ maximizes the log-likelihood
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function. Note that (6.8) is an implicit expression for a and hence a can not be solved 

directly, whereas (6.10) provides the ML estimate of a directly if a is known. Now if the 

solution for cf̂  in Equation (6.10) is substituted into Equation (6.6), the log-likelihood 

function can be rewritten as [100,138]

lnL{a;y) = - ^ ( { N - l ) l n { a )  - \ - l n ( ^  X  +  A  (6.11)
^ ^ n = 0  /  '

Therefore, Equation (6.11) is used to find the estimate of a, i.e., The approach

proposed in [137] is implemented by quantizing the range of a. As in Equation (6.3) 

defined already, p2 is a time constant to be estimated. It is noted that a e [0,1) maps

one-to-one onto p2 E [0, oo). Now the given range of a is quantized such that the bins

of the histogram of a are formed. Then the likelihood values are calculated, and the 

highest likelihood is assigned to that bin in the histogram.

Let the range of a G [0,1) be quantized into Q values, so that aj is obtained with 

j  = 1,...,Q. Then, for each aj, the log-likelihood function given by Equation (6.11) 

can be written as

lnL{aj\y) = —̂ ̂  (A — 1) ln{aj) +  jÿ X ̂ 3 (6.12)
^ y n = 0  7  /

The best estimate of a, i.e., is selected as

^(ML) _  max{ZnL(aj;y)} (6.13)

Then Equation (6.3) is used to obtain the estimate of the decay rate p2 ^ ^ ,  followed by 

the calculation of the RT value, i.e., Tq^^^ using the following formula [138]

Teo =  6.908 x p2 (6.14)

6.2.3 E ffective  R T  e s tim a tio n

As the original method presented in [138] used an iterative approach to estimate the 

sound decay rate which makes the algorithm computationally very demanding. The 

method presented in [137] improves the computational efficiency of the original method, 

however it considers the whole recorded reverberant speech signal during the process
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of ML estimation of the sound decay rate instead of using only the free sound decay 

regions. Hence there is a need for some method which can capture the free sound 

decay regions first in the reverberant speech signal so that only the detected sound 

decay regions can be used for ML estimation of decay rate. Therefore, Lollmann et 

al. devised an efficient estimation procedure which can capture correctly the regions of 

free decay in the reverberant speech first, and then used such detected regions only for 

the ML estimation of decay rate, which improves the computational efficiency of the 

algorithm as well as reduces the effects of the outliers on the estimated RT value. The 

sequence of the reverberant signal defined in Chapter 5 (Equation(5.1)) is processed 

within the frames of B  samples shifted by instants of A B  samples [100], given as

Y{X,b) = y { X A B b )  with b = 0,1,..., B  — 1 (6.15)

where A € N. In the first step, pre-selection is carried out to detect the possible sound 

decays. In order to achieve this, the current frame Y  (A, b) is divided into L = B / P  e N  

sub frames

^sub) — ^{^PsubP 4" kgub') (6.16)

where ksub = 0,1,..., P  — 1 and sub-frame index I sub =  0 ,1,...,L — 1. Now it is examined 

whether the maximum energy and minimum energy values of a sub-frame deviates from 

the succeeding sub-frames according to [100]

p - i  p - i

^  ̂  ^  {^Psubi ksub) ^  Rsub ‘ ^  ^  i^Psub P l')ksub) (6.17a)
ŝub—̂ ŝub—0

max{R(A, Isub, ksub)} > Rsuh ‘ max{R(A, Isub +  1, ksub)} (6.17b)
ŝub . ŝub

min{R(A, Isub, ksub)} < Rsuh ' min{R(A, Isub +  1, ksub)} (6.17c)
ŝub ŝub

where 0 < < 1 is a weighting factor. If one of these conditions is violated, it is

examined whether the counter Isub has reached a minimum value 1 < Isubmin < L —2. If

this is not the case, the comparison is terminated and the next signal frame Y{X-\-l,b) 

is processed. Otherwise, the sequence of sub-frames for which Equation (6.17) applies 

is detected as a possible sound decay. For this detected frame, the RT, i.e., Tq̂ ^^  is

calculated using Equations (6.12), (6.13), (6.3), and (6.14) for a finite set of RT values

(decay rates).
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A new ML estimate is used now in which a histogram with a bin size 10 is generated and 

contains the estimated RT values obtained above (i.e., Tq̂ ^^), and updated each time 

when another RT value (i.e., Tq̂ ^^)  is obtained. The current RT estimate denoted here 

as Tgo is associated with the maximum of this histogram (The maximum instead of 

the first peak can be taken as this histogram contains no significant number of outliers 

due to the pre-selection). The variance for the estimated RT is reduced by a recursive 

smoothing such that the final estimate is given by

T6o(A) =  Q • fiio(A -  1) +  (1 -  a) • f g \ x )  (6.18)

where 0.9 < a < 1. The final RT value is estimated by

Tqo = mean{TQo{X)) (6.19)

6 .2 .4  P r o p o se d  m e th o d

In this section a new method is proposed for RT estimation based on the Laplacian 

distribution. The method is motivated from the findings in [130], where it has been 

shown that the amplitude distribution of the reverberant speech is better modeled by 

Laplace distribution. Therefore, the reverberant tail of a decaying sound is modeled 

using a sequence of random variables with Laplace distribution C{6, q), where 6 is 

the mean considered as zero here and q is the variance of the Laplace distribution. 

Consider again the random sequence as x{n) for n > 0 of i.i.d. random variables having 

laplace distribution C{0,g). Based on the model described above in Section 6.2.2 for 

the observations y{n), a new model is proposed in this work for the observations y{n) 

whose probability density function is £(0, ga(n)).

In order to estimate the decay rate, consider again a finite sequence of observations, 

n = 0,..., V  — 1. Hence the likelihood function of V-dimensional vector of y, i.e., y 

(the joint probability density), parameterized by V-dimensional vector of a, i.e., a and 

g, is [87]

N  /  v ^ V - i
(6 .20)
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where a and g are the (N + 1} unknown parameters that are required to be estimated 

from the observation y. Based on Equation (6.4) for the sequence a(n), Equation (6.20) 

can be written as

=  ( 2 5 5 ^ )  ' I  (G.2 1 )

ML approach is then used to estimate the parameters a and g. Firstly, the logarithm

of Equation (6.21) is taken to obtain the log-likelihood function

N —1  ̂ N —1
lnL{y,a, g) = —Nln{2) — ^  ln{a^ • g )  ^  a“ ” | y{n) | (6.22)

n = 0  ^ n = 0

To get the maximum of ln{L), differentiate the log-likelihood function in Equation 

(6.22) with respect to a to achieve the score function SFa [131]

SF„(a;y, g) =  =  - i  E  "  “  E  "  I y(") I (6 23)
n —O n —O

Let dlnL{y', a, g)/ da = 0, then the log-likelihood function attains the extremum, as 

given
. N - l  N - l

—  X  ^ ' X  ^  12/(^) I = 0 (6.24)
n = 0  n= 0

Denote the zero of the score function SFa, and satisfying Equation (6.24), by 

It can be verified that the second derivative d‘̂ lnL{y,a, g)/da^ |q^ô(ml)< 0, i.e., the 

estimate maximizes the log-likelihood function.

Similarly differentiate the log-likelihood function in Equation (6.22) with respect to g, 

SFg{g-,y,a) = — X  I I (6 25)
^ ^ ^ n = 0

When dlnL{y;a, g)/dg =  0, the log-likelihood function achieves the extremum, which 

results in
. N - l

e = ] ^ E ““" l y ( ” )l  (6.26)
n = 0

Using the score function SFq, the log-likelihood function can be maximized for g also 

in the same way as done above by taking the second derivative.

It can be observed that Equation (6.24) is an implicit expression and a can not be 

solved explicitly, while Equation (6.26) provides the explicit estimate of g if a is known.
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Table 6.1: The proposed blind RT estimation method

Task: Use Laplacian distribution based energy decay model for the estimation of RT.

Input: Reverberant speech, i.e., x ( n ) .

O utput: Estimated RT, i.e., Teo-
Initialization: 1) In (6.15), B  =  1631 and A B  =  67 are used.

2) In (6.16), P  =  233 is used.

3) In (6.18), a  =  0.995 is used.

4) In (6.27) and (6.28), j  =  1,..., Q  while Q =  10 is used.

Case: The goal is to estimate the RT from reverberant speech signal. The steps are:

1) Use (6.15)-(6.17) to detect the free decay regions indexed by frame number A.

2) For the detected regions, use (6.27), (6.28), (6.3), and (6.14) to obtain

3) Apply recursive smoothing via (6.18) to the estimated RT values, i.e., T q^ ^ \ X ) .

O utput: Compute Teo according to (6.19).

Based on the derivation pattern of Equation (6.12) from (6.11), a log-likelihood function 

used here in Equation (6.22) can be re-written as to select the best estimate of a, (i.e., 
^(M L )), given as

N - l  AT-1

InLÇüj] y) =  -N ln{2) -  ^  ln{dj • ^) -  i  ^  â . ” | y{n) | (6.27)
n = 0  ^  n = 0

Now can be selected as

a(^'^) =  max{ZnL(aj;y)} (6.28)

Now the estimate of the decay rate is obtained using Equation (6.3). Finally the 

RT value, i.e., Tq̂ ^^  is estimated using the formula in Equation (6.14). The effective 

RT estimation procedure described in Section 6.2.3 is applied then to obtain the final 

estimated single RT value for the reverberant speech signal. The proposed blind RT 

estimation algorithm using the Laplacian distribution based energy decay model is 

summarized in Table 6.1.

6.2.5 Simulation exam ple

The performance of the proposed method for blind estimation of RT shall be illustrated 

by some simulation examples. To this end, similar to the experiments performed in 

Chapter 5, 10 different anechoic speech signals randomly selected from the TIMIT
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database, uttered by 5 males and 5 females all sampled at 16 KHz, are convolved 

with the real RIRs from the AIR database [79] to generate the different reverberant 

speech files. The employed RIRs were recorded in four different room environments, 

namely booth, office, meeting, and lecture (Note that the stairway case is not considered 

from the AIR database in this example, as the mean RT values for the stairway are 

not reported in the original paper that describes the AIR database [79]). For each 

room environment, a pair of source-microphone distances {Di,D 2 } m respectively, are 

selected, i.e., {0.5, 1.5}, {1, 3}, {1.45, 2.8}, and {2.25, 7.1}. The rest of the parameters 

used are given as ; Q =  10, L =  7, Isubmin =  3, a  =  0.995, B = 1631 (corresponds 

approximately to a time span of 0.10 s), P  = 233, A B  = 67 (corresponds approximately 

to a frame shift of 0.0042 s), = 1.

For each room environment and each source-microphone distance, 10 different rever

berant speech signals have been generated and then tested for the RT estimation. For 

each room type and source-microphone distance, the average results of estimated RT 

over the 10 different signals, are given in Figures 6.1 and 6.2 respectively, where RT 

estimated directly from RIRs based on Schroeder’s method [153] and mean RT reported 

in [79] are also plotted for comparison purpose. For estimated RT based on Schroeder’s 

method, the recorded RIRs in four different rooms for distances Di and D 2  have been 

used to estimate the RT value. On the other hand, the actual RT values are obtained 

from the results reported in [79], which are calculated for each room by taking the aver

age of the RT values obtained over all measured positions of source-microphone in the 

room (further details can be found in [79]). The standard deviations are also plotted 

as short lines on top of the different color bars symbolizing the different methods.

Note that the results shown in Figure 6.1 are obtained for the shorter source-microphone 

distances from the above used pairs, i.e., while the results in Figure 6.2 are obtained 

for the longer source-microphone distances from the pairs, i.e., D 2 . It can be observed 

that the difference between the estimated RT obtained using the proposed method 

and the actual RT (shown by red bars) is small in different room environments. For 

example, for the office room at the RT value obtained by the proposed method is 

0.43 seconds and the actual RT value is 0.37 seconds, and similarly for the office room 

at D 2 , the RT value estimated by the proposed method is 0.46 seconds and the actual
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Figure 6.1: Performance measurement of different RT estimation methods in terms of 

accuracy obtained for different room environments from the AIR database. The mean 

RT is shown by red bars, the RT estimated from the RIRs by Schroeder’s method is 

shown by blue bars, RT estimated by the Lollmann et al. method is shown by yellow 

bars, and RT estimated by the proposed method is shown by green bars. The distances 

between source and microphone for all of the four rooms are D]={0.5, 1.0, 1.45, 2.25} 

m respectively. The standard deviations are also plotted as short lines on top of the 

yellow and green bars.
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M e e tin g
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Figure 6.2: Performance measurement of different RT estimation methods in terms of 

accuracy obtained for different room environments from the AIR database. The mean 

RT is shown by red bars, the RT estimated from the RIRs by Schroeder’s method is 

shown by blue bars, RT estimated by the Lollmann et al. method is shown by yellow 

bars, and RT estimated by the proposed method is shown by green bars. The distances 

between source and microphone for all of the four rooms are D2={1.5, 3.0, 2.8, 7.1} 

m respectively. The standard deviations are also plotted as short lines on top of the 

yellow and green bars.



6.3. Blind Dereverberation 119

RT value is 0.48 seconds. Therefore, in the next section the proposed RT estimation! 

method is used for blind dereverberation.

6.3 Blind Dereverberation

With the RT estimated by the methods described in Section 6.2, the dereverberation 

method which was already discussed in detail in Section 5.3 of Chapter 5, can be 

devised to work in a blind manner, i.e., without knowing the RIRs. Equation (5.8) in 

Chapter 5, which represents the model used to estimate the spectral variance of late 

reverberation from the RIRs, however, is devised here such that the spectral variance of 

late reverberation can be estimated from the available reverberant speech signal instead 

of the RIRs (which are not available in practice).

A dereverberation example is presented here for the real data from the AIR database 

[79]. This example will focus on the comparison between the dereverberation based 

on the frequency dependent statistical model with the knowledge of RIRs (the method 

developed in Chapter 5), the proposed blind dereverberation method based on the fre

quency dependent statistical model and the RT estimation using the Laplacian model, 

and the dereverberation achieved from the Jeub et al. method employing the frequency 

independent statistical model [78]. For comparison purpose, a revised version of both 

the proposed method and Jeub et al. method were also tested. Note that the revised 

version of the proposed method is a blind dereverberation method based on the fre

quency dependent statistical model and the RT estimation using the Gaussian model. 

Similarly the revised version of the Jeub et al. method is employing the reverberant 

speech for the estimation of RT instead of the RIRs used in the original version. The 

real RIRs used in this example are from the AIR database [79] which contains five 

different types of RIRs, recorded in five different room environments, namely booth, 

office, meeting, lecture, and stairway. Ten different anechoic speech signals from the 

TIMIT database, pronounced by 5 male and 5 female speakers with sampling frequency 

of 16 KHz, have been used here to generate the different reverberant speech signals. 

To establish the comparison between different dereverberation methods in this exam

ple, a pair of source-microphone distances {£>1 , 7)2 } m, {0.5, 1.5}, {1, 3}, {1.45, 2.8},
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{2.25, 7.1}, and {1, 3} are selected respectively for the five different room environ

ments. Performance indices used in the evaluation and comparison in this example are 

the segmental signal to reverberation ratio (SegSRR) [88], and the signal to distortion 

ratio (SDR) [103], as already defined in Chapter 5 (section 5.5). As 10 signals have been 

used in this example to generate different reverberant speech signals after convolving 

with the RIRs for five different room environments, and each environment is tested for 

a pair of source-microphone distances, in total 100 different reverberant speech signals 

have been tested. For each room type and source-microphone distance, the average 

results of SDR and SegSRR over the 10 different signals, are given in Figures 6.3 and

6.4 respectively.

It can be observed that for all the testing cases, dereverberation performance for the 

proposed blind dereverberation method (shown by the green bars) both in terms of 

SDR and SegSRR is better than the Jeub et al. method [78] (shown by the gray bars) 

especially for shorter source-microphone distances. Similarly, the proposed method is 

giving improvement for nearly all the testing cases in comparison to the Jeub et al. 

method [78], however the improvement decreases when the source-microphone distance 

increases. Also it can be seen that the dereverberation performance of the proposed 

blind dereverberation method is comparable to the dereverberation method using the 

RIRs. Hence it is feasible to use the proposed blind dereverberation method instead of 

the one employing the assumption of the RIR to be known a priori.

6.4 Joint Blind Dereverberation and Separation

This section presents results of joint blind dereverberation and separation algorithm for 

speech mixtures based on the algorithms developed in Chapter 3, Chapter 5, and the 

previous sections of this chapter. The proposed method is assessed in three different 

ways. In the first scheme, mixture signals are employed to estimate the RT blindly 

using the proposed blind RT estimation method followed by the blind dereverberation 

using frequency dependent statistical model employing the RT obtain from the previous 

step to estimate the spectral variance of room reverberation and then the spectral 

subtraction mask and the smoothed mask which is used to dereverberate the mixtures.
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Figure 6.3: Comparison of the proposed blind dereverberation method (green bars), 

revised version of the proposed blind dereverberation method (blue bars), dereverber

ation method using the RIRs developed in Chapter 5 (yellow bars), revised version of 

the Jeub et al method [78] (black bars), and Jeub et al. method [78] (gray bars) for 

the AIR database in terms of SDR. For each of the five rooms, two different source- 

microphone distances were tested, respectively Di = {0.5, 1, 1.45, 2.25, 1} m and D 2 

= {1.5, 3, 2.8, 7.1, 3} m. The standard deviations are also plotted as short lines on top 

of the bars.
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Figure 6.4; Comparison of the proposed blind dereverberation method (green bars), 

revised version of the proposed blind dereverberation method (blue bars), dereverber

ation method using the RIRs developed in Chapter 5 (yellow bars), revised version 

of the Jeub et al. method [78] (black bars), and Jeub et al. method [78] (gray bars) 

for the AIR database in terms of SegSRR. For each of the five rooms, two different 

source-microphone distances were tested, respectively D\ =  {0.5, 1, 1.45, 2.25, 1} m 

and £>2 = {1.5, 3, 2.8, 7.1, 3} m. The standard deviations are also plotted as short 

lines on top of the bars.
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Figure 6.5: Block diagram showing the first scheme for the proposed joint blind dere

verberation and separation algorithm. zi(n)  and Z2(n) are the available mixtures (mi

crophone signals).
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Figure 6.6: Block diagram showing the second scheme for the proposed joint blind 

dereverberation and separation algorithm. Zi(n) and Z2(n) are the available mixtures 

(microphone signals).

Next the separation algorithm developed in Chapter 3 (called as Multistage algorithm 

hereafter) is applied to the dereverberated mixtures in order to segregate the speech 

signals. A block diagram is given in Figure 6.5 explaining the structure of this scheme.

In the second arrangement, Multistage algorithm is applied first to the mixtures to 

obtain the separated speech signals. Then using the proposed blind RT estimation 

method, RT is estimated blindly from the separated speech followed by the frequency 

dependent statistical model employing the estimated RT from the previous step to 

estimate the spectral variance of room reverberations and then spectral subtraction 

mask and the smoothed mask which is used to dereverberate the separated signals. A 

block diagram is given in Figure 6.6 describing the second scheme.

In the third approach, a Multistage algorithm is split such that the constrained con- 

volutive ICA method is applied first to the mixtures to obtain the estimated source 

signals. Next the signal obtained from the convolutive ICA is used to estimate the RT 

by applying the proposed blind RT estimation method followed by the dereverberation 

of these signals using frequency dependent statistical model. Again the frequency de-
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Figure 6.7: Block diagram showing the third scheme for the proposed joint blind dere

verberation and separation algorithm. zi(n) and Z2 (n) are the available mixtures (mi

crophone signals).

pendent statistical model is employing the RT obtained in the previous step to estimate 

the spectral subtraction mask followed by smoothing to achieve dereverberation. Then 

the T-F representation of the signals obtained in the previous step is used to estimate 

the IBM followed by smoothing of the estimated IBM in the cepstral domain. A block 

diagram is given in Figure 6.7 which is used to demonstrate the third scheme.

The performance of the proposed joint blind dereverberation and separation method 

has been evaluated using simulated RIRs from the image model [4] and real room 

recordings that were obtained in [129]. A pool of 10 different speech signals from the 

TIMIT database, uttered by 5 male and 5 female speakers and all sampled at 16 KHz, 

has been used in the experiments to generate the reverberant mixtures. A system with 

two inputs and two outputs is considered here in this work. The size of the room used in 

the case of simulated RIRs is 6.5 x 7 x 8 (m^). The position matrices of two sources and 

two sensors (microphones) are set as, [1 1 3; 3 1 3], and [2 3 3; 3 3 3] respectively. 

Performance indices used in the evaluations are the segmental signal to reverberation 

ratio (SegSRR) [88], and the signal to distortion ratio (SDR) [103], as already defined 

in Chapter 5, in Equations (5.34) and (5.35) respectively. Notations A S e g S R R  and 

A S D R  are used in the evaluations, where A S e g S R R  =  m S e g S R R o  — m S e g S R R i  and 

A S D R  = m S D R o  — m S D R i .  S e g S R R i  and S D R i  can be obtained by replacing s(n) 

with an input mixture signal in (5.34) and (5.35) respectively. Similarly S e g S R R o
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and SDRo can be obtained by taking s{n) in (5.34) and (5.35) as the enhanced signal 

respectively. Note that m S e g S R R o ,  m S e g S R R i ,  m S D R o ,  and m S D R i  are the average 

results for fifty random tests. The performance of method proposed in this chapter is 

compared with that of the Multistage algorithm.

First the simulated room model [4] is used to generate the reverberant mixture signals 

from the pool of the clean speech signals described above, at different reverberation 

times, i.e., Teo =  {200, 250, 300, 350, 400, 450, 500} ms to evaluate and compare 

the performance of the proposed method at different RTs. For each Teo, 10 anechoic 

signals from the pool has been used to generate different reverberant mixtures, with 

each consisting of two speech sources randomly picked up from the pool. In total 

50 random tests have been carried out for each Too, and hence in total 350 different 

reverberant mixtures have been used here in evaluation. Table 6.2, 6.3, and 6.4 shows 

for each Too, the results averaged over the 50 random tests for the first, second, and 

third scheme of the proposed method respectively in comparison to the Multistage 

method.

In another set of experiments real room recordings have been used that were obtained 

in [129]. The real recordings were made in a reverberant room with Too =  400 ms. 

Two omnidirectional microphones vertically placed and closely spaced are used for 

the recordings. Different loudspeaker positions are used to measure the room impulse 

responses. The room dimensions are 5.2 x 7.9 x 3.5 (m^), and the distance between the 

microphones and the loudspeakers is 2 m. Further details about the recordings can be 

found in [129]. Clean speech signals from the pool of 10 speakers were convolved with 

the room impulses to generate the source signals. The average results of A S D R  and 

A S e g S R R  over the 50 different random tests are given in Table 6.5, 6.6, and 6.7 for 

the first, second and third scheme of the proposed method respectively.

Now if the results obtained for both simulated and real data are observed in a sequence 

of the different schemes, it can be found that the proposed method implemented in 

the first scheme consistently giving better results both in terms of SDR and SegSRR 

than the Multistage method. For the real recordings, the proposed method in scheme 

1 achieves approximately 1.5 dB gain for both SDR and SegSRR over the Multistage
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Table 6.2; A S D R  and A S e g S R R  For Simulated Data under Different Tqqs

Teo
(ms)

A S D R  (dB) A S e g S R R  (dB)

Proposed 

method 

(scheme 1 )

Multistage

method

Proposed 

method 

(scheme 1 )

Multistage

method

2 0 0 4.52 3.61 2.15 1.45

250 3.73 2.91 1 .8 8 1.14

300 3.22 2.45 1 .6 6 0.94

350 2 . 8 8 2.18 1.48 0.82

400 2 . 6 8 1.96 1.35 0.75

450 2.50 1.77 1.23 0 .6 8

500 2.37 1.62 1 .1 2 0.63

Table 6.3: A S D R  and A S e g S R R  For Simulated Data under Different T e o s

Teo
(ms)

A S D R  (dB) A S e g S R R  (dB)

Proposed 

method 

(scheme 2 )

Multistage

method

Proposed 

method 

(scheme 2 )

Multistage

method

2 0 0 4.49 3.61 2.06 1.45

250 3.73 2.91 1.78 1.14

300 3.20 2.45 1.55 0.94

350 2 . 8 8 2.18 1.37 0.82

400 2.63 1.96 1 .2 2 0.75

450 2.42 1.77 1 .1 0 0 . 6 8

500 2.27 1.62 1 .0 1 0.63

Table 6.4: A S D R  and A S e g S R R  For Simulated Data under Different T qos

Teo
(ms)

A S D R  (dB) A S e g S R R  (dB)
Proposed 

method 

(scheme 3)

Multistage

method

Proposed 

method 

(scheme 3)

Multistage

method

2 0 0 3.64 3.61 1.45 1.45

250 2 . 8 8 2.91 1.13 1.14

300 2.44 2.45 0.93 0.94

350 2.16 2.18 0.82 0.82

400 1.93 1.96 0.74 0.75

450 1.74 1.77 0.67 0 . 6 8

500 1.60 1.62 0.63 0.63
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Table 6.5: A S D R  and A S e g S R R  For the Real Data

Algorithm A S D R  (dB) A S e g S R R  (dB)

Proposed method 

(scheme 1)

6.40 3.55

Multistage

method

4.74 2.01

Table 6.6: A S D R  and A S e g S R R  For the Real Data

Algorithm A S D R  (dB) A S e g S R R  (dB)

Proposed method 

(scheme 2)

4.85 2.54

Multistage

method

4.74 2.01

Table 6.7: A S D R  and A S e g S R R  For the Real Data

Algorithm A S D R  (dB) A S e g S R R  (dB)

Proposed method 

(scheme 3)

4.75 2.03

Multistage

method

4.74 2.01
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method. It is observed that in the first scheme blind dereverberation applied to the 

reverberant mixtures prior to separation helps in improving the separation performance. 

Similarly it can be found that the proposed method in the second scheme also performs 

better than the Multistage method for both simulated and real data. However, it can 

be noticed that in the second scheme of the proposed method improvement is less than 

the improvement achieved in the first scheme especially for real recordings. This is 

because in the second scheme, the separation algorithm is applied first and hence the 

enhancement performance is not as good as in the first scheme due to the reverberant 

effects in the mixture at the time of separation. The third scheme of the proposed 

method provides no improvement at all and the results obtained for both real and 

simulated data are comparable to the Multistage algorithm. Therefore, it is concluded 

that the proposed blind dereverberation and separation algorithm implemented in the 

first scheme provides better results in comparison to the implementation of the second 

and third scheme. Note that the proposed joint blind dereverberation and separation 

method has been tested based on RT estimation step employing the Gaussian decay 

model and it has been found that the results obtained in all the three schemes are similar 

to the results of the proposed joint blind dereverberation and separation method.

6.5 Summary

In this chapter a method has been developed to perform blind dereverberation and 

separation of convolutive speech mixtures jointly. The method has been evaluated in 

three different arrangements. In the first scheme, mixture signal is used to estimate 

RT followed by blind dereverberation and then the separation algorithm is applied to 

the dereverberant mixture to obtain the segregated speech signals. In the second ar

rangement, separation algorithm is applied first to the mixtures in order to achieve the 

separated speech signals. Then the obtained separated signal is used to estimate the 

RT blindly followed by the blind dereverberation. In the third and final scheme, the 

separation algorithm is divided such that the convolutive ICA is used first to obtain 

the estimated source signals. Then the signal obtained after convolutive ICA is used to 

estimate the RT followed by the blind dereverberation. Then the T-F representation
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of the obtained dereverberant signals are used to estimate the IBM and finally cepstral 

smoothing of the IBM. As shown in the experiments that the proposed method imple

mented in scheme 1 performs better than scheme 2 and 3, in comparison to the related 

recent approach.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis the major challenging issues related to the cocktail party problem are 

addressed, i.e., blind separation of target speech signal from the convolutive mixtures, 

denoising and dereverberation, and joint blind dereverberation and separation of speech 

mixtures.

Firstly, the well-known problem of blind separation of speech signals is investigated. A 

multistage algorithm is proposed in Chapter 3 for the separation of convolutive speech 

mixtures using two-microphone recordings, based on the combination of ICA and IBM, 

together with a post-filtering process in the cepstral domain. The proposed approach 

consists of three major steps. A convolutive ICA algorithm [178] is first applied in 

order to take into account the reverberant mixing environments based on a convolutive 

unmixing model. Binary T-F masking is used in the second step for improving the 

SNR of the separated speech signal, due to its effectiveness in rejecting the energy of 

interference by assigning zeros to the T-F units in the masking matrix in which the 

energy of the interference is stronger than the target speech. The artifacts (musical 

noise) due to the error in the estimation of the binary mask in the segregated speech 

signals are further reduced by applying the cepstral smoothing technique. Compared 

with smoothing directly in the spectral domain, cesptral smoothing has the advantage

130
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of preserving the harmonic structure of the separated speech signal while reducing the 

musical noise to a lower level by smoothing out the unwanted isolated random peaks.

The proposed method achieves considerable improvement in comparison to [178] in 

terms of both objective measurements using SNR and subjective listening tests, mainly 

due to the introduction of the binary T-F masking operation and the cepstral smooth

ing. The binary masking contributed mostly to the improvement of interference cancel

lation, and cepstral smoothing further improved the perceptual quality of the separated 

speech. Although the proposed method and Pedersen et aZ.’s method [129] have the 

similar combination structure, i.e., combination of an ICA algorithm with the IBM tech

nique. However, the proposed algorithm directly addresses the convolutive BSS model 

based on the frequency-domain approach, while Pedersen et aVs method is based on 

an instantaneous model and an instantaneous ICA algorithm, even though their algo

rithm has also been tested for convolutive mixtures. Second, the algorithm in [129] is 

iterative, which is computationally demanding. Moreover, cepstral smoothing has been 

introduced in the proposed method, which has the advantage of reducing the musical 

artifacts caused by the IBM technique.

In Chapter 4, a method is developed to deal with the effects of reflections on the target 

speech signal contaminated by the white Gaussian noise in a cocktail party environment. 

The proposed method is a one-microphone multistage algorithm. In the first step, an 

EMD algorithm is applied to the reverberant speech signal corrupted by white Gaussian 

noise to decompose it into its corresponding IMFs. Then, the IMF components with 

the high level of noise have been selected and denoising is applied to these selected 

IMFs. The denoising technique employed here is based on MMSE filtering approach 

called EMD-MMSE. The silence periods of the signal are detected and then the noise 

power spectrum is estimated by averaging the power spectra of the noisy signal. Then 

the MMSE estimator is applied to enhance the selected IMF components, resulting 

in the denoised IMF components and remaining unprocessed IMF components. In 

the next step, the denoised IMF components and the remaining IMF components are 

used to estimate the power of late reverberations as here the main focus is on late 

reflections which is the main cause of reducing intelligibility of target speech. It has 

been observed that the energy of the late reverberations is spread over the different



7.1. Conclusions 132

IMFs with different magnitudes. For this reason, spectral subtraction is applied to 

each IMF component according to the energy of the late reverberations present in the 

corresponding IMF components. Finally, the enhanced signal is reconstructed from the 

processed IMF components. The experimental results are provided which clearly show 

that using spectral subtraction for the IMF components of the noisy reverberant speech 

offers better denoising and dereverberation in comparison to the related method that 

directly uses the full-band noisy reverberant speech.

In Chapter 5, an algorithm is developed to treat the room reflections only by targeting 

at the late as well as the early reflections. The proposed method has two steps. In 

the first step a frequency dependent statistical model of the decay rate of the late 

reverberations is used to estimate the spectral variance of the late reverberations, and 

then the mask is estimated containing the spectral subtraction gain functions in the 

T-F domain. In order to remove the processing artifacts (musical noise) due to the 

error in the estimation of the mask, a smoothing function is applied to the mask in the 

T-F domain to filter out the artifacts. Finally, the smoothed gain function is applied 

to the reverberant speech to reduce the late reverberations. In the second step of the 

proposed method, a Wiener filtering approach is applied to reduce the early reflections. 

This step of the algorithm exploits the low coherence of the sound field between the 

different microphones (sensors) to estimate the power spectral density of the direct 

speech and to remove all non-coherent signal parts while keeping the coherent parts 

unaffected, as only the direct speech shows a high coherence among sensors. As a result 

the early reverberations are attenuated. It has been shown in the experimental results 

that the proposed algorithm offers considerably higher dereverberation performance as 

compared with a related recent approach using the frequency independent model.

In Chapter 6, an algorithm is presented in which the separation performance of the 

method proposed in Chapter 3 has been improved by incorporating the dereverbera

tion technique developed for late reverberation in Chapter 5, with an additional step 

of estimating the RT blindly from the reverberant signal and hence the developed algo

rithm operates in a blind manner. The developed method has been employed in three 

different ways. Firstly, the available mixture signals are used to estimate blindly the 

RT based on a ML method and statistical modelling of the sound decay rate of the re
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verberant speech, followed by the dereverberation of the mixture signals to suppress the 

late reflections using the method based on the frequency depenedent statistical model 

as described in Chapter 5. Then, the separation algorithm proposed in Chapter 3 is 

applied to these resultant mixtures so that the source speech signals can be obtained. 

Secondly, the separation algorithm is applied first to the mixtures to segregate the 

speech signals, followed by the blind estimation of RT from the separated speech sig

nal. Then, the dereverberation is employed to the segregated speech signals to suppress 

the late reflections. In the third scheme, the multistage separation algorithm proposed 

in Chapter 3 is split such that the convolutive ICA is first applied to the mixtures to 

obtain the estimated source signals. Then, the signal obtained from the convolutive 

ICA is used to estimate the RT followed by the blind dereverberation of the signals 

obtained from convolutive ICA. Then, the T-F representation of dereverb er ant signals 

are used to estimate the IBM followed by cepstral smoothing to enhance the separated 

speech signals. The evaluation results show that the proposed algorithm further en

hances the separation performance of the multistage separation algorithm developed in 

Chapter 3 of the thesis.

7.2 Future Research

This dissertation suggests different directions for future research. An obvious one is 

the extension of the algorithm developed in Chapter 3 to the underdetermined cases. 

Currently this algorithm is working efficiently for the determined scenario, however its 

extension can offer research in the direction that is envisaged to have some potential. 

Similarly in Chapter 4 the method developed is based on single microphone derever

beration system. Futher research might be conducted to investigate the potentials of 

this method for multi-microphone system. Also the developed method is only treating 

the late reverberations, hence some method can be incorporated to deal with the early 

reflections also.

In Chapter 5 the proposed method is based on the fact that the acoustic impulse 

response has an exponential decay and hence the spectral variance estimator for late 

reverberations is using such decays. Despite the fact that this assumption is true for
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many enclosed spaces, generalization will make it more interesting. For example in 

some cases there are coupled rooms (an enclosed space connected together using some 

opening), here the exponential decay rate that exhibits in each room is different and 

hence the total decay consists of a sum of exponential decays [161].

Another interesting idea is about the estimation procedure of RT proposed in Chapter 6, 

in which a statistical model based approach is adopted for estimating the RT. Currently, 

the proposed method is locating the free decay regions first in the reverberant speech 

and then employ the statistical model based ML approach to these regions to estimate 

RT. It can be extended in future such that the RT can be estimated from the reverberant 

speech without locating the free decay regions first.
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