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Abstract

Extraction of a target speech signal from the convolutive mixture of multiple sources
observed in a cocktail party environment is a challenging task, especially when the room
acoustic effects and background noise are present in the environment. Such acoustic
distortions may further degrade the separation performance of many existing source
separation algorithms. Algorithmic solutions to this problem are likely to have strong
impact on many applications including automatic speech recognition, hearing aids and
cochlear implants, and human-machine interaction. In such applications, to extract the
target speech, it is usually required to deal with not only the interfering sound, but
also the room reverberations and background noise.

To address this problem, several methods are developed in this thesis. For the blind sep-
aration of a target speech signal from the convolutive mixture, a multistage algorithm
is proposed in which a convolutive independent component analysis (ICA) algorithm is
applied to the mixture, followed by the estimation of an ideal binary mask (IBM) from
the separated sources obtained with the convolutive ICA algorithm. In the last step,
the errors introduced due to estimation of the IBM are reduced by cepstral smoothing.

The separation performance of the above algorithm, however, deteriorates with the
increase in surface reflections and background noise within the room environment.
Two different methods are therefore developed to reduce such effects. In the first
method which is also a multistage method, acoustic effects and background noise are
treated together using an empirical-mode-decomposition (EMD) based algorithm. The
noisy reverberant speech is decomposed adaptively into oscillatory components called
intrinsic mode functions (IMFs) via an EMD algorithm. Denoising is then applied
to selected high frequency IMFs using an EMD-based minimum mean squared error
(MMSE) filter, followed by spectral subtraction of the resulting denoised high and
low-frequency IMFs. The second method is a two-stage dereverberation algorithm in
which the smoothed spectral subtraction mask based on a frequency dependent model
is derived and then applied to the reverberant speech to reduce the effects of late
reverberations. Wiener filtering is then applied such that the early reverberations are
attenuated.

Finally, an algorithm is developed for joint blind separation and blind dereverberation.
The proposed method consists of a step for the blind estimation of reverberation time
(RT). The method is employed in three different ways. Firstly, the available mixture
signals are used to estimate blindly the RT, followed by the dereverberation of the
mixture signals. Then, the separation algorithm is applied to these resultant mixtures.
Secondly, the separation algorithm is applied first to the mixtures, followed by the blind
dereverberation of the segregated speech signals. In the third scheme, the separation
algorithm is split such that the convolutive ICA is first applied to the mixtures, followed
by the blind dereverberation of the signals obtained from convolutive ICA. Then, the
T-F representation of the dereverberated signals is used to estimate the IBM followed
by cepstral smoothing.
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Chapter 1

Introduction

1.1 Problem Description and Motivation

The extraction of a target speech signal from a mixture of multiple signals is classically
referred to as the cocktail party problem (CPP), the concept of which was introduced
for the first time by Cherry in 1953 [30]. It can be also formulated as: “How do
we recognize‘what one person is saying when others are speaking at the same time” ,.
which has turned out to be a highly complex problem when background noise and
acoustic disturbance are taken into consideration. Although it poses big challenges in
many signal processing applications, human listeners with normal hearing are generally
very skilful in separating the target.speech within a complex auditory scene [172]. It
has been observed that people with perceptive hearing loss suffer from insufficient
speech intelligibility [40, 86]. It is difficult for them to pick up the target speech, in
particular, when there exist some interfering sounds and background noise nearby.
However, amplification of the signal is not sufficient to increase the intelligibility of the
target speech as all the signals (both target and interference) are amplified. For this
application scenario, it is highly desirable to produce a machine that can offer clean

target speech to these hearing impaired people.

Despite being studied for decades, the CPP remains a scientific challenge that demands
further research efforts [172]. Computational modelling and algorithmic solutions to

this problem are likely to have strong impact on several applications including hearing

1



1.1. Problem Description and Motivation

Speaker 1 ¥

Microphone 1

¥

Micro phone 2

Speaker 2

Figure 1.1: A simplified scenario of the cocktail party problem with two speakers and

two listeners (microphones).

aids and cochlear implants, human-machine interaction and robust speech recognition in
uncontrolled natural environments. Figure 1.1 illustrates the cocktail party effect using

a simplified scenario with two simultaneous conversations in the room environment.

The key challenge is to recover the target speech from the mixture of speech signals
recorded in a cocktail party environment such that the interference of the competing
speech signals is suppressed. One promising technique to address this problem is under
the framework of blind source separation (BSS) where the mixing process is generally
described as a linear convolutive model, and independent component analysis (ICA)
[73, 97] can then be applied to separate the convolutive mixtures either in the time
domain [32,45,46], in the transform domain [2,8,64,68,102,121,136,139,178,189], or
their hybrid [90,98], assuming the source signals are statistically independent [8,44,
102,107,120,121]. Although the convolutive BSS problem, i.e. separating unknown
sources from their convolutive mixtures, has been studied extensively, the separation

performance of many developed algorithms is still limited, and leaves much room for
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further improvement. This is especially true when dealing with reverberated and noisy

mixtures.

Another technique proposed to tackle this problem is under the framework of computa-
tional auditory scene analysis (CASA). It is the study of auditory scene analysis (ASA)
by computational means. ASA is the process by which the human auditory system per-
forms sound localization and recognition in order to pick up the target signal from the
cocktail party environment. Recently in CASA, a technique called ideal binary mask
(IBM), has shown promising properties in Suppressing interference and improving in-
telligibility of target speech. IBM is obtained by comparing the T-F representations
of the target speech and background interference, with one/unity assigned to a T-F
unit where the target energy is stronger than the interference energy and zero other-
wise [168]. The target speech can then be obtained by applying the IBM to the T-F
representation of the mixture, together with an inverse transform. Tile IBM technique
was originally proposed as a computational goal or performance benchmark of a CASA
system [168,172). Recent studies reveal that by suppressing the interference signals
from the mixtures, the IBM technique can significantly improve the intelligibility of
the target speech [173]. This simple yet effective approach offers great potential for
improving speech separation performance of ICA algorithms. Different from many ICA
approaches with linear models [101], signals estimated in the T-F plane have mostly
non-overlapping supports for different speaker signals and thus one can use IBM to
extract the target speech from their mixture signal. The IBM is obtained by assuming
both the tar;get speech and interfering signal are known a priori. However, in practice,
only mixtures are available, and the IBM must be estimated from the mixtures, which

is a major computational challenge.

To overcome these limitations a computationally very efficient algorithm is developed in
this thesis to estimate the IBM from intermediate separation results that are obtained
by applying an ICA algorithm to the mixtures. The limitation of the aforementioned
CASA methods, i.e., having to estimate the IBM directly from the mixtures, is mit-
igated as the IBM can now be estimated from the coarsely separated source signals
obtained by ICA algorithms. The estimated IBM can be further used to enhance the

separation quality of the coarsely sepafated source signals. To deal with the estimation
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errors of the binary mask, a cepstrum based processing method was émployed.

Another major challenge in addressing the CPP is the presence of acoustic effects in
an enclosed cocktail party environment that can degrade the quality of the extracted
target speech signal. As the listeners (or microphones) are not always located near
the desired (target) speech signal and hence the signals received at the listeners (or
microphones) are typically degraded by not only the interfering sound source nearby,
but also the reverberations introduced by the multi-path propagation from the target
source due to surface reflections within the room. Reverberatibn effects in speech can be
described as sounding distant with noticeable colouration and echo. These detrimental
perceptual effects generally increase with distance between the speaker and the listener
(or microphone). Furthermore, with the spread in the time of arrival of reflections at
the microphone, reverberation causes blurring of speech phonemes. These detrimental
effects seriously degrade the intelligibility of the target speech and the performance of
the speech separation algorithms. Therefore extraction of a target speech signal from
a mixture is not sufficient to mitigate the CPP but there is a need to develop methods

that can reduce the effects caused by the reverberations.

One more challenge is the ambient noise which is also the source of interference that
degrades the quality of target speech while addressing the CPP. It is well known that
‘ background noise reduces the intelligibility of speech and that the greater the level of
background noise the greater the reduction in intelligibility.- Human listeners with nor-
mal hearing are able to understand speech in a moderately nbisy environment because
speech is a highly redundant signal and thus even if part of the speech signal is masked
by noise, other parts of the speech signal will convey sufficient information to make the
speech intelligible, or at least sufficiently intelligible to allow for effective speech com-
munication. There is less redundancy in the speech signal for a person with hearing
loss since part of the speech is either not audible or is severely distorted because of
the hearing loss. Background noise that masks even a small portion of the remaining,
impoverished speech signal will degrade intelligibility significantly because there is less
redundancy available to compensate for the masking effects of the noise. As a conse-
quence, people with hearing loss have much greater difficulty than people with normal

hearing in understanding speech in noise. Therefore, it is necessary to develop methods
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that can reduce the ambient noise in order to improve the intelligibility of the target

speech extracted from the mixture in the cocktail party environment.

The separation performance of the algorithm developed in this thesis for the blind sep-
aration of target speech from convolutive mixtures has been restrained due to acoustic
effects and ambient noise. Hence an algorithm is developed which can reduce the ef-
fects of reverberations and background noise resulting in improved speech intelligibility.
The developed method is using empirical-mode-decomposition (EMD) based subband
processing. Noisy reverberant speech is decomposed adaptively into oscillatory com-
ponents called intrinsic mode functions (IMFs) via an EMD algorithm, followed by,
denoising the selected IMFs using EMD-based minimum-mean squared error (MMSE)
filter. Then spectral subtraction is applied to the resulting denoised high-frequency
IMFs and low-frequency IMFs. Finally, the enhanced speech signal is reconstructed

from the processed IMF's.

Another method is proposed to deal with the room reverberation separately. It is a two
stage method, in the first stage a frequency dependent statistical model of the decay
rate of the late reverberations (details about late reverberation are given in Chapter 2)
is used to estimate the spectral variance of late reverberation, followed by estimation of
the spectral mask containing the gain functions. Then, the smoothing filter is applied
to the spectral mask to reduce the artifacts, and finally the smoothed gain function
is applied to the reverberant signal to suppress the late reverberations. In the second
stage, a dual-channel Wiener filter is used to deal with the early reverberations (details

about early reverberation are given in Chapter 2).

Finally, a joint blind dereverberation and separation algorithm is proposed. The devel-
oped method has been employed in three different ways. Firstly, the available mixture
signals are used to estimate blindly the reverberation time (RT) based on a maximum-
likelihood (ML) method and statistical modelling of the sound decay rate of the rever-
berant speech, followed by the dereverberation of the mixture signals using the method
based on the frequency dependent statistical model. Then, the separation algorithm is
applied to these resultant mixtures so that the source (target) speech signals can be

obtained. Secondly, the separation algorithm is applied primarily to the mixtures to
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segregate the speech signals, followed by the blind estimation of RT from the separated
speech signal. Then, dereverberation is employed to the segregated (target) speech
signals. In the third scheme, the separation algorithm is split such that the convolutive
ICA is first applied to the mixtures to obtain the estimated source signals. Then, the
signal obtained from the convolutive ICA is used to estimate the RT followed by the
blind dereverberation of the signals obtained from convolutive ICA. Then, the T-F rep-
resentation of dereverberant signals are used to estimate the IBM followed by cepstral

smoothing to enhance the target speech signal.

This thesis is organized as follows: in Chapter 2, some background has been provided
along with the literature review of the key techniques employed to address the CPP.
The proposed algorithm based on convolutive ICA and IBM followed by the cepstral
processing, for the blind separation of convolutive speech mixtures, with systematic
evaluation and experimental results for both simulated and real data is described in
Chapter 3. In Chapter 4, a novel algorithm is presented for the enhancement of noisy
reverberant speech, using EMD based subband processing. It is shown in this chapter
that the developed algorithm offers considerable performance improvement for both
simulated and real data. Chapter 5 describes a new method for the reduction of room
reverberations using the frequency dependent statistical model. The comparison of the
algorithm with a related recent approach is given in this chapter based on experimental
results for both simulated and real recorded data. In Chapter 6, a new algorithm is
presented for blind estimation of RT which is then incorporated into the algorithms
developed in Chapter 3 and 5 for performing blind dereverberation and separation from
the speech mixtures. Experimental evaluation results are also provided in this chapter.

Chapter 7 concludes the thesis with recommendations for future research.

1.2 Contributions

The major contributions of this thesis are summarized as follows:

1) An efficient algorithm is proposed for the blind separation of convolutive speech mix-
tures. The proposed algorithm is a multistage algorithm with novel combinations of

three steps, including the convolutive source separation algorithm adopted in the first
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step followed by the estimation of IBM from the separated sources obtained with the
convolutive ICA algorithm in the secdn_d step, and the cepstral smoothing technique
is employed in the third step for .reducing the musical noise caused by estimation of
IBM. Extensive evaluations have been performed on the proposed algorithm by com-
parison with related recent approaches in terms of both objective performance indices
and subjective listening tests. Results show that the multistage algorithm improves
significantly the separation performance over these methods. Moreover, the proposed
algorithm is a computationally more efficient bne as compared to the recent approach.
Pitch frequency is calculated in the proposed multistage élgorithm from the segregated
speech signal which is different from the method used previously utilizing the estimated

mask for the pitch estimation.

2) A novel algorithm is developed to deal with the late reverberations and noise jointly
using EMD based subband processing. The results show that this novel method leads

to an improved enhancement performance in comparison to a related recent approach.

3) A new method is developed to suppress the room reverberations using the frequency
dependent statistical model. In this algorithm, the spectral variance of the late rever-
berations is estimated based on a frequency dependent statistical model of the decay
rate of the late reverberations. For early reflections, a ‘dual—channel Wiener filter is
used to reduce their effects. The results indicate that this method performs consider-

ably better in comparison with the most recent methods.

4) An algorithm is proposed for the blind dereverberation and separation. together for
the convolutive speech mixtures. The proposed algorithm consists of a new method for
blind estimation of RT from the reverberant speech signal (i.e., mixtﬁres). A Laplacian
distribution based decay model is proposed in which an efficient procedure for locating

free decay segments from reverberant speech is also incorporated.



Chapter 2

Background and Literature

Survey

2.1 Cocktail Party Problem

This section is focusing on the discussion of one of the most challenging problems within
the audio community called CPP [30]. It was proposed to address the phenomenon
associated with the human auditory system that, in a cocktail party environment,
humans have the ability to focus their listening attention on a single speaker' when
multiple conversations, background interferences and noise are present simultaneously.
The main distortions need to be tackled in CPP are classified as, (1) distortion due
to interfering sound, (2) distortion due to room reverberations, and (3) distortion due
‘to background noise. Many researchers and scientists from a variety of research areas
attempt to tackle this problem [10,21,23,49]. Despite all these works, CPP remains an

open problem and demands further research effort.

As the solution to the CPP offers many practical applications, engineers and scientists
have spent their efforts in understanding the mechanism of the human auditory system,
and hoping to design a machine which can work similarly to the human auditory system.
However, there are no machines produced so far that can perform as humans in a real

cocktail party environment. Based on the three different types of distortions that need
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to be handled, background and literature review on related methods are provided in
this chapter. However, the main contributions of this thesis focus on the first two types

of distortions.

2.1.1 Audio sources in a cocktail party environment

Audio sources are usually classified as speech, music, or natural sounds. Each of
the categories has its own specific characteristics which can be exploited during its
processing. Speech sounds are basically composed of discrete phonetic units called
phonemes [39,124]. Due to the co-articulation of successive phonemes, each signal that
corresponds to a specific phoneme exhibits time varying properties. The resultant sig-
nal is composed of periodic harmonic pulses which are produced due to the periodic
vibration of the vocal folds, a noise part which is generated because of the air passing
via lips and teeth, or a transient part due to the release of pressure behind the lips
-or teeth. Harmonics within the generated signal have periodic frequency components
which are multiples of a fundamental frequency component. In real speech signals the
fundamental frequency component of the periodic phonemes varies due to the artic-
ulation, but typically for male speech is 140 Hz, and 200 Hz for female speech with

variation of 40 Hz for each.

Music sources [63] generally constitute of sequences of notes or tones produced by
musical instruments, singers and synthetic instruments. Each note is composed of a
signal which further can be made of a periodic part containing harmonic sinusoids
produced by blowing into a pipe, bowing a string, a transient part generated due
to hitting a drum, plucking a string, or a wideband noise produced by blowing into
wind instruments. For example, in western music the periodic frequencies of the notes
generated typically remain constant or varying slowly. Musical instruments usually
produce musical phrases which are composed of successive notes without any silence
between the notes. Unlike monophonic music, polyphonic sounds are composed of

several simultaneous notes that are generated by multiple musical instruments.

The third source comes from the environment, called natural sounds [59]. Their char-

acteristic varies depending on the origin of the natural sound. Similar to the speech
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and music signals it can also be classified as periodic, transient and noise. For exam-
ple, a car horn produces the natural periodic sound signal, a hammer thrashing the
hardwood generates the transient signal and raining results in a wideband noise signal.
The discrete structure of natural sound is simpler as compared with the organization
of notes and phonemes. In this work, the focus will be on the first type of audio source

signal i.e. speech signals.

2.2 Distortion Due to Interfering Sound

In order to deal with the distortions generated dué to interfering sound in the vicinity,
a variety of methods have been proposed. For example, the computational auditory
scene analysis (CASA) approach attempts to simulate the human auditory system via
mathematical modeling using computational means [142,168,172]. BSS is also used to
address this problem by many researchers. [102,121,147,178]. BSS approaches are based
on the ICA technique assuming that the source signals coming from different speakers
are statistically independent [73,97]. Non-negative matrix factorization (NMF) and
its extension non-negative tensor factorization (NTF) have also been applied to speech
and music separation problems [151, 155,166, 176]. Another interesting approach is
the sparse representation of the sources in which the vsource signals are assumed to be
sparse and hence only one of the source signals in the mixture is active while others
are relatively insignificant for a given time instant [16,128,191]. Some model based
approaches have also been employed to address this pi‘oblem [134,163]. The following

sections provide a detailed review of these techniques.

2.2.1 Computational auditory scene analysis

CASA is the study of ASA by computational means [172]. It is believed that the
human ability to function well in everyday acoustic environments is due to a process
termed ASA, which produces a perceptual representation of different sources in an
acoustic mixture [21]. In other words, listeners organize the mixture into streams

that correspond to different sound sources in the mixture. The concept of ASA was
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coined by Bregman in 1990 [21]. According to Bregman, organization in ASA takes
place in two main steps: segmentation and grouping. In segmentation, the acoustic
input (mixture) is decomposed into sensory elements or segments, each of which should
primarily originate from a single source. In grouping, the segments that are likely
to arise from the same source are grouped together. Segmentation and grouping are
guided by ASA cues that characterize intrinsic sound properties, including harmonicity,

onset and offset, and location, as well as prior knowledge of specific sounds.

A typical CASA system is shown in Figure 2.1, which has four stages: external pro-
cessing, feature extraction, segmentation, and grouping and reconstruction. External
processing processes the input signal using an auditory peripheral model, resultingv
in a cochleagram which is a two-dimensional time-frequency (T-F) representation. A
cochleagram is composed of T-F units, each of which corresponds to the response of
a specific auditory filter within a time frame. The second stage extracts auditory fea-
tures, producing a number of feature representations. In the segmentation stage, the
system generates a collection of segments or contiguous regions in a cochleagram. On
the basis of extracted features and segments, the grouping and reconstruction stage
produces streams corresponding to individual sound sources. The grouping and recon-
struction stage includes simulianeous grouping which organizes segments overlapping
in time into simultaneous streams, and sequential grouping which organizes segments

or simultaneous streams across time into complete streams [34, 35,168,172].

In general, there are two types of approaches for the separation of the target signal
in the cocktail party environment in the context of CASA. The first one is called
signal-driven approach which is used for the segregation of the auditory scene into
the different components belonging to the different sound streams [21]. The second
one called knowledge-driven approach uses the prior knowledge of the unknown speech
sources, so that the target signal can be separated from the interference. In 1994, Brown
and Cooke investigated some of the key issues related to the early CASA methods [24].
Specifically they avoid the assumptions made about the type and number of sources.
They proposed to model the human auditory system into separate parts. The key
parts are ear filtering, cochlear filtering and central processing (combination of different

auditory maps which show onset, offset', periodicities and frequency transitions). Wang
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Speech
and
interference

External
processing

Figure 2.1: Schematic diagram of a typical CASA system

and Brown (1999) [170] extended the work of Brown and Cooke by replacing the central
processing with a double layer oscillator network and applied simple computational

methods for auditory feature extraction.

A technique called ideal binary masking has been recently used in CASA to segregate
the target signal from the interference [172]. Consider a microphone signal recorded
in a cocktail party: x{n) = si(n) + S2(n), where si(n) is the target speech signal and
S2(n) is the interference speech signal and # is the discrete time instant. Denote X, S|
and S: as the time-frequency (T-F) representation of x{n), Si(n) and S2(n) obtained
from some T-F transformation respectively. Then, the ideal binary mask (IBM) for
si{n) with respect to S2(*) is defined as follows,

if 1Si 2
Mi(m, &) = 1 if [Si{m,k) |>| Sz{m,k) |, oD

0 otherwise .
where m, k& are the discrete time frame and frequency bin indices respectively. The
target speech si(n) can then be extracted by applying the IBM to X, followed by
an inverse T-F transform. The decision is binary, and hence the intelligibility of the
segregated speech signal is high. But on the other hand the resultant mask Mj entirely
depends on the availability of the target and interference speech signals. In practice, the
target and interference signals are usually unknown, and the mask has to be estimated

from the mixtures.

Recently, some methods have been developed in which the limitation of the CASA

methods, i.e., having to estimate the IBM directly from the mixtures, is mitigated.
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(see for example, [129,145]). In these methods a separation algorithm is applied to the
available mixtures to estimate the source signals followed by the estimation of the IBM

from these estimated source signals.

Similarly, for the estimation of IBM, spatial localization cues, i.e., interaural time
difference (concerning humans, it is the difference in arrival time of a sound between
two ears) and interaural level difference (sound from the right side has a higher level
at the right ear than at the left ear, because the head shadows the left ear, such
differencé is called interaural level difference), have also been considered recently (see

for example, [65,143]).

2.2.2 Blind source separation

Another technique to address the problem of speech separation is BSS, where the
mixing process is usually described as a linear convolutive model and convolutive ICA
algorithms can then be applied to segregate the source signals from their mixtures
assuming the sources are statistically independent [8,102,107,120,121,129]. BSS is an
approach used for the estimation of the source signals having only the information of the
mixed signals observed at each input channel, without prior information about sources
and the mixing channels. Its potential applications include speech segregation in the
cocktail party environment, teleconferences and hearing aids. In such applications, the
mixture signals are reverberant, due to the surface reflections of the rooms. ICA is
a major statistical tool for the BSS problem, for which the statistical independence
between the sources is assumed [73,97]. The mathematical model [1] used to describe

ICA is given as,

z1(n) = a11s1(n) + a12s2(n) + ...a1nsn(n)

zpr(n) = aprrs1(n) + apasa(n) + .apnsn(n)
where s1(n), .., sy(n) represent unknown source signals in the cocktail party environ-
ment, z1(n),..,zp(n) denote the mixture signals (e.g. microphone recordings). If the

coefficients a;; (i = 1,..,M, j = 1,.., N) are scalars, the resultant mixtures are referred
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Figure 2.2: Schematic diagram for a typical BSS system with two sources and two

mixtures. Unknown source signals: s, observed signals: x, estimated signals: y

to as instantaneous mixtures, and if they are filters, the mixtures are referred to as
convolutive mixtures. If N=M, i.e., the number of sources equals to the number of
mixtures, it is called exactly determined BSS problem. If A > M , it is the under-
determined case, and N < M the over-determined BSS problem. A schematic diagram
of a typical two input two output BSS system is given in Figure 2.2, in which A repre-
sents the unknown mixing system and B is the demixing system used for the estimation

of the unknown source signals.

For separating convolutive mixtures, the BSS approach using ICA can be applied ei-
ther in the time domain [32,45,129] or in the frequency domain [8,102,121,136,178]
or their hybrid [90,98], assuming that the source signals are statistically independent.
The time-domain approaches attempt to extend the instantaneous ICA model to the
convolutive case. They can achieve good separation performance once the algorithms
converge, as the independence of segregated signals is measured accurately [102]. How-
ever the computational cost for the estimation ofthe filter coefficients in the convolutive
operation can be very demanding, especially when dealing with reverberant mixtures

using long time delay filters [5,25,44,46,104].

To improve the computational efficiency, the frequency domain BSS approaches trans-
form the mixtures into the frequency domain, and then apply an instantaneous but
complex valued ICA algorithm to each frequency bin [8, 111, 126, 147, 152, 178, 189].
In [8] the authors discussed why the separation performance of frequency domain BSS
is poor when there is long reverberation. First, they have shown that it is not good to be
constrained by the condition that the frame size of the FFT should be greater than the
length of a room impulse response. This is because the lack of data causes the collapse

of the assumption of independence between the source signals in each frequency bin
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When the data length is short, or when a longer frame size is used. On the other hand,
they have shown that a short frame also results in a poor performance, because long re-
verberation can not be covered by a short frame. Therefore, there is an optimum frame
size determined by a trade-off between maintaining the assumption of independence
and covering the whole reverberation in frequency domain BSS. Similarly a new type ‘
of non-linear function has been suggested in [147] for an ICA approach in order to pro-
cess the complex numbers. The function has been derived from the probability density
function of the signals in the T-F domain with the assumption of phase independence
between these signals. The new non-linear function is obtained as a result, based on
the polar coordinates of a complex number. The effect of this new function has also
been analysed in [147] for separating speech signals in the convolutive environment.
Another very interesting approach employed for frequency-domain BSS is adaptive and
based on second order statistics [152]. The advantage of this method is that no param-
eter tuning is required for separating the signals. As a result, many complex valued
and instantaneous ICA algorithms that have already been developed can be directly
applied to the frequency domain BSS. However, an important issue associated with
this approach is the permutation problem, i.e., the permutation in each frequency bin
may not be consistent with each other so that the separated speech signal in the time
domain contains the frequency components from the other sources. Different methods
have been developed to solve this problem. By reducing the length of the filter in the
time domain [25,126] the permutation problem can be overcome to some extent. A
source localization approach has also been employed to mitigate the permutation in-
consistency [148,159]. Another technique for the alignment of the permutations across
the frequency bands is based on correlation between the separated source componeﬁts
at each frequency bin using the envelope similarity between the neighboring frequen-
cies [112]. Some other recently used methods are based on the physical behaviour of
the acoustic environment [118] or coherent source spectral estimation [119], the method

for modeling frequency bins using the generalized Gaussian distribution [105].

'The third approach is the combination of both time and frequency domain approaches.
In some methods [12,98], the coefficients of the FIR filter are updated in the frequency

domain and the non-linear functions are employed in the time domain for evaluating the
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independence of the source signals. Hence no permutation problem exists any more, as
the independence of the source signals is evaluated in the time domain. Nevertheless,
the limitation of this hybrid approach is the frequent switch between two different
domains at each step and thereby consuming extra time on these inverse transformation

operations.

The separation performance of many developed algorithms is however still limited,
and there is much room for improvement. This is especially true when dealing with
reverbefant and noisy mixtures. For example in the frequency-domain BSS framework,
if the frame length of the DFT is long and the number of samples in each frequency
bin is small, the independence assumption may not be satisfied. Similarly, if the short
length DFT frame is used, the long reverberations cannot be covered and hence the

segregation performance is limited [8].

Apart from the above discussed methods, some authors consider the assumption of
W-disjoint orthogonality for speech signals in order to separate the source signals from
the observed data. For example in [80], for a given windowing function W (n), two
sources, s;(n) and s;(n) are called W-disjoint orthogonal if the supports of the short-
time Fourier transform of s;(n) and sj(n) are disjoint [80]. The windowed Fourier

transform of s;(n) is defined as,
N-1 ‘
sW (m, k) = Z W (n — m)s;(n)e~2mkn/N (2.2)
n=0
The W-disjoint orthogonality assumption can be expressed as below [80].
s{ (m,k)s) (m,k) =0, Vi # j, Vk,m (2.3)

where k and m are the frequency index and time frame index respectively. This equation

implies that either of the sources is zero for any & and m as long as two sources do
w

not come from the same source. If W(n) = 1, then s;” (m, k) can be interpreted as the
Fourier transform of s;(n), which can then be referred to as s;(k). Therefore, W-disjoint

orthogonality can be written as,
sz(k)sj(k) =0, Vi #j, Vk (24)

which represents the property of disjoint orthogonality [80].
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Another challenging problem is to separate moving sources rather than stationary in
a cocktail party environment. A recent work [114] is devoted to the blind separation
of moving sources. Here a multimodal approach is proposed for the segregation of
moving speech sources. The key issue in blind estimation of moving sources is fhe
time varying nature of the mixing and unmixing filters, which is hard to track in the
real world. In this work the authors applied the visual modality for the separation of
moving sources as well as stationary sources. The 3-D tracker based on particle filtering
is used to detect the movement of the sources. This method performs well for the blind

separation of moving sources in a low reverberant environment.

So far, two importarit techniques for convolutive speech separation were discussed in
detail. It is interesting to make a comparison between these two techniques. In the case
of BSS, the unknown sources are assumed to be statistically independent. However, no
such assumption is required for CASA. On the other hand, the IBM teéhnique used in
the CASA domain needs to estimate the binary mask from the target and interference
signals which should be obtained from the mixture in practice. Another difference is
in the way how the echoes within the mixture are dealt with by these two techniques.
In BSS algorithms [8, 102,121, 178], this is modeled as a convolutive process. On
the other hand CASA approaches deal with echoes based on some intrinsic propertiés
of audio signals, such as, pitch, which are usually preserved (with distortions) under
reverberant conditions. However, the human auditory system has a remarkable ability
of concentrating on one speaker by ignoring others in a cocktail party environment.
Some of the CASA approaches [171] work in a similar manner i.e. extracting a target
signal by treating other signals as background sound. In contrast, BSS approaches
attempt to separate every source signal simultaneously from the mixture. Motivated
by the complementary advantages of the CASA ‘and BSS approaches, a multistage
approach is developed in [76,77] where a convolutive BSS algorithm is combined with
the IBM technique followed by cepstral smoothing. The details of this method will be

discussed later in Chapter 3.
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2.2.3 Model based approaches

Another method to address the speech separation problem is based on the statistical
modeling of signals and the parameters of the model are estimated from the training
data, e.g., [74,134,135,163)]. In [163], a Gaussian mixture model (GMM) is employed for
modeling of the joint probability density functions (pdf) of the sources by exploiting
the non-Gaussianity and/or non-stationarity of the sources and hence fhe statistical

properties of the sources can vary from signal to signal.

In [134] the model-based approach is used for single channel speech separation. The
authors considered the problem as a speech enhancement problem in which both the
target and interference signals are non-stationary sources with the same characteristics
in terms of pdf. Firstly, in the training phase, the patterns of the sources are obtained
using Gaussian composite source modeling. Then the patterns representing the same
sources are selected. Finally, the estimation of the sources can be achieved using these
selected patterns. Alternatively, a filter can be built on the basis of these patterns and

then applied to the observed signals in order to estimate the sources.

Source separation in the wavelet domain by model-based approaches has been consid-
ered in [74]. This method consists of a Bayesian estimation framework for the BSS.
problem where different models for the wavelet coefficients have been presented. How-
ever there are some limitations with the model based approach. The trained model can
only be used for the segregation process of the speech signals with the same probability
distribution, i.e., the pdf of the trained model must be similar to that of the observa-
tion data. In addition, the moael based algorithms may perform well only for a limited

number of speech signals.

2.2.4 Non-negative matrix/tensor factorization

Non-negative matrix factorization (NMF) was proposed by Lee and Seung in 1999.
Using the constraint of non-negativity, NMF decomposes a non-negative matrix V into

the product of two non-negative matrices W and H, given as:

men = W rHrxn (2-5)
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where (n 4+ m)r < mn. Unlike other matrix factorizations, NMF allows only additive
operations i.e. no subtractions [92,95,96]. As NMF does not depend on the mutual
statistical independence of the source components, it has a potential to segregate the
correlated sources. NMF has been applied to a variety of signals including image, speech
or music audio. In [33] the authors attempted to separate the general form of signals
from the observed data i.e. both positive and negative signals using the constraints of
sparsity and smoothness. For machine audition of audio scenes, NMF has also found
some applications. For example, it has been applied to music transcriptidn [157,167)
and audio source separation [51, 52,127,150, 155, 156, 166, 167, 174,176, 177]. In these
applications, the audio data are usually transformed to non-negative parameters, such
as spectrogram, which are then used as the input to the algorithms. The application
of the NMF technique to speech separation is still an emerging area which attracts

increasing interests in the research community.

. 2.2.5 Sparse representation and compressed sensing

Separation of signals blindly from their under-determined mixtures has attracted a great
deal of attention over the past few years. It is a challenging source separation problem.
One of the most common methods adopted for this problem is based on the sparse
representation of signals [37, 50,191,192]. Closely related to sparse representation,
there is an emerging technique called compressed sensing, which suggests that a signal
can be perfectly recovered based on information rate, instead of the Nyquist rate, and
random sampling, instead of uniform sampling, under certain conditions. It has been
observed that compressed sensing exploits two important properties [26-28,41]. The
first one is sparsity, which means that many natural signals can be represented in some
proper basis in sparse (compressible) form. The second property is incoherence, i.e.
the signal which is represented in some proper basis in sparse form should be dense as
compared to the original representation of the signal. It is basically the extension of

duality property between time and frequency domain.

There are similarities between the compressed sensing and source separation and their

connections have been explored by [15], and further investigated by [184,185]. It was
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found that the compressed sensing based signal recovery methods can be applied to
the source reconstructions provided that the unmixing matrix is available or has been

estimated [15,37, 50,191, 192].

2.3 Distortion Due to Room Reverberation

2.3.1 Characteristics of reverberation

Reverberation is caused by the multi-path propagation of an acoustic signal from its
source to the microphone. Room reverberation is introduced due to surface reflections
within a room, as illustrated in the Figure 1.1. Both the speakers produce wavefronts
propagating outward, with some reaching the microphones directly and some others
reflecting off the walls and superimposing at the microphones. The energy and phase
of the reflections reaching the microphones are different from those of the direct signals
due to the differences in the length of the propagation paths. As a result, delayed and
attenuated copies of the source signal are present in the microphone signals, described

as reverberation [61,93,115].

The signal received at the microphone is generally composed of a direct sound com-
ing from the source to the microphone, reflections that arrive shortly after the direct
sound (also called early reflections), and reflections that arrive after early reverberation
(commonly known as late reverberation). The combination of direct sound and early
reflections are sometimes named as early sound component. Early reverberation is not
perceived as a separate sound to the direct sound as long as the delay of the reflections
does not exceed a limit of approximately 80-100 msec with respect to the arrival time
of the direct sound, however it can be perceived to reinforce the direct sound and is
therefore considered useful with regard to speech intelligibility. This phenomenon is
often referred to as the precedence effect. Farly reverberation mainly causes spectral
distortion due to non-flat frequency response called colouration. Late reverberation
which arrives at the microphone with longer delays is perceived as separate echoes
or as reverberation and impairs speech intelligibility. This is due to the two masking

effects introduced by the late reverberations, namely self masking where the speech
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Figure 2.3: Schematic diagram for room impulse responses.

spectrum is smeared by the late reverberations, and overlap masking where the en-
ergy of the preceding phoneme overlaps with that of the subsequent phonemes. It can
have severe effects on the performance of automatic speech recognition (ASR) systems.
Also it is one of the main factor in performance degradation of the source separation

algorithms [61,93,115].

The behaviour of the acoustic channel between the source and microphone can be char-
acterized by a room impulse response (RIR). It represents the signal recorded at the
microphone in response to a source that generates a sound impulse. As shown in Figure
2.3, the RIR can be split into three main sections, the direct path, the early reflections
and late reflections. The direct sound, early reverberations and late reverberations
are the convolution of these segments with the desired signal. Additionally, it is also
observed that the energy of the reflections decays at an exponential rate. This expo-
nential decay property of the RIR gives rise to the concept of reverberation time (RT).
It is defined as the time required for the average sound-energy at a given frequency to
reduce to one-millionth of its initial steady-state value after the sound source has been

switched off and this corresponds to a decrease of 60 decibels (dB).

Now to explain the effects of reverberation on speech perception, an example is given
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in Figure 2.4. The effects of reverberation are clearly visible and audible in the spectro-
gram and waveform of a speech signal. The Figure 2.4(a) shows the spectrogram and
waveform for an anechoic speech signal taken from the TIMIT database sampled at 16
kHz. The speech formants (resonance frequencies affiliated with the vocal tract [72]) are
clearly visible in the spectrogram in this figure. Similarly, phonemes are differentiable
in the waveform. The simulated room model [4] is used to generate the reverberant
signal from the anechoic speech signal at RT = 0.5 sec with a source-microphone dis-
tance of 1 m. The spectrogram and waveform of the reverberant speech signal are
‘shown in Figure 2.4(b). The distortion caused by the acoustic channel is visible in
both the spectrogram and the waveform. In the spectrogram a blurring effect is visi-
ble, while in the waveform smearing‘ of the phonemes can be seen. These distortions
result in an audible difference between the anechoic and the reverberant speech, and
hence degraded speech intelligibility. Hence methods should be developed to reduce
such detrimental effects of reverberation on the speech sighal. Therefore, in this thesis
two algorithms are developed to deal with the reverberations. The details of both the

developed methods will be discussed in Chapters 4 and 5.

2.3.2 Approaches for reverberation suppression

In the literature many methods have been proposed to deal with the effects of room
reverberation, including for example, the dereverberation algorithms based on inverse
filtering [38, 58, 85,108, 109,117,160, 188}, cepstral filtering [13,123,164], temporal en-
velop filtering [11,91,110], information using source excitation [186,187], and methods
based on spéctral processing [3,53,94,125,179]. These methods can be broadly clas-
sified into three categories, spectral processing methods such as spectral subtraction
assisted methods, temporal processing methods such as inverse filtering, cepstral filter-
ing, temporal envelop filtering, and methods based on excitation source information,
and spectral-temporal methods such as methods based on the combination of temporal

and spectral processings.
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Figure 2.4: Spectrograms and waveforms of (a) an anechoic speech signal taken from
the TIMIT speech database, and (b) the reverberant version of this measured at a

distance of 1 m, with a reverberation time of 0.5 sec using a simulated room model f4j.
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Temporal processing methods

Oppenhiem et al. [123] proposed a dereverberation method based on a low time cepstral
liftering technique for a single microphone. Cepstral liftering in low time is equivalent
to low-pass filtering in the time-frequency domain. The idea is based on the observation
that the clean speech cepstrum is mainly concentrated in the low time, i.e., close to
the origin unlike the acoustic channel impulse response which is located far away from
the origin. However it is practically difficult to find the proper cutoff time for low time

liftering [13,164].

Another technique used commonly to reduce the reverberation is based on inverse fil-
tering. The key idea is to recover the original signal by passing the reverberant signal
through a filter that inverts the reverberant signal [38, 58, 85, 108,109, 117, 160, 188].
Inverse filter can help in successful dereverberation if the room impulse response is
known, or blindly estimated. This is known to be a difficult task. Recently, Kinoshita
et al. [85] proposed a dereverberation algorithm that estimates the energy of late re-
verberant components based on the concept of inverse filtering, named as long-term
multiple step linear prediction. Firstly, they used long-term multiple step linear pre-
diction to estimate the energy of late reverberafions in the time domain. Then they
convert the late reverberant signal into the frequency domain and subtract its power

spectrum from that of the observed signal.

Temporal envelope filtering based algorithms were proposed in [11]. The main theme
of this method is that the clean speech signal is produced inside an enclosure (enve-
lope) having fine details of time-intensity distribution. Reverberations added to such a
clean speech signal have a blurring effect on its envelope, because of the reflections of
different intensities and delays added to the clean speech. Hence the average envelope
modulation spectrum of the clean speech can be recovered from the reverberant speech

by filtering the time trajectories of spectral bands in reverberant speech [11,91,110].

Yegnanarayana and Murthy developed a reverberant speech enhancement method by
manipulating the excitation source information that is contained in the linear predic-
tion (LP) residual signal, based on the characteristics of the LP residual of reverberant

speech [186]. The processing method involves identifying and manipulating the resid-
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ual signal in different regions of the reverberant speech, namely, regions which is high
signal-to-reverberation ratio (SRR), low SRR, and only reverberant. A weight function
is derived at gross and fine levels to modify the LP residual signal. In [187], Yegna-
narayana et al. proposed a multichannel reverberant speech enhancement technique
by exploiting the features of the excitation source in speech production. The authors
use time-aligned Hilbert envelopes to represent the strength of the peaks in the LP
residual. The Hilbert envelopes are then summed and used as a weight function which
is applied to the LP residual of one of the microphones. In most of the LP residual-
based methods, it is assumed that room reverberation would introduce only zeros into
the microphone signals and, as a result, would primarily affect only the nature of the
speech excitation sequence, having little impact on the all-pole filter [14]. Therefore,
speech dereverberation can be accomplished by processing only the speech excitation

signal, leaving the LP coeflicients untouched.

Spectral processing methods

Spectral based processing of reverberant speech is another common approach used in
the literature [3,53]. In [94], Lebart et al. introduced a single channel speech dere-
verberation method based on spectral subtraction to reduce the reverberation effecf.
The reverberation suppression method based on spectral subtraction is not sensitive
to fluctuations in the impulse response. The method estimates the power spectrum of
the reverberation based on a statistical model of late reverberation and then subtracts
it from the power spectrum of the reverberant speech. The authors assumed that the
reverberation time is frequency independent and the energy related to the direct sound
could be ignored. The authors also assume that the SRR of the observed signal is
smaller than 0 dB which limits the use of the proposed solution to situations in which
the source-microphone distance is smaller than the cfitiqal distance (The distance be-
tween source and microphone at which the direct path energy is equal to the combined

energy of the early and late reflections).

Wu and Wang [179] proposed a two-stage model to enhance reverberant speech. In the

first stage, an inverse filter of the room impulse response is estimated, to increase the
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SRR by maximizing the kurtosis of the LP residual to reduce the early reflections. In the
second stage, late reverberation effects are removed by a spectral subtraction approach.
The maximum kurtosis part [58] employed in [179] requires at least 500 iterations
to obtain the inverse filtered speech. However, as mentioned in [179], if the inverse
filter is not precisely estimated, inverse ﬁitering may even degrade the reverberant
“ speech rather than improve it. In [56] a similar two-stage approach is proposed using
multichannel blind deconvolution with specfral subtraction for the enhancement of

reverberant speech.

Spectral-temporal methods

In [57], the authors proposed a reverberant speech enhancement algorithm using spatio-
temporal and spectrai processing. The speech signals are first spatially averaged fol-
lowed by temporal larynx cycle averaging of the LP residual of the voiced speech to
primarily attenuate the early reverberation. This is followed by spectral subtraction
to attenuate the late reverberation. This method takes the advantage of a multi-
microphone system for spatial averaging. A similar two-stage single-microphone system
is also developed in [60]. In the first stage, the spectral processing technique proposed
in [61] is used to suppress late reverberation. In the second stage, the early reflections
are suppressed by the LP residual processing in a similar way as in [67]. The basis is
that the waveform of the LP residual between adjacent larynx-cycles varies slowly, so
that each such cycle can be replaced by an average of itself and its nearest neighboring
cycles. The averaging results in the suppression of spurious peaks in the LP residual
caused by room reverberation. The dynamic programming projected phase-slope algo-
rithm (DYPSA) algorithm [116] is employed for automatic estimation of glottal closure
in_stants in voiced speech. However, no attempt is made to eliminate spurious instants
detected in the unvoiced and silence regions by the DYPSA algorithm. Therefore, a
 high and low SRR region detector needs to be incorporated in [57] and [60] to eliminate

spurious instants.

Recently, an algorithm has been proposed in [88] for the enhancement of reverberant

speech based on the combination of temporal and spectral processing. In this method,
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spectral processing is performed first, and in the second step the spectrally-processed
speech signal is then subjected to temporal processing. The main reason behind this
spectro-temporal processing is the identification of high SRR regions, primarily when
the RT is high. Due to the convolutive nature of reverberant speech, low SRR and
reverberation-only regions (late reverberant regions) also look like speech signals that
makes it difficult to separate low and high SRR regions. Therefore, spectral processing
is first performed in [88] to eliminate the late reverberant regions and then temporal

processing is performed.

Another technique presented in [67] by Hazrati et al. proposed a multi-stage subband-
based blind dereverberation algorithm suitable for reverberant speech enhancement.
The proposed algorithm operates by first splitting the reverberant inputs into different
subbands. In the second stage, the inverse filters are estimated using the blind decon-
volution multiple input-output inverse-filtering theorem based approach, while in the
third-stage power spectrum of the late impulse components are subtracted from the
power spectrum of the inverse filtered speech in order to suppress the late reverberant

energy.

Lebart et al. [93] proposed a statistical model for late reverberations. With this model,
the spectral variance of the late reverberations can be estimated from the reverberant
speech [93]. This work has been carried out further by Jeub et al. for the suppression of
late reverberations [78]. This original model was developed as frequency independent
where a fixed reverberation time (RT) was used for all the frequency channels in the
estimation of the decay rate of room reverberations. However, it was suggested by
Habets et al. [62] that the spectral variance of the late reverberations can be more
accurately estimated if a frequency dependent statistical model is adopted. Such an

idea will be explored in Chapter 5.

2.4 Distortion Due to Background Noise

Background noise is another form of interference affecting the speech quality and in-
telligibility. Although, this thesis is not focussing on the distortions caused by the

background noise, a novel algorithm is developed in this thesis to enhance the noisy
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reverberant speech (will be discussed in detail in Chapter 4), based on the EMD tech-
nique. Therefore, it is necessary in this thesis to provide background and literature

review of interference by background noise, with focus on the EMD technique.

2.4.1 Conventional methods for noise reduction

Before describing the EMD based denoising techniques, a brief overview of the classical
methods for the enhancement of noisy speech is provided here. Different noise reduction
| methods have been proposed in the literarure, particularly in the case of additive white
Gaussian noise [42,43,47,132,149,158]. When noise estimation is available, then filtering -
gives accurate results. Linear methods such as Wiener filtering [132], and the method
based on MMSE filtering [47] are also used because linear filters are easy to implement
and design. These linear methods are not so effective for signals presenting sharp
edges or impulses of short duration. Furthermore, real signals are often nonstationary.
In order to overcome these shortcomings, nonlinear methods have been proposed and
especially those based on wavelets thresholding [42,43]. The idea of wavelet thresholding
relies on the assumption that signal magnitudes dominate the magnitudes of noise in a
wavelet representation so that wavelet coefficients can be set to zero if their magnitudes
are less than a predetermined threshold [42]. A limitation of the wavelet approach is

that basis functions are fixed, and thus do not necessarily match all real signals.

2.5 EMD for data analysis

EMD has been proposed recently as one of the versatile methods for the analysis of non-
stationary and nonlinear data. The idea was given by Huang et al. [71] for analyzing
non-stationary and nonlinear processes. The major benefit of the EMD is that basis
functions are derived adaptively from the vdata itself unlike the traditional methods
. where basis functions are fixed. EMD extracts, sequentially and intrinsically, the energy -
associated with various intrinsic time scales in the signal. The output components
after this extractioﬁ are named as intrinsic mode functions (IMF), starting from high

frequency to lower ones. As the phenomena occurring naturally are non-stationary
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and nonlinear, EMD can be a useful tool for their analysis. In the literature many
applications of EMD can be found towards the analysis of climate and speech data, as
both of them are complicated and contain rich properties [55,71,181]. In the context of
speech, literature shows that EMD plays an important role in the algorithms employed

for the enhancement of noisy speech signals [18-20,54,83,141,180].

Historically, Fourier analysis has dominated the data analysis efforts since it has been
introduced and still used for different kinds of data. Although Fourier analysis can
be used for the data under very general conditions, it imposes some very important
restrictions on the system under observation: the system must be linear and the data
must follow a periodic pattern or must be stationary [71,181]. Besides Fourier analysis,
other non-stationary methods were used by the research community for the analysis
of data. For example wavelet analysis, smoothing by moving averaging, the spectro-
gram and least squares estimation of the trend. Further details can be found in many

fundamental data processing books, (see, for example, [22]).

2.5.1 EMD for noise reduction

Several Works have explored the use of EMD for noise reduction and noisy speech
enhancement. Rilling et al. in [141] examined the usefulness of the EMD technique
towards the analysis of a more general form of white Gaussian noise, i.e., fractional
Gaussian noise. The estimation of the scaling exponents has also been studied and
explored. Similarly, Flandrin et al. in [55] investigated the advantages of EMD in the
analysis of fractional Gaussian noise. They found that EMD behaves like a dyadic filter
bank. Recently, a method is proposed in [29] for the enhancement of a noisy speech
signal using adaptive EMD. The main idea is to combine adaptive noise cancellation
with the EMD technique in order to improve the performance in terms of enhancement.
The noisy signal is decomposed into its IMF's and adaptive noise cancellation is applied

on an IMF level.

In [83] the authors proposed a method for the enhancement of noisy speech signals
based on the idea of thresholding the IMFs obtained from noisy speech using hard or

soft shrinkage. They proposed two strategies for the noise reduction named as EMD-
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shrinkage in which EMD is incorporated with hard shrinkage, and EMD-MMSE in -
which EMD has been combined with minimum mean squared error (MMSE) filter.
The enhanced signal is reconstructed from the processed IMFs. The method based
on an EMD-MMSE filter in [83] will be explored in the method‘ proposed in Chap-
ter 4 of this thesis. Similarly in [20] an algorithm has been developed for the noisy
speech enhancement based on EMD. The Savitzky-Golay filter and soft thresholding

are investigated in this method.

Another recent technique investigated in [82] explores the performance of EMD for
the enhancement of noisy speech signals. The adaptive centre weighted average filter
which works in the time domain is combined with EMD. The authors claimed that
in the context of noise reduction, an adaptive weighted average filter works better on
IMF components rather than the full-band noisy speéch signal. Similarly, in [81] an
algorithm was proposed for the denoising of the voiéed speech based on EMD associ-
ated with an appropriate sifting process. The noisy speech signal is decomposed into
its corrésponding IMFs. As the noise is mainly occupying the lower order IMFs (high
frequency components), whereas the speech signal energy is focussed into the low fre-
quency IMF components. Hence an adaptive weighting average filter has been used
for the high frequency IMFs only rather than all the derived IMF components. In this
thesis, the interesting IMFs properties are exploited, and an algorithm is developed for

dealing with both additive noise and late reverberations, as explained in Chapter 4.

2.6 Summary

In this chapter a general review has been provided for the issues related to CPP and
the different solutions proposed. Firstly, classification of audio source in a cocktail
party has been discussed.‘ Then, different types of distortions present in a cocktail
party environment have been analysed. The distortions generated due to interfering
sound in the vicinity and the different methods proposed to deal with such distortions
have been discussed, i.e., CASA approaches, methods under the framework of BSS,
NMF/NTF based methods, sparse representation and compressed sensing, and model

based approaches. Similarly, room reverberations also caused distortions and as a result
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affected the speech quality and intelligibility. Therefore, in this éhapter characteristics
of the room reverberations have been discussed in detail followed by the different meth-
ods proposed in the literature for the treatment of such reverberations. Another source
of distortion is the background noise and hence different methods used for the reduc-
tion of such noise have been reviewed, with a particular emphasis on the EMD based
denoising methods. In subsequent chapters, contributions will be presented for dealing

with each of the above three types of distortions.



- Chapter 3

A Multistage Approach to Blind
Separation of Convolutive Speech

Mixtures

This chapter addresses the problem of separating convolutive speech nﬁxtures using
the two-microphone recordings, based on the combination of independent component
analysis (ICA) and ideal binary mask (IBM), together with a post-filtering process in
the cepstral domain. The proposed algorithm consists of three steps. First, a convo-
lutive ICA algorithm is applied to separate the source signals from two-microphone
recordings. In the second step, an IBM is estimated by comparing the energy of the
corresponding time-frequency (T-F) units from the separated sources obtained with
the convolutive ICA algorithm. The last step is to reduce musical noise caused by T-F
masking using cepstral smoothing. The performance of the proposed approach is evalu-
ated using both reverberant mixtures generated using a simulated room model and real
recordings in terms of both objective measurements and subjective listening tests. The
proposed algorithm offers considerably higher efficiency and improved speech quality

while producing similar separation performance compared with a recent approach.

32
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3.1 Introduction

As discussed in Chapter 2, both ICA and IBM techniques can be used to address the
problem of the separation of source signals from their convolutive mixtures. How-
ever the separation performance of ﬁlany developed algorithms based on ICA is still
limited, and leaves much room for further improvement, especially when dealing with
reverberant and ndisy mixtures. Similarly, the separation algorithms developed for
the convolutive speech mixtures based on IBM technique required prior knowledge of
both the target speech and interfering signal. However, in practice, only mixtures are
available, and therefore only the IBM estimated from the mixtures can be used, which
itself is a major computational challenge. To overcome the limitations of both the ICA
and IBM techniques, an effective algorithm is developed in this chapter in which both
the methods are combined such that the IBM can be estimated from the intermediate
separation results that are obtained by applying an ICA algorithm to the mixtures.
The errors generated due to estimation of the IBM are mitigated by cepstrum based

processing method.

The proposed approach in this chapter is essentially motivated by Pedersen et al. [129]
who proposed a method for the blind separation of source signals in which the IBM
has been estimated from intermediate separation results that are obtained by applying
an ICA algorithm to the mixtures. The limitation of the CASA methods as mentioned
in Chapter 2,’ i.e., having to estimate the IBM directly from the mixtures, is mitigated
aé the IBM-can now be estimated from the coarsely separated source signals obtained
by ICA algorithms. The estimated IBM can be further used to enhance the separation
quality of the coarsely separated source signals. Such a combination was shown to
achieve good separation performance. However, both the mixing model and separation
algorithm considered in [129] are instantaneous, which in practice may not be sufficient
for real recordings. In this chapter, combination of ICA and IBM techniques is explored
for the separation of convolutive speech mixtures by using a convolutive mixing model
and a convolutive separation algorithm. Another related work was proposed in [145]
where the target speech is extracted from the mixture using ICA and time-frequency

masking. However, a common problem with T-F masking is the errors introduced in
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the estimation of the binary mask which has not been well addressed. To deal with the
estimation errors of the binary mask, a cepstrum based processing method is employed

here.

In the algorithm proposed in this chapter, first a convolutive ICA method is applied
[178] to the microphone recordings. As is common with many other existing ICA
algorithms, the separated target speech from this step still contains a considerable
amount of interference from other sources. The performance steadily degrades with an
increase of reverberation time. In order to reduce the interference within the target
speech, the IBM is estimated by comparing the energy of the corresponding T-F units
from the outputs of the convolutive ICA algorithm, and then applied to the original
mixtures to obtain the target speech and interfering sources. As will be confirmed
in the experiments, this process considerably improves the separation performance by
reducing the interference to a much lower level. However, a typical problem with the
binary T-F masking is the introduction of errors in the estimafion of the masks. The

errors may result in some isolated T-F units, causing fluctuating musical noise [7,101].

The estimated IBM is further processed using cepstral smoothing [101]. More specif-
ically, the binary mask is transformed into the cepstral domain, and the transformed
mask is smoothed over time frames using the overlap-and-add technique. In the cep-
strum domain, it is easier to distinguish between the unwanted isolated random peaks
and mask patterns resulting from the spectral structure of the segregated speech.’
Therefore, different levels of smoothing can be applied to the binary T-F mask in
different frequency ranges. The smoothed mask, after being transformed back into the
T-F plane, is then applied to the outputs of the previous step in order to reduce the

musical noise.

The proposed approach is essentially a multistage algorithm, as depicted by a block
diagram in Figure 3.1 for two microphone mixtures. In the first stage, convolutive
speech mixtures z1(n) and zy(n) are processed by the convolutive ICA algorithm in
[178], where n represeﬁts the discrete time index. The resultant estimated source
signals of this stage are denoted as y;(n) and y3(n). In the second stage, the T-F

representations of y;(n) and ys(n) are used to estimate the IBM, and the resultant
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Figure 3.1: Block diagram of the proposed multistage approach. In the first stage, a
convolutive ICA algorithm (denoted as “Conv ICA”) is applied to the mixture signals
Xj{n) (j = 1,2) to obtain the coarsely separated signals yifn) (i = 1,2). In the second
stage, yi{n) is first normalised (denoted as ‘“Norm”) to obtain yi{n), which is then
transformed to Yi{k, m) using the STFT followed by the estimation of the binary masks
M-{k,m). In the third stage, cepstral smoothing is applied to the estimated masks
M-{k,m,) and the smoothed masks M"{k,m) are then used to enhance the separated

speech signals obtained from the second stage.
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masks are denoted by M{ (k,m) and Mg (k,m), where k represents the frequency index,
and m is the time frame index. The final stage is to perform smoothing of the estimated
IBM in the cepstral domain to reduce the musical noise. The smoothed version of the
estimated IBM is denoted by MJ; (k,m) and M};(k, m), as shown in Figure 1. Finally,
the smoothed masks (after being converted back to the spectral domain) are applied
to the outputs of the previous step, followed by an inverse T-F transform to obtain the

estimated source signals in the time domain.

The remainder of the chapter is organised as follows. The convolutive ICA approach
and its utilization in the first stage of the proposed method is presented in Section 3.2.
Section 3.3 describes in detail the second stage of the algorithm, i.e., how to estimate
the IBM from the outputs of the convolutive ICA algorithm. Musical noise reduction
using cepstral smoothing, i.e., the final stage of the proposed algorithm, is explained
in Section 3.4. Section 3.5 thoroughly evaluates the proposed method and compares
it with two related methods [129] and [178]. Further discussions about the results and

some conclusions are given in Section 3.6.

3.2 BSS of Convolutive Mixtures in the Frequency Do-

main

In a cocktail party environment, N speech signals are recorded by M microphones,

which can be described mathematically by a linear convolutive model

N P
zi(n) =D Y hiP)sin—p+1)  (G=1,..,M) (3.1)

i=1 p=1
where s; and z; are the source and mixture signals respectively, h;; is a P-point room
impulse response [4] from source siv to microphone z;. The BSS problem for convolutive
mixtures in the time domain is converted to multiple instantaneous problems in the
frequency domain by applying the short time Fourier transform (STFT) to equation
(3.1), see e.g. [2,8,64,68,126,136,139,146,148,154,178,189], and using matrix notations,
as follows

X(k,m) = H(k)S(k, m) (3.2)
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where X(k,m) = [X1(k,m), ..., Xpr (k,m)]T with its elements X;(k,m) being the T-F
representations of the microphone signals z;(n), S(k,m) = [S(k,m), ..., Sn(k, m)]¥
whose elements S;(k, m) are the T-F representations of the source signals s;(n), and
[]¥ denotes vector transpose. The mixing matrix H(k) is assumed to be invertible and
time invariant. In this study a two-input two-output system has been considered, i.e.,

N=M=2.

To find the sources, an unmixing filker W(k) can be applied to the mixtures, also shown

in Figure 3.2
Y(k,m) = W(k)X(k,m) (3.3)

- where Y(k,m) = [Y1(k, m), Ya(k,m)]” represents the estimated source signals in the
T-F domain and W(k) is denoted as [[W11(k), Wi2(k)]T; [Way(k), Was(k)]T]¥, which
can be estimated based on the assumption of independence. Many algorithms have
been developed for this purpose [6,8,9,32,126,146]. In this work a convolutive ICA
approach in [178] is used for the estimation of W(k). Applying an inverse STFT
(ISTFT), Y(k,m) can be converted back to the time domain denoted as

y(n) = ISTFT(Y(k,m)) (3.4)

where y(n) = [y1(n), y2(n)]" denotes the estimated source signals in time domain. This
inverse transform is for the purpose of applying a scaling operation to the estimated
sources, as explained in the next section. Similar to many existing ICA approaches,
e.g., [126], however, the separation performance of [178], especially the quality of the
separated speech, is still limited due to the existence of a certain amount of interference
within the separated speech. The performance further degrades with an increase of the
reverberation time (RT'). Such degradation is caused partly by the tradeoff between the
filter length used in the convolutive model and the frame length of the STFT within the
frequency-domain algorithms. For a high reverberation condition, an unmixing filter
with long time delays is usually preferred for covering sufficiently the late reflections.
On the other hand, the frequency domain operation usually requires the frame length
of the STFT to be significantly greater than the length of the unmixing filter, in order
to keep the permutation afnbiguities across the frequency bands to a minimum. The

filter length constraint may be relaxed when other techniques, such as beamforming
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Figure 3.2: Block diagram showing

the first stage of the proposed ap-
proach. The mixture signals in T-F
domain, i.e., Xj{k,m) are the input
to a frequency-domain BSS algorithm.
The unmixing filter Wij{k) {i,j = 1,2)
is then estimated in the frequency do-

main, and Yi{k, m) is the T-F represen-

tation of the separated signals.
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Figure 3.3: Flow chart showing the sec-
ond stage of the proposed method. The
separated signals from the first stage
i.e., yiin) {i = 1,2) are scaled to yi(n),
which are transformed to the T-F do-
main Yifk,m) using the STFT. The fi-
nal step is to estimate the binary masks

M /(k,m) from F)(/c,’n).
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and source envelope correlations [112,148,159], are used for solving the permutation

problem; however the performance of such techniques deteriorates considerably for

highly reverberant acoustic conditions. To improve the quality of the separated speech

signals, it is considered to further apply the IBM technique, as detailed in the next

section.

3.3

Combining Convolutive ICA and Binary Masking

In order to explain the connection of this stage with the previous stage, a flow chart

is shown in Figure 3.3. The two outputs “i(n) and y:{n) obtained from the first stage
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are used here to estimate the binary masks. Since these outputs are arbitrarily scaled,
it is necessary to reduce the scaling ambiguity using normalisation, given as follows
~ yi(n) .
(n) = =22 =1,2 3.5
yl (’I'L) max (yz) ? ’ ( )
where maz denotes the maximum element of its vector argument y; = [y;(1), ..., %; (L)]7,
and L is the length of the signal. After this, the two normalized outputs are transformed

into the T-F domain using the STFT as

Yi(k,m) = STFT(§i(n)) i=1,2 (3.6)

Without the scaling operation, the processing by (3.4), (3.5) and (3.6) can be omited
within the algorithm. By comparing the energy of each T-F unit of the above two

spectrograms, the two binary masks are estimated as [169]

1 if | Yi(k,m) |> 7 | Ya(k,m) |,

M (k) = | Ya(k,m) |> 7 [ Ya(k,m) | 37)
0 otherwise Yk, m.
1 if | Ya(k,m) |> 7 | Yi(k,m) |,

Al m) | | ¥k, m) | 9
0 otherwise Yk, m. ~

where 7 is a threshold for controlling the sparseness of the mask, and 7 = 1 has been
used in the experiment. For example if 7 >1, then the two estimated masks will be
having fewer unity/one values in comparison to the two estimated masks obtained
above for 7 =1, and hence become more sparse. The masks are then applied to the T-F
representation of the original two-microphone recordings in order to recover the source

signals, as follows
v/ (k,m) = M (k,m)X;(k,m) i=1,2 (3.9)

The source signals in the time domain are recovered for the purpose of pitch estimation

in the next section, using the inverse STFT (ISTFT).

y;(n) = ISTFT(Y, (k,m)) i=1,2 (3.10)
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As observed in the experiments, the estimated IBM considerably improves the sepa-
ration performance by reducing the interference to a much lower level, leading to the
separated speech signals with improved quality over the outputs obtained in Section
3.2. However, a typical problem with the binary T-F ‘masking is the introduction of
errors in the estimation of the masks causing fluctuating musical noise [7,101]. To
mitigate this problem, a cepstral smoothing technique is employed [101] as detailed in.

the next section.

3.4 Cepstral Smoothing of the Binary Mask

The basic idea is to apply different levels of smoothing to the estimated binary mask
across different frequency bands. Essentially, the levels of smoothing are determined
based on the speech production mechanism. To this end, the estimated IBM is first
transformed into the cepstral domain, and the different smoothing levels are then ap-
plied to the transformed mask. The smoothed mask is further converted back to the
spectral domain. Through this method, the musical artifacts within the signals can
be reduced, and at the same time, the broadband structure and pitch information of
the speech signal are well preserved [101,122], without being noticeably affected by the
smoothing operation. Representing the binary masks of (3.7) and (3.8) in the cepstrumk

domain given as
M{(l,m) = DFT~{In(M] (k,m)) le=0,.,k-1} (3.11)

where | and k are the quefrency bin index and the frequency bin index respectively
[101], DFT represents the discrete Fourier transform, in denotes the natural logarithm
operator and K is the length of the DFT. To avoid the infinity error due to in, a
lower bound is applied to Mif (k,m) in (3.11). After applying smoothing, the resultant

smoothed mask is given as

M;(l,m) = NM;(l,m —1) + (1 = \)MF(I,m) i=1,2 (3.12)
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where ); is a parameter for controlling the smoothing level, and is selected according

to different values of {

Aenv 1€ {0,...,lenv}y
A= ‘)‘pitch ifi= lpitcha (3'13)
Apeak if I € {(lenv +1), ..., K} \lpitch

where 0 < Aenv < Apiteh < Apeak < 1, leny is the quefrency bin index that repre-
sents the spectral envelope of the mask MY (k,m) defined as [le (k,m),MQf (k,m)]T,
and Ilyen is the quefrency bin index showing the structure of the pitch harmonics
in MY (k,m). The principle employed for this range of X is illustrated as follows.
M1, m)=[M¢Q1,m), M§(I,m)]T, I € {0, ..,lenv}, basically represents the spectral en-
velope of the mask M/ (k,m). In this region the value selected for ); is relatively low
to avoid distortion in the envelope. Similarly, low smoothing is applied if I is equal
to lpitch, 50 that the harmonic structure of the signal is maintained. The symbol “\”
is used to exclude Iy, from the quefrency range (leny + 1), ..., K. High smoothing is
applied in this last range in order to reduce the artifacts without harming the pitch
information and structure of the spectral envelope. Different from [101], the pitch fre-
quency ié calculated in this work by using the segregated speech signal obtained in

Section 3.3. Specifically, pitch frequency can be computed as
lpitch = a'rgma‘xl{Yc(lam) l llow < l < lhigh}a (314)

where Y¢(l,m) is the cepstrum domain representation of the segregated speech signal
4 (n) obtained in (3.10). Note that the subscript i in symbols \;, [ and Y¢(I,m) within
(3.13) and (3.14) have been omitted for notational convenience. The range ljow, lhign is
chosen so that it can accommodate pitch frequencies of human speech in the range of

50 to 500 Hz. The final smoothed version of the spectral mask is given as
M} (k,m) = exp(DFT{M; (1, m) Jizo,..,k-1}), (3.15)

This smoothed mask is then applied to the segregated speech signals of Section 3.3, as

follows

Yi(k,m) = ML (e, m)Y/ (k,m)  i=1,2 (3.16)
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Table 3.1: The proposed multistage algorithm

1) Initialize the parameters, such as M, N, overlapfactor, and read the speech mixtures into x(n).

2) Convert z(n) to the T-F representation X(k,m) using STFT, and apply the convolutive ICA algorithm in [178] to
the mixture X(k,m) for estimating W(k). Obtain Y(k,m) according to (3.3).

3) Use (3.4), (3.5) and (3.6) to calculate Y;(k, m).

4) Estimate sz (k,m) according to (3.7) and (3.8), where i = 1, 2.

5) Compute Yif (k,m) based on (3.9) and yf(n) using (3.10). Compute the cepstrum domain representation of y; (n),
ie, Y¢(,m).

6) Calculate M{ (I, m) using (3.11).

7) Use (3.12) to calculate M, (I,mm), where }; is chosen according to (3.13), and I = lpitch is determined by (3.14).
8) Compute —M{(k‘, m) based on (3.15), and 7{(k, m) according to (3.16).

9) Apply the ISTFT to 7{ (k,m) to obtain the separated signals in the time domain.

By further applying the ISTFT to ?{(k,m), the separated source signals can then
be obtained in time domain. According to the explanation in the above sections, the

algorithm presented in this chapter is summarized in Table 3.1.

3.5 Results and Comparisons

In this section, the performance of the proposed method is evaluated using simulations.

The algorithm is applied to both artificially mixed signals and real room recordings.

3.5.1 Experimental setup and evaluation metrics

A pool of 12 different speech signals from the TIMIT database has been used in the
experiments. These speech signals were uttered by six male and six female speakers
with 11 different languages [129]. All the signals have the same loudness level. The
Hamming window is used with an overlap factor set to 0.75. The duration of the speech
signal is 5 seconds with a sampling rate of 10 KHz. The rest of the parameters are
set as: leny=8, liow=16, lpigh=120, Aenv=0, Apitcn=0.4, and Apeqr=0.8. Performance
indices used in evaluation include signal to noise ratio (SNR), the percentage of energy
loss (PEL) and the percentage of noise residue (PNR) [70,129]. The expressions of
PEL and PNR are given below

PEL = 2n(e1(W)’ | (3.17)

2n(I(n))?
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n 2
PNR= % (3.18)

where 7(n) and I(n) represent the estimated signal and the signal resynthesized after
- applying the ideal binary mask [129]. e;(n) stands for the signal present in I(n) but
absent in 7(n) while ey(n) shows the signal present in %(n) but absent in I(n). SNR; is
- the ratio of the desired signal to the interfering signal taken from the mixture, where ¢
refers to the input. SNR, is the ratio of the desired signal resynthesized from the ideal
binary mask to the difference of the desired resynthesized signal and the estimated
sigﬁal, where o refers to the output [129]. Notations mSNR;; mSNR, and ASNR are
also used in the evaluation where mSNR; and mSNR, are the average results for fifty
random tests and ASNR=mSNR,—mSNR;. All the SNR measurements are given in

decibels (dB) in the subsequent experiments.

3.5.2 A separation example

To show the performance of the proposed method for interference suppression; an exam-
ple is given here when applying the algorithm to the separation of two speech mixtures
obtained by mixing two sources from the pool described in the above section using
the simulated room model [4], with RT set to 100 msec. The spectrograms of the two
source signals are shown in Figure 3.4(a) and (b), and the two mixture signals in Figure
3.5(a) and (b). For the computation of the spectrograms, the FFT frame length was
set to 2048 (i.c., 204.8 msec), and the window length (or frame shift) was fixed to 512
giving, 75% overlap between neighBoring windows. Other parameters were the same
as those specified in the above section. Figure 3.6(a) and (b) show the spectrograms
of the output signals obtained from the first stage of the proposed algorithm. The
results obtained from the second stage of the proposed algorithm are shown in Figure
3.7(a) and (b), and from the third stage in Figure 3.8(a) and (b). For the convenience
of comparison, some T-F regions within the spectrograms are highlighted to show the
performance improvement for interference suppression at each stage. In particular,
three regions are shown in one of the two source signals, which are marked as A, B and
C for the original one (i.e. the source signal before the mixing operation) and as A;,

B; and C; for the separated. one (i.e. the source signals estimated from the mixtures),
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Figure 3.4: Spectrograms of the two original speech signals used in the separation
example. Three areas in each are highlighted for purposes of comparison with Figures

3.5-3.8 .

where i = 1,2,3 is the stage index. Similarly three regions in the other source are
marked as D, E and F for the original one and as Di, Ei and Fi for the separated
one after each stage of the algorithm. From the highlighted regions, it can be observed
that the interference within one source that comes from the other is reduced gradually
after the processing of each stage. Compared with the output of the first stage, the
interference within the estimated sources from the output of the third stage has been

reduced significantly.

Time (s) Time (s)

() (b)

Figure 3.5: Spectrograms of the mixture signals that were generated by using the
simulated room model with RT set to 100 msec. Both signals in (a) and (b) are the

mixtures of two speech sources but with different attenuation and time delays.
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Figure 3.6: Spectrograms of the separated speech sources obtained from the output
of the first stage of the proposed algorithm, i.e., by applying the convolutive ICA
algorithm. It can be observed that a considerable amount of interference from the

other source still exists in the highlighted regions.

p—

0.5 . 15 .
Time (s) Time (s)

(a) (b

Figure 3.7: Spectrograms of the separated speech sources obtained from the output of
the second stage of the proposed algorithm, i.e., by applying the estimated IBM. The
interferences in the highlighted regions have been considerably reduced as compared

with those in Figure 3.6.
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Figure 3.8: Spectrograms of the separated speech sources obtained from the output of
the third stage of the proposed algorithm, i.e., by applying cepstral smoothing to the
estimated IBM. The interferences in the highlighted regions have been further reduced

as compared with those in Figures 3.6 and 3.7.

3.5.3 Objective evaluation

First, the performance of the proposed algorithm has been evaluated for the separation
of convolutive mixtures that were generated artificially by using the simulated room
model [4], for which the RT can be specified explicitly and flexibly. The robustness of
the proposed algorithm has been assessed to the changes of the key parameters used
in the algorithm, such as the window length and the FFT frame length, as well as
to evaluate the performance variations against different conditions for generating the
mixtures, such as the reverberation time and the noise level. In each of the subsequent
experiments, change is made only to one parameter, i.c., the one that has to be tested,
but keep all the other parameters fixed (as those already specified in Section 3.5.1).
For each of these evaluations, the results obtained were the averaged performance of
the results for 50 different convolutive mixtures, with each consisting of two speech
sources randomly picked up from a pool of 12 speech signals [129]. In the experiments,
it has been observed that ASNR measured from the output of the third stage is slightly
lower (hence negligible) than that measured from the output of the second stage of the
proposed algorithm, although subjective listening tests suggest that the quality of the

separated speech has been improved (as shown in Section 3.5.4). For this reason, the
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results of mSNR, shown in this section are measured from the output of the second
stage (as shown in our preliminary work [76]). However, more comprehensive results
for mSNR,, measured at each stage of the proposed algorithm are given in Section 3.5.5.
Analysis of variance (ANOVA) based statistical significance evaluation ( [69], chapter
11) of the performance difference between the second and third stage of the algorithm

is also given in Section 3.5.5.

In the first experiment, the window length was varied from 256 to 2048 samples, while
the other parameters were set identical to those in Section 3.5.1 and 3.5.2. The results
are given in Table 3.2. It can be seen that the highest ASNR is obtained for the
window length of 512. Therefore, the window length equal to 512 samples was used in

the following experiments.

In the second experiment, the FFT frame length was changed from 512 to 2048. The
average results for different FFT frame lengths are given in Table 3.3. It can be seen
that by increasing the FFT frame length from 512 to 2048 samples, the performance
of the proposed algorithm in terms of SNR, PEL and PNR is all improved. The best
performance is obtained at 2048. Hence, the FFT frame length used for the subsequent

experiments was fixed to 2048 samples.

In the third experiment, the reverberation time of the simulated room has been changed
~ when generating the mixtures. The average results in terms of PEL, PNR and ASNR
for the various RT's are summarized in Table 3.4, where the unit for RT is msec.
A noticeable trend in this table is that the performance degrades gradually with an
increase of RT, which is not unexpected due to the increasing sound reflections for

higher room reverberations.

In the fourth experiment, different levels of microphone noise is considered by adding
white noise to the mixtures, where the noise level was calculated with respect to the
level of the mixtures, with a weaker noise corresponding to a smaller number [129].
The average ASNR values for different noise levels are given in Table 3.5. It can be
observed that the performance of the algorithm decreases as the noise level is increased,

and similar to [129], the algorithm can tolerate the noise levels up to -20 dB.

Lastly, the performance of the proposed algorithm is evaluated (without considering
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Table 3.2: Separation results for different window lengths

Window | PEL | PNR | mSNR; | mSNR, | ASNR
Length
256 9.10 | 15.30 1.10 7.11 6.01
512 | 8.60 | 14.48 1.10 7.44 6.34
1024 9.30 | 14.70 1.10 7.11 6.01
2048 10.92 | 15.92 112 6.32 5.20

Table 3.3: Separation results for different FFT frame lengths

NFFT | PEL | PNR | mSNR; | mSNR, | ASNR

512 9.06 | 14.96 1.10 7.17 6.06
1024 8.65 | 14.53 1.10 7.40 6.30
2048 8.60 | 14.48 1.10 7.44 6.34

noise) by varying the values of Aeny, Apiten and Apeqr With the other parameters fixed
as: RT =100 msec, window length=512, and NFFT=2048. The values of Aepy , Apitch
and Apeqr as discussed in section 3.4, were chosen in the range [0,0.9]. The results
measured by mSNR, are given in Figureé 3.9, 3.10 and 3.11 respectively. From Figure
3.9, it is observed that mSNR, after the third stage increases slowly for .)\em, ranging
from 0 to 0.4 and then starts decreasing. Figure 3.10 shows a very slight increase in
mSNR, when Ay is between 0 and 0.5 followed by a very slight decrease. In Figure
3.11, mSNR, first increases slowly when Apeqr varies from 0 to 0.4 and then a sharp
decrease is observed when Apeqy is between 0.5 and 0.9. These experiments show that
the separation performance varies to some extent when different values for Aeny, Apiten

and Apeqr are used.

Table 3.4: Separation results for different RT

RT | PEL | PNR | mSNR; | mSNR, | ASNR
40 2.16 2.24 1.13 13.22 12.08
60 3.79 4.12 1.15 10.94 9.79
80 5.50 8.30 1.14 9.42 8.27
100 | 8.60 | 14.48 1.10 7.44 6.34
120 | 10.99 | 19.53 1.03 6.30 5.26
140 | 13.36 | 24.14 0.94 5.48 4.53
150 | 13.86 | 25.38 0.90 5.29 4.39
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Table 3.5: Separation results for different noise levels

Noise PEL PNR mSNRj mSNRo  ASNR

-40 dB  8.60 14.48 1.10 7.45 6.34
-30 dB  8.60 14.48 1.10 7.44 6.34
-20 dB  8.62 14.52 1.10 7.43 6.33
-10 dB  9.46 16.49 1.09 6.91 5.81

75

p—{0) S
|

0.2 0.4 0.6

Figure 3.9: Separation performance measured by mSNRo with different values of Ag

0 o o o 6—0—9 0—0

0.2 0.4 0.6
"pitch

Figure 3.10: Separation performance measured by mSNR” with different values of Xplth-



3.5. Results and Comparisons 50

0.2 0.4
Figure 3.11: Separation performance measured by mSNRo with different values of 4peak-

3.5.4 Listening tests

As mentioned in the above section that ASNR measured from the output of the third
stage of the proposed algorithm appears to be slightly lower than that measured from
the output of the second stage of the proposed algorithm (see more results and detailed
analysis in the next section). This suggests that cepstral smoothing actually does
not improve the objective performance in terms of SNR measurement (see also [169]).
Nevertheless, the informal listening tests seem to contradict the SNR measurements
and confirm that the cepstral smoothing does improve the quality of the separated
speech, especially for the musical noise removal. To show this, subjective listening
tests have been conducted by recruiting 15 participants with normal hearing. Each of
these listeners was asked to give an integer score ranging from 1 (musical noise clearly
audible) to 5 (noise not audible) for the final segregated speech signals, as suggested
in [7]. During these tests, each participant was asked to listen to 2 groups of separated
speech signals obtained in the experiments where RT was set to 50, 100, 150 and 200
msec respectively, with one group containing )j and the other group containing yy. A
total of 8 groups of speech signals were evaluated subjectively by these participants.
Each group was composed of 3 speech signals, i.e. the estimated source obtained
from the output of the second stage, the one from the third stage, and the source
signal estimated by Pedersen et al.s method. Note that the listeners had no prior

knowledge on which signal was obtained from which algorithm. This ensures a fair
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Table 3.6: MOS obtained from subjective listening tests

RT | MOS before | MOS after | MOS for Pedersen ANOVA based statistical significance
smoothing smoothing et al. evaluation of MOS before & after smoothing
F-value Ferit p-value
50 3.26 3.90 3.01 5.0048 [ 4.1960 0.0320
100 2.12 2.62 2.29 4.7094 | 4.1960 0.0386
150 1.87 2.39 2.02 5.0995 | 4.1960 0.0319
200 1.09 2.07 1.82 50.2059 | 4.1960 0.0000

comparison between the algorithms. The mixtures used in these tests were generated
by the simulated room model with RT equal to 50, 100, 150 and 200 msec, respectively.
The scores given by the listener are provided on the basis of how clean the separated
signals from the two sﬁages are in comparison to each other, or how fnuch musical noise
is present in the separated signals. A signal with less musical noise is cleaner, and hence
is given a highér mean opinion score (MOS) [7]. The average results of MOS for the 15
listeners are given in Table 3.6. It indicates that using cepstral smoothing gives higher
MOS, suggesting the improved quality of the separated speech. To examine whether
the improvement in MOS after smoothing is statistically signiﬁcant, one-way ANOVA
based F-test [69] has been performed for the MOS obtained before and after smoothing.
The results are given in Table 3.6. The critical value (Ferit) is the number that the
test statistic must overcome to reject the test. The p-value stands for the probability
of a more extreme (positive or negative) result than what is actually achieved, given
that the null hypothesis is true. F-value can be defined as the ratio of the: variance
of the group means to the mean of the within group variances. All the F-tests in this .
work have been carried out at 5% significance level. If F' < F.;; and p-value is greater
than 0.05 (5% significance level), then the given results are statistically insignificant.
It can be observed that the p-values obtained for all the cases of RT in Table 3.6 are
smaller than 0.05, suggesting that the improvement in all the four cases is statistically

significant.

Additional listening tests have been carried out using the speech signals randomly
selected from the experimental results employed for the objective evaluation of the pro-
posed method. 20 volunteers have been recruited to participate the subjective listening

tests, including the 15 listeners mentioned earlier. The results have been evaluated
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Table 3.7: MOS obtained from subjective listening tests for different window lengths

For RT'=100 msec
Window | MOS before | MOS after MOS for ANOVA based statistical significance
Length smoothing smoothing | Pedersen et al. | evaluation of MOS before & after smoothing
F-value Ferit p-value
256 2.35 3.70 2.57 64.4233 | 4.0980 0.00000
512 2.70 3.65 2.90 16.5277 | 4.0980 0.00023
1024 2.60 3.65 2.81 24.1470 | 4.0980 0.00001
2048 2.40 3.10 2.64 7.0000 4.0980 0.0118
For RT=200 msec
Window | MOS before | MOS after MOS for ANOVA based statistical significance
Length smoothing smoothing | Pedersen et al. | evaluation of MOS before & after smoothing
F-value Ferit p-value
256 1.70 2.80 1.94 16.7810 | 4.0980 0.00021
512 1.75 2.70 2.04 21.5016 | 4.0980 0.00004
1024 1.75 2.65 2.01 15.1626 | 4.0980 0.00038
2048 1.55 2.35 1.78 15.6903 | 4.0980 0.00031

for different window lengths in Table 3.7, for different FFT frame lengths in Table 3.8
and for different noise levels in Table 3.9. The RT has been set to 100 and 200 msec,
respectively. The criteria used in Table 3.6 for the MOS have also been employed here.
The results given in Table 3.7 show that for different window lengths at RT = 100 and
200 msec, cepstral smoothing offers higher MOS scores, indicating that the quality of
the segregated speech signal has been improved. A similar trend can be observed in
Table 3.8 and 3.9 where using cepstral smoothing achieves a higher MOS. In all cases

the differences of MOS before and after smoothing are statistically significant.

3.5.5 Comparison to other methods

In this section, the proposed multistage method has been compared with two related
approaches in [129] and [178]. In [178] speech signals were separated from convolutive
mixtures by exploiting the second order non-stationarity of the sources in the frequency
domain, where the cross-power spectrum based cost function and a penalty function
have been employed to convert the separation problem into a joint diagonalization
problem with unconstrained optimization. Pedersen et al.’s method [129] combines an

instantaneous ICA algorithm with the binary T-F masking for underdetermined blind
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Table 3.8: MOS obtained from subjective listening tests for different FFT frame lengths

For RT'=100 msec
NFFT | MOS before | MOS after MOS for ANOVA based statistical significance
smoothing | smoothing | Pedersen et al. | evaluation of MOS before & after smoothing
F-value Ferit p-value
512 3.30 4.10 2.88 17.3714 | 4.0980 0.00017
1024 3.20 4.15 2.87 17.3646 | 4.0980 0.00017
2048 2.70 3.65 2.90 16.5277 | 4.0980 0.00023
For RT'=200 msec
NFFT | MOS before | MOS after MOS for ANOVA based statistical significance
smoothing smoothing | Pedersen et al. | evaluation of MOS before & after smoothing
F-value Ferit p-value
512 2.05 2.80 1.89 8.8509 4.0980 0.00510
1024 1.75 2.50 1.96 10.3012 | 4.0980 0.00270
2048 1.75 2.70 2.04 21.5016 | 4.0980 0.00004
Table 3.9: MOS obtained from subjective listening tests for different noise levels
For RT'=100 msec
Noise | MOS before | MOS after MOS for ANOVA based statistical significance
smoothing smoothing | Pedersen et al. | evaluation of MOS before & after smoothing
F-value Ferit p-value
-40 dB 3.30 4.20 2.84 15.8660 | 4.0980 0.00029
-30 dB 3.20 4.15 2.70 19.3211 | 4.0980 0.00008
-20 dB 2.70 3.70 2.09 14.3939 | 4.0980 0.00051
-10 dB 1.80 2.55 1.84 10.6079 | 4.0980 0.00240
For RT=200 msec
Noise | MOS before | MOS after MOS for . ANOVA based statistical significance
smoothing smoothing | Pedersen et al. | evaluation of MOS before & after smoothing
) F-value Ferit p-value
-40 dB 2.00 2.80 2.01 16.0000 | 4.0980 0.00028
-30 dB 2.15 2.85 1.93 12.3311 | 4.0980 0.00120
-20 dB 1.70 2.50 1.76 18.4242 | 4.0980 0.00011
-10 dB 1.30 1.90 1.49 9.7714 | 4.0980 0.0034
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Table 3.10: Comparison results for different window lengths

Window [ mSNR; [ mSNR, after | mSNR, after | mSNR, after | ANOVA test for the difference
Length the 1st stage | the 2nd stage | the 3rd stage | between the SNRys from the
2nd and 3rd stage

F-value Ferit p-value
256 1.10 2.98 7.11 6.81 0.9085 | 3.9380 0.3429
512 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068
1024 1.10 3.01 7.11 . 6.09 11.4642 | 3.9380 0.0010
2048 1.12 2.95 6.32 5.32 12.8289 | 3.9380 0.0005

source separation, where the outputs of the ICA algorithm were used to estimate the

binary mask in an iterative way to extract multiple speech sources from two mixtures.

Comparison between the proposed method and the method in [178] is essentially equiv-
alent to the comparison between the outputs from the third (and/or second stage) and
those from the first stage, as the method in [178] is employed in the first stage of the
proposed approach. Therefore, without performing additional experiments, more re-
sults are shown that were obtained from the experiments already conducted in Section
3.5.3. In parallel with the results shown in Tables 3.2, 3.3, 3.4, and 3.5, the comparison
results in terms of mSNR,, is shown in Tables 3.10 for different window lengths, 3.11 for
different FFT frame lengths, 3.12 for different RT values and 3.13 for different noise
levels. All the results were measured based on 50 random tests. Note that mSNR,
obtained after the first stage of the proposed method is approximately calculated. This
is because, according to the definition of SNR, in Section 3.5.1, the masked output
signals should be used for the calculation of output SNR, while the obtained signal
from the output of the first stage [178] is not a masked signal. The results in Table 3.10
clearly indicate that the output SNR has been improved at the second and third stage
in comparison to the first stage for different window lengths. The objective results from
the third stage in terms of mSNR, measurement are slightly worse than those of the
second stage, due to the smooﬁhing operation.\ According to the subjective listening
tests in the previous section, the quality of the speech source from the third stage is

actually improved, due to the reduced level of audible musical noise.

Table 3.11 compares the results of the proposed method and the method in [178] for
different FFT frame lengths, where the window length was fixed to 512, the overlap
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Table 3.11: Comparison results for different FFT frame lengths

NFFT | mSNR; | mSNR, after | mSNR, after | mSNR, after | ANOVA test for the difference
the 1st stage | the 2nd stage | the 3rd stage between the SNR,s from the
' 2nd and 3rd stage
F-value Ferit p-value ’
512 1.10 3.01 717 6.46 5.8298 3.9380 0.0176
1024 1.10 3.02 7.40 6.57 7.4946 | 3.9380 0.0074
2048 1.10 3.02 7.44 6.59 7.6412 | 3.9380 0.0068
Table 3.12: Comparison results for different RT'
RT | mSNR; | mSNR, after | mSNR, after | mSNR, after | ANOVA test for the difference
the Ist stage | the 2nd stage | the 3rd stage between the SNRos from the
2nd and 3rd stage
F-value Ferit p-value
40 1.13 3.70 13.22 9.44 100.2190 | 3.9380 0.0000
60 1.15 3.47 10.94 8.48 40.4630 | 3.9380 0.0000
80 1.14 3.36 9.42 7.75 23.1972 3.9380 0.0000
100 1.10 3.02 7.44 6.59 7.6412 3.9380 0.0068
120 1.03 2.70 6.30 5.82 3.7015 3.9380 0.0573
140 0.94 2.47 5.48 5.23 0.9266 3.9380 0.3381
150 0.90 2.42 5.29 5.11 0.5210 3.9380 0.4721
Table 3.13: Comparison results for different noise levels
Noise mSNR; | mSNR, after | mSNR, after | mSNR, after | ANOVA test for the difference
the 1st stage | the 2nd stage | the 3rd stage between the SNR,s from the
2nd and 3rd stage
F-value Ferit p-value
-40 dB 1.10 3.02 7.45 6.60 7.6297 3.9380 0.0069
-30 dB 1.10 3.02 7.44 6.60 7.6186 | 3.9380 0.0069
-20 dB 1.10 3.02 7.43 6.59 7.5950 | 3.9380 0.0070
-10 dB 1.09 3.06 6.91 6.09 8.2232 | 3.9380 0.0051
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factor and RT remained the same as those used for Table 3.10. From this table, we
can also observe the improved performance of the proposed method in terms of SNR
measurements, as compared with the method in [178]. Subjective listening tests also
show that the results have considerably improved quality over those in [178] for different
FFT frame lengths, which are consistent with the SNR measurements. In Table 3.12,
comparison has been made for different values of RT, where the window length and
the overlap factor were identical to those used in Table 3.11, and the FFT frame length
was the same as that in 3.10. The results show that the output SNR, decreases with
an increase in RT, and the proposed method has better performance in terms of the
averaged output SNR. Specifically, when RT equais to 100 msec, mSNR,, of the third
stage is approximately 4 dB higher than that of the first stage. The improvement is
more prominant when RT is relatively low. In Table 3.13 experiments are performed
by considering the microphone noise in the mixture, as discussed already in Table 3.5.
In this table, RT was set to 100 msec, and other parémeters were the same as those
in Table 3.12. It can be observed that the proposed method performs better than the
method in [178] for the separation of noisy mixtures. Specifically, comparing mSNRO
between the first and third stages, it has been observed that there is about 3 dB
improvement for noise level at -10 dB, and 3.6 dB for noise level at -30 dB. The results
discussed above show that the proposed method outperforms the method in [178] in

terms of SNR measurements.

To determine whether the relatively small differences of mSNR, between the second and
third stage of the proposed method are statistically significant, one-way ANOVA based
F-test [69] is performed as described in Section 3.5.4. The testing results are given in
Tables 3.10, 3.11, 3.12 and 3.13. To explain how the F-test was applied to the results,
consider the case of NFFT equal to 512 (in Table 3.11) as an example, where mSNR,
after the second and third stage is 7.17 dB and 6.46 dB respectively. - Both mSNR,s
were calculated by averaging 50 individual SNR,s obtained from the 50 random tests.
FEach group of 50 SNR,s forms a vector, and hence two vectors can be fdrmed from
the second and third stage. The F-value was then computed from these two vectors,
which is 5.8298. The F-values in other cases and tables were computed in the same

way. From the results in these tables, it can be observed that in many testing cases the
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differences of mSNR,, between the second and third stage of the proposed algorithm,
although small, are statistically significant whereas in some cases the differences are

insignificant.

The performance of the proposed method is also compared with the algorithm in [129)
in terms of both computational complexity and separation quality. The separation
quality is measured objectively using SNR measurement as in the above experiments,
and sﬁbjectively by listening tests. To conduct this comparison, the real room record-
ings were used which were obtained in [129]. The real recordings were made in a
reverberant room with RT = 400 msec. Two omnidirectional microphones vertically
pléced and closely spaced are used for the recordings. Different loudspeaker positions
are used to measure the room impulse responses. Details about the recordings can be
found in [129] and are not given here. Clean speech signals from the pool of 12 speak-
ers were convolved with the room impulses to generate the source signals [129]. The
specifications of the computing facilities that were used to perform the experiments in-
clude Intel(R) Xeon(TM) 3.00GHz CPU and 31.48 GB memory. The results are given
in Table 3.14. The results show that the proposed algorithm is 18 times faster than
the Pedersen et al. method. Their method requires 700 minutes for 50 random tests
and 14 minutes per test. In contrast the proposed method is much faster and requires
40 minutes for 50 tests and 0.8 minutes per test. The time computational complexity
of both methods was also approximately calculated. The order of complexity of the
proposed method is O(Is(MFKlogK + M))+ O(I3sKMN(2N + M))+ O(MNI3K) +
O(FKlogK) + O(NKF) + O(L), where F is the number of frames!, L is the length
of the signal, and I3 denotes the required number of iterations for the convolutive ICA
algorithm [178] to converge. Similarly, the complexity of the Pedersen et al. method is
O(FKlogKIy) + O(NKFIp) + O(NMI 1), where I; is the iteration number for the
INFORMAX algorithm (used as a first stage in their method) to converge, while I
denotes the total number of iterations for the Pedersen et al. method to segregate the
speech mixtures. Although the results for ASNR are comparable, listening tests given
in Table 3.6 suggest that our results have a better quality than those in [129]. Some

demos are available on the website [175] for both real and artificial recordings.

If there is no overlap between adjacent frames then F - K = L.
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Table 3.14: Comparison of separation performance and computational cost between the proposed method
and Pedersen Et AL.’s method

Algorithm PEL | PNR | ASNR | Total Time Run time
time | per test | memory requirement?

Proposed 30.56 [ 9.73 2.50 40min 0.8min 223.28 MB

Pedersen et al. | 17.14 | 49.33 2.64 700min 14min 255.17 MB

?Note that the results also include the memory required for the matlab software

3.6 Summary

The proposed approach consists of three major steps. A convolutive ICA algorithm [178§]
is first applied in order to take into account the reverberant mixing environments based
on a convolutive unmixing model. Binary T-F masking is used in the second step for
improving the SNR of the separated speech signal, due to its effectiveness in rejecting
the energy of interference by assigning zeros to the T-F units in the masking matrix in
which the energy of the interference is stronger than the target speech. The artifacts
(musical noise) due to the error in the estimation of the binary mask in the segre-
gated speech signals are further reduced by applying the cepstral smoothing technique.
Compared with smoothing directly in the spectral domain, cesptral smoothing has the
advantage of preserving the harmonic structure of the separated speech signal while
reducing the musical noise to a lower level by smoothing out the unwanted isolated

random peaks.

In comparison to [178], considerable improvement achieved by the proposed method
in terms of both objective measurements using SNR and subjective listening tests is
mainly due to the introduction of the binary T-F masking operation and the cepstral
smoothing. The binary masking contributed mostly to the improvement of interference
cancellation, and cepstral smoothing further improves the perceptual quality of the
separated speech. For a reverberation time of 100 msec, the proposed algorithm achieves
approximately 4 dB SNR gain over the typical convolutive ICA algorithm in [178].
Compared with [178], the computational complexity of the proposed algorithm is higher
due to the additional processing of IBM and cepstral smoothing. It is however still

computationally efficient as FFT and its inverse are used for the transforms in all the
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steps.

Note the difference between the proposed method and Pedersen et al.’s method [129]
despite a similar combination of an ICA algorithm with the IBM technique. First,
the proposed algorithm directly addresses the convolutive BSS model based on the
frequency-domain approach, while Pedersen et al.’s method is based on an instanta-
neous model and an instantaneous ICA algorithm, even though their algorithm has also
been tested for convolutive mixtures. Second, the algorithm in [129] is iterative, which
is computationally demanding. Moreover, cepstral smoothing has been introduced in
the proposed method, which has the advantage of reducing the musical artifacts caused

by the IBM technique.

As observed in the results, reverberation and noise degrade the performance of the
separation for the convolutive speech mixtures. One could analyse reverberation and
noise effects and reduce such effects present in the microphone signals before applying

the ICA and IBM approaches. This issue will be addressed in the subsequent chapters.



Chapter 4

Empirical Mode Decomposition
for Joint Denoising and

Dereverberation

In Chapter 3, an algorithm for blind separation of convolutive speech mixtures is pro-
posed. However, the room reverberation effects on the convolutive speech mixtures
deteriorate the separation performance of the algorithm developed in Chapter 3. Also
the microphone noise could affect the separation performance. Therefore, in this chap-
ter an algorithm is developed to deal with the room reverberation and noise together.
The proposed method is for the enhancement of noisy reverberant speech using em-
pirical mode decomposition (EMD) based subband processing without any prior in-
formation. The proposed algorithm is a one-microphone multistage algorithm. In the
first step, noisy reverberant speech is decomposed adaptively into oscillatory compo-
nents called intrinsic mode functions (IMFs) via an EMD algorithm. Denoising is
then applied to selected high frequency IMFs using an EMD-based minimum-mean
squared error (MMSE) filter, followed by spectral subtraction of the resulting denoised
high-frequency IMF's and low-frequency IMFs. Finally, the enhanced speech signal is
reconstructed from the processed IMFs. The method was motivated by the observation
that the noise and reverberations are disproportionally distributed across the IMF com-

ponents. Therefore, different levels of suppression can be applied to the additive noise

60
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and reverberation in each IMF. This leads to an improved enhancement performance
as shown later in this chapter in comparison to a related recent approach, based on the

measurements by the signal-to-noise ratio (SNR).

4.1 Introduction

As already discussed in Chabter 2 that room reverberation is one of the main causes of
performance degradation in automatic speech recognition (ASR) systems. It has also
been discussed in detail in Chapter 2 that room reverberation is commonly modeled as
the combination of three parts, the direct signal, early reflections and the late reflec- .
tions. Late reflections degrade the quality and intelligibility of speech and can cause
serious problems to ASR performance. Therefore, it is very important to deal with the

late reverberations so that ASR performance can be enhanced.

The late reverberations are usually treated as diffusive noise whose variance is estimated
and then subtracted from the reverberant speech, for which the spectral subtraction
(8S) technique has been widely used [179]. To estimate the late reverberations, a
method based on an exponential decay function has been developed in [84]. The main
challenge in suppression of late reverberations is to estimate accurately its variance. The
presence of noise from the acoustical environments make it more difficult to estimate
the power of late reverberations. Therefore, in this chapter, it is considered to enhance
the noisy reverberant speech by jointly dealing with the late reverberations and the
additive acoustic noise having a Gaussian distribution and white spectrum. Note that
early reflections are not considered here and the method developed deals with the late

reverberations which can be treated as diffusive noise unlike early reverberations.

A new method is developed here using EMD based subband analysis. An EMD algo-
rithm is used to decompose the noisy reverberant speech into a linear combination of
the so-called IMFs, ranging from the high-frequency to low-frequency bands [71], [140],
[180], [181], [182]. Then the IMFs that have higher levels of noise are selected and
the EMD based MMSE filter [83] is applied to reduce the additive noise. In the next
step, the denoised IMF components and the remaining IMF components are used to

estimate the power of late reverberations. It has been observed that the energy of the
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x(n) IMF EMD-
selection MMSE

Spectral Signal
subtraction reconstruction

Figure 4.1: Block diagram of the proposed denoising and dereverberation system.

late reverberations is spread over the different IMFs with different magnitude. For this
reason, spectral subtraction is applied to each IMF according to the energy of the late
reverberations present in the IMF components. The proposed method is evaluated on
the simulated and real noisy reverberant speech data, and an improved performance
has been observed on the basis of SNR measurements. The next section presents the
proposed approach in detail. Section 4.3 shows the evaluation results, followed by a

conclusion in Section 4.4.

4.2 System Description

The proposed joint dereverberation and denoising system is depicted in Figure 4.1.
First, the EMD algorithm [71] is applied to the noisy reverberant speech x(n) to de-
compose the signal adaptively into C IMF components Zj{n), j = 1,..., C. In the next
step R components are selected from the C IMF components of %(n) for denoising.
Then, an EMD based MMSE filter [83] is applied to each of the selected IMFs to re-
duce its noise level. Spectral subtraction with variable scaling factors is applied to the
denoised IMFs and the remaining IMFs separately. Finally, the signal is reconstructed

as s{n).

4.2.1 EMD analysis and its Review

The concept of EMD was introduced by Huang et /. in 1998 [71]. The EMD algorithm

describes the signal details at certain frequency bands in the form of different IMFs [55].
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Each IMF has a distinct time scale and acts as a basis function [71], [140], [182]. There
are two main conditions that need to be satisfied by each IMF [71]. First, the difference
between the number of extrema and the number of zero crossings should not exceed
one. Second, the average value for the. envelope assigned to the local maxima and

minima is zero.

EMD is a powerful technique for data analysis. In practice, data obtained is an amal-
gamation of signal and noise such as signals acquired by microphones. Once the noise
contaminates the data, it is not a trivial task to remove it. When the acquisition pro-
cesses are linear and the noise has a distinct time or frequency scale from those of the
signal, the spectral filtering method based on Fourier analysis can be employed to sep-
arate the noise from the signal. However, the filtering methods will not work properly
when the processes are nonlinear. Even if the signal has distinct fundamental frequency
from that of the noise, the harmonics of the signal can still mix with the noise. Such
type of mixing of harmonics with noise will render the method based on Fourier filtering
ineffective as compared to a noise separating method. In such a scenario, the EMD
method can offer some benefits [71,180]. EMD is an adaptive method to decompose
data into its IMFs, which act as the basis components for the representation of the
given data. While the basis is adaptively obtained, it usually offers a physically mean-
ingful representatioh of the underlying procésses. Also because of the adaptive nature
of the basis, there is no need of harmonics and therefore EMD is suitable for analysing

data from nonlinear and nonstationary processes.

Neverthless, in [55] and [180] it has been found empirically that EMD works as a dyadic
filter bank for the white Gaussian noise and is capable.of separating the white noise
into IMF components having mean periods, with each having exact twice the value of
the previous one. It has also been found that all the IMF components are normally
distributed [180]. Hence these findings are the motivation for using EMD to enhance

the reverberant speech signal contaminated by white Gaussian noise in this chapter.

EMD is implemented through a sifting process that is summarized as follows [55], [71],
[140], [182]:

(1) For the given noisy reverberant signal (data), z(n), identify all the local extrema.
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(2) Connect all the maxima and minima separately by applying natural cubic spline

interpolation to form the upper envelope u(n) and lower envelope I(n).
(3) Calculate the mean of the envelopes as m(n) = [u(n) + (n)]/2.

(4) Find the early-IMF by taking the difference between the data and the mean as
h(n) = z(n) — m(n).
(5) Check the early-IMF whether it fulfils the two conditions as mentioned in the

begining of this section, to be a candidate IMF.

(6) If the early-IMF does not satisfy the conditions, repeat steps 1-5 on h(n) as many

times as required until it satisfies the conditions.

(7) If the early-IMF does meet the conditions, assign the early-IMF as an IMF compo-
nent, Z(n).

(8) Repeat steps 1-7 on the residue signal r(n) = z(n) — 2(n), i.e., replacing z(n) in
step 1 by 7(n).

(9) The iteration terminates when the residue, rc(n), becomes a monotonic function

from which no more IMF can be extracted.

Now the mathematical details are given below to further clarify how the EMD algorithm
works. The following equations show the sift process that finds the first IMF component

Z1(n), assuming steps 1-5 are repeated ! times before this component is found.

z(n) — my,1(n) = ka1 (n);
h1,1(n) — my,2(n) = hia(n);
(4.1)
hii-1(n) — my(n) = hy(n);
If h1,(n) satisfies the sifting conditions, then it is selected as an IMF, i.e., Z1(n) +

hiy(n). It is straightforward to reach from (4.1) that

Z1(n) = z(n) — (may + myg+ ... +my) (4.2)
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The other IMF components can be similarly extracted, i.e.,

z(n) — Z1(n) = r1(n);

ri(n) — Z5(n) = r5(n); (4.3)

re-1(n) — Zc(n) = rc(n);
As a result, z(n) is decomposed into a sum of C' IMFs and a residue r¢(n) (assuming
rc(n) is a monotonic function),
C o
z(n) =Y %(n) +ro(n) (44)
j=1
where Z;j(n) represents the jth IMF component. Typically, C' was set to 15 in the
simulations, where different values of C' have also been tested which however give

similar results.

4.2.2 IMFs of speech signals for denoising

Only part of IMF's are selected for the denoising in the next subsection 4.2.3. In order
to explain the reason behind the selection of these IMF's, an example is given here in
which first the noisy Speech signal is generated by adding white Gaussian noise to the
clean speech signal at SNR= 4 dB. Then, the EMD algorithm is used to derive the
IMF components of the clean and its corresponding noisy signal. In Figures 4.2 and
4.3, all the IMF components (ranging from high to low frequencies) derived from the
clean speech and its corresponding noisy speech are shown respectively. From the
comparison of these two figures, it can be observed that the noise is mainly present in
the high frequency components. Motivated from this observation the high frequency
IMF components Z;(n),j = 1, ..., R have been chosen for denoising. In this work R=10

is used in the experiments, which is found empirically to be a suitable number.

4.2.3 EMD-MMSE filtering for noise reduction of speech

In this step, denoising is performed for the selected high frequency IMF components
Zj(n), where j = 1,..., R, using the MMSE filter [83]. In general, speech noise can be
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Figure 4.2: The IMF components derived from the clean speech signal. There are 15

IMF components ranging from high to low frequencies.
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Figure 4.3: The IMF components derived from the noisy speech signal. Again 15 IMF

components ranging from high to low frequencies are taken for purpose of comparison

with Figure 4.2.
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estimated using Boll’s method [17]. The silence periods of the signal are detected and
then the noise power spectrum is estimated by averaging the power spectra of the noisy
signal on the M first temporal frames corresponding to the silence period. Here the
first R IMF's are used separately in order to estimate the noise power, following the

relation [83]
A ] M1
| Bi(k) =37 > | Bitkid) P, G=1,...R (45)
i=0

where | B;j(k;4) | represents the magnitude spectrum of the jth IMF component at the
discrete frequency k and time frame ¢ (index used for the silence period), and | B;(k) |?

is the estimated noise power of the jth IMF component at frequency bin k.
The combined operation of EMD and MMSE filter [47,48] is named as EMD-MMSE.
Hence each IMF is filtered by the MMSE filter as follows:

2j(kym) = Hj(k;m)%;(k;m),  j=1,.,R (4.6)

where 2;(k;m) and Z;(k;m) are the spectra of the jth estimated IMF and noisy IMF
components respectively, observed at the discrete frequency & and the time frame m.

Hj;(k;m) can be defined as follows [47]

The signal to noise ratio, SN Ry, can be estimated based on the previous frame of the
~ estimated 2j(k;n — 1) and a local estimation of SN Ripg, given as [47]
22(k;m —1)

SNRprio(k;m) =q Bz(k)
j

+ (1 — a)ymaz (SN Rinsi(k; m), 0) (4.8)

where « is a weighting factor (chosen empirically to be 0.98 in this work), maz denotes
the maximum element of its argument, and SN Rinst represents the instantaneous SN R,
and can be defined as the local estimation of SN R,
Ef(k; m)
B (k)
Hence Z;(k;m) with j = 1,..., R, obtained in equation (4.6) are the denoised IMF

SN Rinst = (4.9)

components which are further processed in the next step in order to remove the late

reverberations from these components.
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4.2.4° IMFs based spectral subtraction for the suppression of late re-

verberations

‘It has been observed that the late reverberations lead to the blurring effect on the
speech spectrum in the frequency domain, resultihg in a smoothed spectrum [179).
Therefore, the power spectrum of the late reverberation components can be estimated
as the smoothed and shifted version of the power spectrum of the denoised reverber-
ant IMF components 2;(k,m),j = 1,..., R and remaining low frequency components,
Zj(k,m),j = R+1,...,C. For notational simplicity, all of these components are now

represented by Z;(k,m) where j =1, ...,C.
1Sy, (ks m)[? = qw(m — p) * |25 (k; m)? (4.10)

where |5y, (; m)|? is the short term power spectrum of the late reverberations in the
jth IMF componen’c, ~ is the scaling factor specifing the relative strength of the late
reverberation components, the symbol * denotes the convolution operation, w(m) is a
smoothing window, and p refers to the relative delay of the late reverberations. The
short-term speech spectrum can be obtained by using the Hamming window of length

16 msec with 8 msec overlap for the short-term Fourier analysis.

To estimate the power spectrum of the original speech, the power spectrum of the
late reverberation components can be subtracted from that of the IMF components
Zj, j=1,..,, R. Spectral subtraction can be employed for each selected component as

follows [179],

(s m)[? = ygeo(m — p) = |25 (kym) .

3i(k;m)|? = 2 k;m)|*maz -
550 m) P = [2 k)| T

(4.11)

where |5;(k;m)|? represents the power spectrum of the jth IMF component of the
estimated version of the original speech, € stands for the floor parameter which was set
to be 0.001 in the experiments, corresponding to the maximum attenuation of 30 dB and
'; is a scaling factor, discussed below. The spectral subtraction procedure discussed
above in equation (4.10) and (4.11) were also used for all the IMF components including

the remaining low frequency IMFs 2;, j = R-+1,...,C.
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Figure 4.4: The spectrograms of the subtracted IMFs shown in the descending order
of frequency patterns with the highest frequency component on the top left and the

lowest frequency component on the bottom right.

4.2.5 Selection of variable scaling factor

The variable scaling factor j;j is used for the estimation of the late reverberations
from the IMF components. To show the motivation for using variable ’jj, an example
is provided here in which the IMF components of the reverberant speech signal (at
RT= 200 msec) and the clean speech signal are taken. Then, the IMF components
of clean speech signal are subtracted from the corresponding IMF components of the
reverberant signal to obtain the distribution of the energy of late reverberations. The
spectrograms of the subtracted IMF components are shown in Figure 4.4. From this

figure, it can be observed that the late reverberations tend to spread over the different
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Figure 4.5: Variable scaling factor jj, j=I,...,15. Note that the first 7 IMF components

contain more diffusive noise, and therefore scaling factor has high values for them.

IMFs with variable energy, i.e. having high energy in the first few high frequency IMFs
and decreases in the lower IMFs. Motivated by this fact, it is proposed to use variable
scaling factors yj instead of a fixed one (as used in method [179]). The high values of
7 are selected for the first few high frequency IMF components while being decreased
for the lower frequency components. Different values for 7 have been tested. The
optimized values of 7 for each corresponding IMF component are shown in Figure 4.5

where the RT is equal to 200 and 500 msec respectively.
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Table 4.1: The proposed EMD based method for joint denoising and dereverberation

Task: Use EMD for the enhancement of noisy reverberant speech.
Input: z(n).
Output: §(n).
Initialization: 1) In (4.4), x(n) is split into the sum of C' = 15 IMFs:
2) In (4.5), R = 10 IMFs are used.
3) In (4.8), @ = 0.98 is used.
Part A: The goal is to denoise x(n). The steps are:
1) Use (4.1)-(4.4) to split z(n) into the sum of C IMFs, ie., Z(n),j=1,...,C.
2) Use (4.5)-(4.9) for the R IMFs (i.e., Z;(n), j = 1,..., R) in order to reduce noise, leaving
(C — R) IMFs (ie., %;(n), j = R+1,...,C) unprocessed.
Part B: The goal is to dereverberate z(n). The steps are:
o Use (4.10) and (4.11) for the processed R IMFs from Part A (i.e., 2;(n), j =1,...,R) and
the unprocessed IMFs (i.e., Z;(n), j = R+1,...,C), to achieve dereverberation. v; in (4.11)
is used in two ways, i.e., for low and high reverberation conditions.
(a) For low reverberant condition
o If (=1,...,4), then v; = 1.2
o Else if (j = 5,6,7), then v; = 1.1,1.0,0.9
e Blse if ( =8, ...,C), then ; = 0.1
(b) For high reverberant condition
o If(j=1,...,4), then v; = 2.9
e Else if (j = 5,6,7), then «; = 2.8,2.7,2.6
e Blse if ( =8, ...,C), then ; = 0.1
Output: Compute §(n) according to (4;12).

4.2.6 Signal reconstruction

Finally, the enhanced signal §(n) can be reconstructed by the superposition of the

processed IMFs, and the residue, given as follows,

R

C
8n) =Y 5+ Y 8(n)+rc(n) (4.12)

j=1 j=R+1
where §;(n) is computed as the inverse FFT of 5;(k;m) obtained in (4.11). The pro-

posed algorithm is summarized in Table 4.1.

4.3 Expérimental Results and Discussions

In this section, the performance of the proposed method is evaluated using simulations.

Four clean speech utterances, 2 male and 2 female all sampled at 16 kHz were used. The
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simulated RIRs from the image model [4] and the real RIRs from the ATR database [79]
were used to generate the reverberant signals from the clean speech signals with different
RTs, which were then added by white Géussian noise with SNR values ran;ging from
-12 dB to 4 dB. The size of the room used in the case of simulated RIRs is 10 x 10 x 10,
and the microphone and speaker were positioned at [3, 8, 5] and [2, 2, 5] respectively
(the unit is meter) [4]. The performance index used in the evaluations is the SNR [133].
The SNR. in dB can be defined as,

SN (s(n))?
SNER =10lo 4,13
TSI (s(ns) — 8(na))? (419)

where s(n;) and (n;) are the original signal and the enhanced signal respectively, and

N is the length of the signal.

First, an experiment has been carried out using the proposed method for the noisy
speech signals without room reverberations. Four clean speech signals described above
have been used in this experiment to generate noisy speech signals with SNR ranging
from -12 dB to 4 dB. In fotal 50 independent random tests have been conducted for
each SNR, and the average results were computed. The results are showﬁ in Figure
4.6. It can be observed from this figure that, for the input SNR ranging from -12 dB
to 4 dB, the output SNR ranges from 1.5 dB to 6.1 dB (approximately), which shows

the reasonably good performance of the proposed method for denoising.

In a further experiment, numerical simulations have been performed using simulated
RIRs for RT'= 200 and 500 msec respectively, with SNR ranging from -12 dB to 4 dB
for each RT. In total, 50 independent random tests have been conducted for each SNR,
and the average results were calculated. In order to ensure a fair comparison between
the proposed approach and the method in [179] (called for short Wu et al. method
hereafter), EMD-MMSE has also been applied as a preprocessing step to the Wu et al.
method. Figure 4.7 shows the comparison of the methods for the signals in terms of
SNR obtained for RT= 200 and 500 msec respectively, and for different noise levels.
From Figure 4.7, it can be observed that the proposed algorithm offers improvement
over the Wu et al. method with EMD-MMSE preprocessing, especially for RT equal
to 500 msec, and comparable performance is observed for RT equal to 200 msec. As

compared to the results obtained by Wu et al. method without incorporating EMD-
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Figure 4.6: Average gain in SNR for the proposed method with different initial noise

levels without room reverberation. Results are the average of 50 random tests.
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Figure 4.7: Average gain in SNR for R7= 200 msec and 500 msec with different initial

noise levels. Results are the average of 50 random tests.

MMSE preprocessing, the proposed method has shown considerably higher performance

improvement.

Another set of experiments have been carried out using simulated RIRs from the image
model in which the performance of the proposed approach and the Wu et @l method
is evaluated and compared with and without EMD-MMSE filtering on the basis of
different source-microphone distances. The RT used in this set of experiments for all
the four signals is 500 msec with initial SNR= -4 dB. Average results for all the speech
signals based on 50 random tests, are depicted in Figure 4.8. It can be observed that as
the distance between the source and the microphone decreases the average performance
of both algorithms increases. In addition, it should be noted that the proposed method

performs better for larger source-microphone distances.

Now the performance of the proposed method is evaluated based on the real data
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—O—Proposed method at RT=500, initial SNR=-4 dB
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S-1
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Figure 4.8: Average gain in SNR for different source-microphone distances where R7=
500 msec with initial noise level equal to -4 dB. Results are the average of 50 random

tests.
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from the AIR database [79]. Five different types of RIRs have been used from the
AIR database recorded in five different types of room environments, namely booth,
- office, meeting, lecture, and stairway. For each room environment, a shorter source-
microphone distance and a longer source-microphone distance are used in the experi-
ments, denoted in pair as {Dy, Do} m respectively. Specifically the pair {Dy, D2} used
for each room is, {0.5,1.5}, {1,3}, {1.45,2.8}, {2.25,7.1}, and {1,3} m, respectively.
Four clean speech signals are then convolved with each of these RIRs, with SNR ranging
from -12 dB to 4 dB for each RIR to generate the noisy reverberant speech signals. In
total 50 independent random tests have been conducted for each SNR, and the average
results were computed. The results obtained for the proposed method in comparison
to the Wu et al. method with and without EMD-MMSE preprocessing are shown for
the five different types of rooms at {D;, Do} m in Figures 4.9, 4.10, 4.11, 4.12, and 4.13
respectively. It can be observed that for different rooms the proposed method offers im-
provement over the Wu et al. method with EMD-MMSE preprocessing, especially for
low direct-to-reverberant ratios (i.e., at Ds), and comparable performance is observed
at shorter source-microphone distance (i.e., D;), where the direct-to-reverberant ratio
is higher. As compared to the results obtained by Wu et al. method without incorpo-
rating EMD-MMSE preprocessing, the proposed method has shown considerably higher

performance improvement for all the five rooms at both distances (i.e., at Dy and Ds).

4.4 Summary

“In this chapter a novel approach has been presented for speech denoising and dere-
verberation, based on the EMD decomposition of the noisy reverberant speech. EMD
based MMSE and spectral subtraction have been applied to procesé the IMF com-
ponents separately. It has been observed that both the additive noise and the late
reverberations are spread over the different IMF components in varying magnitudes.
As shown in the experiments, performing MMSE and spectral subtraction on individ-
ual subband components offers better denoising and dereverberation performance as

compared with a related method that directly uses the noisy reverberant speech.

Although it has been shown in this chapter that EMD performs very well in enhance-
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Figure 4.9: (a) Average output SNR, for the booth room from the AIR database with

different initial noise levels, based on 50 random tests, at source-microphone distance

(a) Du (b) D-.
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Figure 4.10: (a) Average output SNR for the office room from the AIR database with
different initial noise levels, based on 50 random tests, at source-microphone distance
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Figure 4.11: (a) Average output SNR for the meeting room from the AIR database with
different initial noise levels, based on 50 random tests, at source-microphone distance
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Figure 4.12: (a) Average output SNR for the lecture room from the AIR database with

different initial noise levels, based on 50 random tests, at source-microphone distance
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Figure 4.13: (a) Average output SNR for the stairway from the AIR database with

different initial noise levels, based on 50 random tests, at source-microphone distance

(a) Di, (b) Dg.
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ment of the noisy reverberant speech, in particular, for the reduction of additive white
Gaussian noise, its performance in mitigating the reverberation distortion, as observed
in the experiments, is still limited. Therefore, in the next chapter, dereverberation
problem is further studied where new solutions are developed to enhance the reverber-

ant, speech.



Chapter 5

Suppressibn of Late and Early
Reverberations Using a
Frequency Dependent Statistical
Model

Suppression of room reverberations is a challenging problem in reverberant speech en-
hancement. A promising recent approach to this problem is to apply a spectral subtrac-
tion mask to the spectrum of the reverberant speech, where )the spectral variance of the
late reverberations was estimated based on a frequency independent statistical model
of the decay rate of the late reverberations, followed by a dual-channel Wiener filter to
mitigate the early reflections. In this chapter, a two stage dereverberation algorithm is
developed by following a similar process. Instead of using the frequency independent
model, however, in this work the frequency dependent reverberation time and decay
rate are estimated, and then used for the estimation of the spectral subtraction mask.
In order to remove the processing artifacts, the mask is further filtered by a smooth-
ing functién, and then applied to reduce the late reverberations from the reverberant
speech. In a second stage, a dual-channel Wiener filter is applied such that the earlyb

reverberations are attenuated. The performance of the proposed algorithm, measured

84
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by the segmental signal to reverberation ratio (SegSRR) and the signal to distortion
ratio (SDR), is evaluated for both simulated and real data. As compared with the
related frequency independent algorithm, the proposed algorithm offers a considerable

performance improvement.

5.1 Introduction

As mentioned in Chapter 2 the room reverberations degrade speech quality and in-
telligibilty. Hence a method should be vdeveloped to reduce their effects. Different
methods have been proposed in the literature (as discussed in Chapter 2) to deal with
the detrimental effects of room reverberations. 'Recently, Lebart et al. [93] proposed
a statistical model for late reverberations. With this model, the spectral variance of
the late reverberations can be estimated from the reverberant speech [93], which was
further used by Jeub et al. for the sﬁppression of late reverberations [78]. This original
model was developed as frequency independent where a fixed reverberant time (Zgo)
was used for all the frequency channels in the estimation of the decay rate of room re-
verberations. However, it was found by Habets et al. [62] that the spectral variance of
the late reverberations is frequency dependent. In this chapter, a new dereverberation
algorithm is proposed with a frequency dependent model for the late reverberations in
the first stage followed by a dual-channel Wiener filter to reduce the early reflections in
the second stage, which is baséd on the coherence model of the reverberant sound field.
Section 5.2 formulates the problem and its model. Section 5.3 describes the first stage
of the proposed approach which includes the estimation of frequency dependent Tgg
from room impulse responses (RIRs), the estimation of the spectral subtraction mask,
and the filtering (smoothing) of the mask. Section 5.4 describes the second stage of the
proposed method. Section 5.5 presents the evaluation results, followed by a conclusion

in Section 5.6.
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5.2 " Problem Formulation and Modelling

The reverberant speech signal z(n) can be modelled as the convolution of the anechoic

speech signal s(n) and the RIRs h(n) [117],

z(n) = Z h(l)s(n—-1) (56.1)
=0

where n is the discrete time index. Note that the mathematical formulation provided
here will be for single channel case. However, an extension for each of the two channels
can be performed in a similar way. The RIR of length 7} in seconds can be modelled
as [93]

hearty(n) for 0 <n < Tje - fs,

h(n) = § higte(n)  for Tie - fs <n < Tp- fo, (5.2)

0 otherwise

where heqriy(n) denotes the direct and early path, h.(n) is the late reflection path,

fs is the sampling frequency, and T}, is the time after which we assume that the late

reverberation starts. The range of T}, usually lies within 50 to 100 ms.

The reverberant speech signal can now be represented as the combination of two main

parts, i.e., mearly(n) and mlate(n)7

Tlefs_‘l TTfS
z(n)= > s(n—=DhD)+ > s(n—1)h(l) (5.3)
=0 , 1=Tiefs
Searty(n) Slate(n)

In order to reduce the effects of early reflections (eqriy(n)), inverse filtering may be
used as in [179] and [13]. For the suppression of late reverberations (z44¢(n)), a spectral
subtraction technique such as [93], [179], [61] is usually employed, where the spectral
variance of the late reverberations is estimated from the reverberant speech. A recent
technique for the spectral variance estimation was proposed by Lebart et al. [93], [94]
in which the late impulse responses are statistically modelled as

e for p > 0
hlate(n) = ﬁ(n)e ornz ’ (54)

0 otherwise
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where §(n) is a sequence of zero-mean mutually independent and identically distributed

(i.i.d.) Gaussian random variables, and «; denotes the decay rate given as
3!
o = n(10)
Toofs
where In is the natural logarithm. Using the above model originally proposed by Lebart

(5.5)

et al. in [93], [94], Jeub et al. [79], [78] have recently presented a dereverberation
algorithm with a frequency independent o1. However, it was shown in [62] that a
frequency dependent «; may provide more accurate estimation of the spectral variance
of the late reverberations. In the next section the first stage of a new dereverberation

algorithm is presented using this frequency-dependent model.

5.3 The Proposed Frequency Dependent Dereverberation
Method for Late Reverberation

5.3.1 Frequency dependent RIR model -

Applying the short-time Fourier transform (STFT), equation (5.2) can be rewritten in
the T-F domain as
Hegriy(m, k) for 0 <m < N,
H(m,k) = { Hjo(m,k) for Ny <m<N,, . (5.6)
0 otherwise

where N, and N, are the number of frames corresponding to Tj. and 7 respectively.

Hyge(m, k), the STFT of hjqe(n), is represented as
Tr-fs
Higre(m,k) = > h(n)w(n — mR)e72m/Nkn—mR) (5.7)
n=Tje fs
where m is the time frame index, & is the frequency bin index, w is the analysis window

of length N, and R denotes the hop size.

With the statistical model (5.4) and a frequency-dependent a;, Hige(m, k) can also be

written as [62],

B(m, k)e~aa(BImE  for m > 1,
Hige(m, k) = (5.8)

0 otherwise
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where S(m, k) is a sequence of zero-mean mutually i.i.d. Gaussian random variables,
and o1 (k) denotes the decay rate which can be obtained from the frequency dependent

reverberation time Tgo(k) as below

» 3ln(10)

(k) = 7 o s

(5.9)

5.3.2 Estimation of frequency dependent reverberation time

Robust estimation of Tgo(k) directly from the reverberant signal is a challenging task
to be discussed further in Chapter 6. As a proof of concept in this chapter, Tgo(k) is
" estimated from the RIRs which are assumed to be é,vailable. To this end, a method
similar to the one defined in ISO standard (ISO 3382-1:2009) is used. First, h(n) is
passed through a Gammatone filter-bank to obtain sub-band signals h(p,n), where p is
the sub-band index. Subsequently, h(p,n) are analysed using Schroeder’s method [153]
to estimate the reverberation time Tgo(p) in each sub-band p. Since this filterbank
(indexed by p) is different from the one used in the above section (indexed by k), the
Teo(p) values need to be inter- and extra-polated to obtain the estimate of Teo(k) in

each frequency bin k.

First interpolation is applied to Tgo(p) so that Tgo(p) from each sub-band p is mapped
to Teo(f), where f € [f.— b—;"—, fet+ 67“’] denotes the frequency range (in Hz) of sub-band
D, fo and bw are the centre frequency and the bandwidth of this sub-band respectively.
Then, smoothing is applied across the overlapped regions between the neighbouring

sub-bands _ _
Teo(f2) — Teo(f1)
fo—Ff1

where f; and f, are the frequency points of the neighbouring sub-bands at which

Teo(f) = Teo(f1) + (f = f) (5.10)

their overlap begins and ends respectively. Tgo(f1) and Teo(f2) are the reverberation
times at frequency points fi and f, respectively. For non-overlapped regions, no such
interpolation as (5.10) is required for Tgo(f). Finally, Teo(f) is then mapped to the
STFT sub-bands by an extrapolation method as '
> Teolf)
f=(k-1)E+1

TGO(k)’: (F/K—l)

(5.11)
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Note that, f = 1,2,...,F, where F is the whole frequency range and K denotes the
number of frequency bins (indexed by k). An alternative method without using the
inter- and extra-polation process is to set the hop size as a single sample when calcu-
lating the STFT, and then calculate Tgo(k) directly fpr each frequency band %, which

provides similar performance but is computationally more expensive.

5.3.3 Spectral subtraction mask estimation

The statistical model discussed above in equation (5.8) is valid when the energy of the
direct signal is low in comparison to that of all the given reflections. As a result the

spectral variance of the late reverberant speech can be estimated as [62]

02 (M, k) = e 2 RN 62 (N ) (5.12)

Llate x

where 02(m, k) is the variance of the reverberant speech which can be estimated by

recursive averaging
oa(m, k) = e 2 BE[r . o2(m — 1,k) + (1 = 7) - | X(m, k) |*] (5.13)

where 7 € [0,1] is a forgetting factor and X (m,k) is the T-F representation of z(n)
in (5.3). Note that N is the number of samples after which the late reverberation
begins and e~221(FE measures the reverberation decay rate. The posteriori signal-to-

distortion ratio (SDR) can then be estimated as follows [78]

2
p(m, k) = g—(m% (5.14)

To reduce the late reverberations, apply the following spectral subtraction mask [78]

to X (m, k)
1

N (5.15)

élate(ma k) =1-

In order to avoid over-estimation of o2, , (m,k), a lower bound GMin is applied to all

the weighting gains in the mask.
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5.3.4 Spectral gain smoothing

A common problem with spectral masking is the processing artifacts, i.e. the so-
called inusical noise. Therefore, similar to [78], a moving average operation is applied
to é’late(m, k). To this end, the power ratio between the enhanced signal and the
reverberant signal is calculated. However, different from [78] in this work, this power

ratio is computed at each frequency bin k and each time frame m

- 2
| Glate(my k) : Xref(ma k) |
| Xpe(m, k) |?

where X,..r(m, k) is the reference signal and can be obtained from the left channel and

p1(m, k) = (5.16)

right channel microphone signals given as

&Mmmzémmmm+mm¢n (5.17)

In the case of a single channel mixture X (m, k), Xyef(m,k) is simply replaced by
X (m, k). Then a moving average window can be generated, as follows:

1, if p1(m, k) > C,
Ey(m, k) = il k) (5.18)

2-1(1- %m’k)) | +1, otherwise.
where C is a constant controlling the trade off between the speech distortion and
reduction of musical noise, 1 is a scaling factor for determining the level of smoothing,
and [-| rounds the argument to its nearest integer. This window function can now be

used to create a smoothing filter as

m, ifk< Es(m,k),

Fy(m, k) = (5.19)

i, otherwise
By convolving Gigte (m, k) with Fg(m, k), a smoothed mask can be obtained as follows:

Giate(m, k) = élate(m, k) « Fg(m, k) (5.20)

Finally, the smoothed mask is applied to the T-F representation of the reverberant
signals as follows:

Sy(m, k) = X)(m, k) - Giare(m, k) (5.21a)
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Table 5.1: The proposed dereverberation method for late reverberation

Task: Use frequency dependent RIR model to suppress the late reverberation.
Input: X;(m, k) and Xr(m, k).
Output: §;(m, k) and Sr(m, k).
Initialization: 1) In (5.6), Nj. = 13 is used.
2) In (5.13), T = 0.1 is used.
3) In (5.18), C' = 2.5 and ¢ = 25 are used.
Part A: The goal is to estimate Tgo(k) from the RIR. The steps are:
1) Use h{(n) from (5.2) and pass it through Gammatone filter-bank to obtain h(p,n).
2) Apply Schroeder’s method to h(p,n) to estimate Tso(p). .
3) Use (5.10) and (5.11) to Ihap Teo(p) to Teolk).
Part B: The goal is to estimate spectral subtraction mask. The steps are:
1) Use (5.12) and (5.13) to estimate the spectral variance of late reverberant speech,
ie., aglm (m, k).
2) Use (5.14) and (5.15) to estimate the spectral subtraction mask, i.e., Gigze(m, k).
Part C: The goal is to reduce the musical noise from the spectral subtraction mask. The steps are:
1) Use (5.16)-(5.19) to generate a smoothing filter. '
2) Use (5.20) to obtain the smoothed spectfal subtraction mask, i.e., Giyie(m, k).
Output: Compute S;(m, k) and S-(m, k) according to (5.21).

Sp(m, k) = X, (m, k)/- Glate(m, k) (5.21b)

In the single channel case, similar operation is performed as Equation (5.21) by discard-
ing the subscript (I,7). The proposed dereverberation algorithm used for suppressing

late reverberation is summarized in Table 5.1.

5.4 The Dereverberation Method for Early reverberation

The spectral subtraction rule described in Section 5.3 is employed mainly to reduce the
late reverberations, and hence the early reverberation remains. Therefore, a second
processing step is incorporated here to deal with the effects of early reverberations.
Note that the method discussed below will only be applicable to the case of two-channel
(stereo) recordings. The subsequent coherence based method exploits the low coherence
of the sound field between different microphones to estimate the (direct) speech power
spectral density (PSD) and to remove all non-coherent signal parts while keeping the

coherent parts unaffected. Since only the direct speech shows a high coherence among
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sensors, cf. [78], this approach also reduces early reverberations.

In order to derive this method, consider two general microphone signals z1jo(n) under
the assumption that the source-microphone distance should be smaller than the critical
distance (The distance between source and microphone at which the direct path energy
is equal to the combined energy of the early and late reflections). The coherence

between the two signals z12(n) is defined as [78],

Loy (f)
\/}zlm (.f) * mez (j)

where Yy,0, (f) and iz, (f) are the auto-power spectral densities of ;(n) and zs(n)

cohyyz, (.f) =

(5.22)

respectively, Ty, 2, (f) denotes the cross-power spectral density between z1(n) and z4(n),
and f is the frequency range of signals in Hz. The relation between the frequency bin
index k£ and f can be described by the bin resolution as f;/k [Hz], where f; is the

sampling frequency.

Unlike Equation (5.3) in section 5.2, the reverberant signal here can be decomposed into
its direct components, early reverberant components, and late reverberant components.
For the sake of simplicity, décomposition provided here will be for monaural case only,
as an extension for each of the binaural channels can be performed in the same manner.
Note that this method can be used for two channel case only. The input signal z(n)

can be decomposed as [78]

Tdfs_l Tlefs_l Trfs
z(n) = Z s(n—1h(l)+ Z s(n—Dh(l)+ Z s(n — )h(l) (5.23)
N =0 B =Tyfs =T fs
Sairest(n) Zearty () Blate(n)

where T denotes the time span of the direct sound (including sound propagation). Note
that in Section 5.3, the early speech component Zq.;,(n) was the target signal, now
the direct speech component Zgirect(n) is the target signal. As a further remark, the
early and late reverberant components received by the microphones can be represented
by two additive, uncorrelated noise sources, cf. [78,179], hence the terms noise and
reverberant components are used interchangeably in the following discussion. Also
the first stage of dereverberation method proposed in this chapter does not affect the

coherence and therefore the outputs of the first stage can be used in this second step.
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Having described the basic idea of the coherence based dereverberation method, a dual-
channel Wiener filter is derived now which takes into account dual-channel coherence.
A common framework for speech enhancement is based on the minimun'a‘mean square
error criterion, cf. [165]. As a result the optimal weighting gains are provided by the

Wiener solution [78]
Yss(m, k)
Yss(m, k) + Lon(m, k)

where Xss(m, k) and 1y (m, k) are the auto-power spectral density of the original (clean)

Geolm, k) = (5.24)

signal and the additive noise component respectively. As discussed previously, the term

Yon(m, k) is referred to the auto-power spectral density of the reverberant components.

For computing the optimal postfilter coefficients in multichannel system, several ap-
proaches have been presented in the past. They all have in common that the estimation
procedure is optimized for a specific sound field model. A very well known method de-
veloped by Zelinski in [190] assumes a perfectly incoherent sound field and therefore,
uncorrelated noise at different sensors. Since this assumption does not hold in real
sound fields, an improved approach was developed by McCowan in [106], in which he

proposed to use a model of the coherence for diffuse sound field.

First, a brief derivation of this algorithm will be given and second, the estimation of
the required power spectra is discussed. Under the assumption of the same noise power

spectrum across sensors, the power spectra can be described as

Ts.s.(m, k) = Yas(m, k) + Lyn(m, k) (5.25)
Tis (M, k) = Yos(m, k) + Ton(m, k) (5.26)
Y6, (m, k) = Yss(m, k) + cohgys. (f)Yon(m, k) (5.27)

Note that Equations (5.25) and (5.26) under the assumption of the same noise power
spectrum across sensors are used to derive Equation (5.29) of the spectral weights of
the Wiener filter. An estimate of the original (clean) signal auto-power spectral density

can be obtained as [78,106]

Foym, ) = Re {T.ﬂs‘r (m, k)} — $Re {cohgls‘r (f)} (f‘glgl (m, k) + Ts, ¢ (m, k))

1—Re {cohgls; (f)} 5:25)
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where the tilde-operator {*} indicates an estimate as shown later. The function Re {-}
returns the real part of its argument. Since the estimated auto-power spectral density
of the signal may not be negative, a maximum threshold (cohmqz) for the coherence
function has to be applied to ensure that 1 — Re {COhs"l sr( f)} > 0 holds for the de-
nominator. The resulting spectral weights of the Wiener filter can now be computed

by _
Yos(m, k)

Gc(m> k) = ~ =~
% . (Tglgl (m, k) + 75,3, (m, k))

(5.29)

The spectral weights are further confined by a lower threshold G¢,;,, for robustness
against overestimation errors (i.e., biases in measurements) and to control the amount
by which reverberation is attenuated. The spectral weights are then applied to each of

the two channels (i.e., left and right) by

Si(m, k) = Sy(m, k) - Ge(m, k) (5.30a)
Sr(m, k) = Sp(m, k) - Ge(m, k) (5.30b)

After transforming S;(m, k) and S(m, k) back to the time domain using the inverse

STFT, the dereverberated signals 5;(n) and 5,(n) can be obtained.

The calculation of the weighting gains G.(m, k) comprises an estimation of the auto-
power spectral densities, i.e., 13,5,(m, k), 3,5, (m, k) and cross-power spectral density
Ys,3.(m, k) of the two input channels (i.e., left and right). A recursive approach has

been used here for this purpose given as [78]
Tasi1s,8. (Mo k) = T 505,5, (m — 1K) + (1 = ) | Sy (m, k) |2 (5.31)
fglgr (m, k) = agfglgr (m -— 1, k‘) -+ (1 — ag)gl(m, k) . 5’:(m, k) (5.32)

where ag € [0, 1] is a smoothing factor, S'”,n(m, k) are the left/right microphone signals

obtained in (5.21), and $*(m, k) is the complex conjugate of S,(m, k).

The essential part of this work is to choose a suitable model for the sound field coherence
in (5.28). The coherence model selected here is based on the binaural sound field and
can be expressed as [78]

Q p 2 ‘
c5hg;;‘:d)(f) = Zaq cexp | — <&) (5.33)
g=1

Cq
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Table 5.2: Coefficients and ordexj of the binaural coherence model

aq bq Cq

1 18.97 | 291.1
14.5 - 1073 | 875.2 | 105.7
2.38 - 1073 | 1371 | 151.5

(o5} N =R

ag, by, and ¢, are the coeflicients of the model, while g shows the order of the model.
Note that this model is based on the sum of Gaussians and provide an approximation
of the sou_nd field coherence. The coeflicients ag4, by, ¢4 for natural ear spacing of 0.17
m and a mixture of @) = 3 Gaussians are calculated using the MATLAB Curve Fitting
Toolbox. The values used here for ag, by, ¢4, for Q = 3 are given in Table 5.2 (Further
details can be found in [78]). The dereverberation algorithm used for reducing early

reverberation is summarized in Table 5.3.

Table 5.3: The dereverberation method for early reverberation

Task: Use Wiener filtering approach to suppress the early reverberation.
Input: 8;(m, k) and S, (m, k).
Output: —gl(m, k) and S(m, k).
Initialization: In (5.31) and (5.32), az = 0.8 is used.
Case: The goal is to estimate the spectral weights of the Wiener filter. The steps are:
1) Use (5.31) and (5.32) to estimate Tglgl (m, k), f’grgr {m, k), and f’glgr (m, k).
2) Use (5.33) to obtain the sound field coherence, i.e., cohg,s;, ( f).
3) Use (5.28) to obtain Tss(m, k).
4) Use (5.29) to estimate the spectral weights of the Wiener filter, i.e., Gc(m, k).
Output: Compute S;(m, k) and S(m, k) according to (5.30).

5.5 Experimental Results and Discussion

In this section, the performance of the proposed method is evaluated using the simulated
RIRs from the image model [4] and the real RIRs from the acoustic impulse response
(AIR) database [79]. Ten different anechoic speech signals from the TIMIT database,
uttered by 5 males and 5 females all sampled at 16 KHz, are convolved with the RIRs to
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generate the reverberant speech files. The size of the room used in the case of simulated
RIRs is 10 x 10 x 10 (m®). The Hanning window of 256 samples is used with an overlap
factor set to 50%. The STFT length is 256. The rest of the parameters are set as: 7=
‘ 0.1, C= 2.5, Nj;=13, R=128, ¢= 25, GMi?= 2.22x1076, ay = 0.8, cohmaee = 0.99,

late

¢in = 0.3 . Performance indices used in the evaluations are the segmental signal

to reverberation ratio (SegSRR) [88], and the signal to distortion ratio (SDR) [103].
SegSRR is defined as,

SR ) »
SegSRR(m) = 10logig n=n - (5.34)
R (sa(n) — 3(n))?

where s4(n) = s(n) * hq(n) represents the direct signal (delayed version of the clean

signal), hg(n) is obtained from the known impulse response and §(n) is the enhanced
speech signal. N and R are the number of samples per frame and frame rate in samples
respectively. The mean SegSRR can be obtained by averaging (5.34) over the total
frames. The SDR can be defined as [103],
SDR = 10logio— T 32(7) (5.35)
2 n=o(8(n) — 3(n))?
where s(n) and §(n) are the original signal and the enhanced signal respectively, and

L is the length of the signal. Note that, SegSRR and SDR are calculated in this work

for §;(n) and $,(n) separately and then averaged.

For performance comparison the method in [78] (called for short Jeub et al. method
hereafter) is used as the baseline which represents the state-of-the-art and uses the

frequency-independent model for decay rate estimation.

First, a dereverberation example is presented here for the real data recorded in a booth
and lecture room [79], where the Tg is approximately 400 ms and 900 ms respectively,
and the source-microphone distance is 1 m and 2.25 m respectively. The spectrograms of
the signals for the booth and lecture room are shown in Figure 5.1 and 5.2 respectively.
For comparison 3 different regions are highlighted which are marked as A;, B; and Cj,
where 7 = 1 is for the clean signal, i = 2 for the dereverberated signal by Jeub et al.
method and 7 = 3 for the dereverberated signal from the proposed method. From the
highlighted regions it can be observed that the signal obtained by the proposed method

is closer to the clean one as compared to the Jeub et al. method in both the cases.
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Figure 5.1: Comparison of the spectrograms of the clean signal (top left) with the

enhanced signals obtained by the proposed method (bottom right) and the Jeub et dl.

method (bottom left) for the real data recorded in a booth. The top right plot shows

the reverberant signal. The RIRs used to generate the reverberant signal were recorded

from the booth room with source-microphone distance equal to 1 m.
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Figure 5.2: Comparison of the spectrograms of the clean signal (top left) with the
enhanced signals obtained by the proposed method (bottom right) and the Jeub ef d.
method (bottom left) for the real data recorded in a lecture room. The top right plot
shows the reverberant signal. The RIRs used to generate the reverberant signal were

recorded from the lecture room with source-microphone distance equal to 2.25 m.
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In a further experiment, the performance of the proposed method is evaluated in com-
parison to the Jeub et al. method using SDR and mean SegSRR. First the simulated
RIRs are used to generate the reverberant signals from the anechoic speech signals
at three different reverberation.times, i.e., Tgo = {300, 500, 600} ms, and two differ-
ént source-microphone distances, i.e., 0.5 and 2.5 m respectively. For each Tjp and
source-microphone distance, 5 different source-microphone positions and the 10 ane-
choic signals from the TIMIT database, resulting in 100 different reverberant signals
for both left and right channel, were used for testing the algorithms. In total, 300
independent tests were run for the simulated data generating 600 different reverberant
signals for both left and right channel. Figure 5.3 shows for each Tg and source-
microphone distance the results (mean values + standard deviations) averaged over
the 100 tests. The results indicate that the proposed method gives consistently higher
SDRs and SegSRRs than Jeub et al. method for various source-microphone distances

and reverberation times.

In another set of experiments, the real binaural RIRs from the AIR database [79]
are used which contain five different types of RIRs, recorded in five different room
environments, namely booth, office, meeting, lecture, and stairway. For each room
environment, a pair of source-microphone distances {D;, D3} m, {0.5, 1.5}, {1, 3},
{1.45, 2.8}, {2.25, 7.1}, and {1, 3} are selected respectively. The 10 anechoic signals
from the TIMIT database are then convolved with each of these RIRs, resulting in
200 reverberant signals in total for both left and right channels. For each room type
and source-microphone distance, the average results of SDR and SegSRR over the 10
different signals, are given in Figure 5.4. The proposed method performs significantly
better than Jeub et al. method for shorter source-microphone distances. For example,
for the booth and D; = 0.5 m, both SDR and SegSRR obtained by the proposed
method are about 8 dB higher than those by Jeub et al. me’ghod. Such an improvement,
observed for nearly all the testing cases, decreases when the source-microphone distance
increases. Averaged over all the 200 tests, the SDR and SegSRR éf the proposed
method are respectively 1.82 dB and 1.90 dB higher than those of the Jeub et al.
method. These results demonstrate the advantage of the frequency dependent model

in particular for shorter source-microphone distances. Note that the output SDR and
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Reverberation time (ms)

Figure 5.3: SDR and SegSRR of the proposed method (green bars) and Jeub et dl
method (yellow bars) for the simulated data. The labels on the horizontal axis represent
different reverberation times, namely, 1- 300 ms, 2 - 500 ms, 3 - 600 ms. For each of the
reverberation times, two different source-microphone distances were tested, respectively
D\ — {0.5} m and D: — {2.5} m. The standard deviations are also plotted as short

lines on top of the bars.
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Figure 5.4: SDR and SegSRR for the AIR database of the proposed method (green
bars) and Jeub et al method (yellow bars). The labels on the horizontal axis repre-
sent different room types, namely, 1 - booth, 2 - office, 3 - meeting, 4 - lecture, 5 -
stairway. For each of the five rooms, two different source-microphone distances were
tested, respectively Dj = {0.5, 1, 145, 2.25, 1} m and D: = (1.5, 3, 2.8, 7.1, 3} m.

The standard deviations are also plotted as short lines on top of the bars.
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SegSRR are reported here in the results. It has been observed in the experiments that
“ ASDR and ASegSRR for the proposed method is higher when direct to reverberation
ratio is negative (i.e., for higher source-microphone distances) in comparison to when
direct to reverberation ratio is positive (i.e., for shorter source-microphone distances).
Also the proposed method is giving improvement over the Jeub et al. method in terms

of ASDR and ASegSRR for both positive and negative direct to reverberation ratio.

5.6 Summary

In this chapter a dereverberation algorithm based on a frequency dependent statistical
model of the reverberation time hés been proposed. The algorithm is corhposed of
the gstimation of the decay rate of the late reverberations based on this model, the
estimation of the mask contéining spectral subtraction gains, the smoothing of the
spectral mask by a frequency dependent filter, followed by Wiener filtering for reducing
early reflections. It has been shown that the proposed algorithm offers considerably
higher dereverberation performance as compared with a related recent approach using
the frequency independent model. Hdwever, the frequency dependent reverberation
time and decay rate required in the proposed model are estimated from the RIRs,
which can be limited in practicaI applications, where RIRs may not be available. To
this end, the next chapter further addresses this problem and proposes a method that

can directly estimate them from reverberant speech signals.



Chapter 6

Blind Estimation of
Reverberation Time For Blind
Dereverberation and Separation

of Speech Mixtures

In previous chapters source separation and dereverberation issues have been analysed
separately. This chapter proposes a method for performing blind dereverberation (BD)
and blind source separation together for the speech mixtures. It is common that the
performance of the speech separation algorithms deteriorates with the increase of room
reverberations. Therefore in this chapter the dereverberation algorithm developed in
Chapter 5 is combined with the separation method presented in Chapter 3 to mitigate
the effects of room reverberations on the mixtures and hence to improve the separation
performance. The dereverberation algorithm presented in Chapter 5 assumes that
the RIRs are known as a priori, which however are not directly accessible from the
speech mixtures in practice. To address this problem, a method consisting of a step
for blind estimation of reverberation time (RT) is proposed to estimate the decay rate
(ie., a(k) in Equation (5.9)) of reverberation directly from the reverberant speech

signal (i.e., mixtures). Based on the analysis of an existing RT estimation method,

103
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which models the reverberation decay as a Gaussian random process modulated by
a deterministic envelope, a Laplacian distribution based decay model is proposed in
which an efficient procedure for locating free decay from reverberant speech is also
incorporated. Hence the developed algorithm works in a blind manner, i.e., directly
dealing with the reverberant speech signals without the information from the RIRs.
Evaluation results in terms of SDR and SegSRR reported in this chapter reveal that
using this method the performance of the separation algorithm developed in Chapter

3 can be further enhanced.

6.1 Introduction

The speech signals captured by the microphone in a closed environment are often re-
verberated and also contaminated by the intereferences from the nearby sound sources.
The separation of the target speech from the microphone signal is a challenging task
because of the interfering speech signals, and the presence of reverberation makes it
mdre challenging. Therefore, it is very important to devise a method which can sepa-
rate the target speech from the interfering ones and can also reduce the adverse acoustic

disturbances.

In Chapter 3, a source separation algorithm has been developed, however its perfor-
mance deteriorates in the presence of room reverberations. Therefore, in Chapter 5
of this thesis a dereverberation algorithm has been developed to suppress the room
reverberation, and here this dereverberation algorithm is combined with the separation
algorithm developed in Chapter 3 to enhance the separation performance. However
the derevérberation algorithm developed in Chapter 5 assumes the RIRs to be known
a priori, which in reality are not available. To address this problem, a method is pro-
posed in this chapter for the blind estimation of RT and then incorporated with the
algorithm developed in Chaptér 5. The proposed blind RT estimation method uses
the revérberant speech (i.e., mixture) directly to estimate the decay rate instead of the
RIRs as done in Chapter 5. In the proposed method, a Laplacian distribution based
decay model for room reverberation is used along with an efficient procedure for locat-

ing the free decay in reverberant speech. Finally, the proposed RT estimation method
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is incorporated with the algorithms developed in Chapters 3 and 5 to obtain a joint

blind dereverberation and separation algorithm for the speech mixtures.

The developed joint algorithm which is a two channel method has been employed in
three different ways. Firstly, the available mixture signals are used to estimate blindly
the RT based on a maximum-likelihood (ML) method and statistical modelling of the
sound decay rate of the reverberant speech, followed by the dereverberation of the
mixture signals using the method based on the frequency depenedent statistical model
as described in Chapter 5. Then the separation algorithm proposed in Chaptér 3 is
applied to these resultant mixtures so that the source speech signals can be obtained.
Secondly; the separation algorithm is applied first to the mixtures to segregate the
speech signals, followed by the blind estimation of RT from the separated speech sig-
nal. Then dereverberation is employed to the segregated speech signals. In the third
scheme, the multistage separation algorithm proposed in Chapter 3 is split such that
the convolutive ICA is first applied to the mixtures to obtain the estimated source
signals. Then, the signal obtained from the convolutive ICA is used to estimate the
RT followed by the blind dereverberation of the signals obtained from convolutive ICA.
Then the T-F representation of dereverberated signals are used to estimate the IBM

followed by cepstral smoothing to enhance the separated speech signals.

The rest of the chapter is organized as follows. Section 6.2 presents the proposed
and related method for blind estimation of RT from the reverberant speech signal. In
Section 6.3, the proposed blind dereverberation method will be described and evaluated.
Section 6.4 evaluates the performance of the proposed joint blind dereverberation and
separation algorithm and reports the experimental results followed by a conclusion in

Section 6.5.

6.2 Blind Reverberation Time Estimation

The concept of measuring RT was coined for the first time by Sabine in 1922 [144].
Robust estimation of RT directly from the reverberant signal is a challenging task. In
this work a method is proposed to estimate RT directly from the reverberant signal,

which is based on the ML estimation of the unknown sound decay rate modelled by
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a Laplace distribution. Before describing the proposed method, a brief overview is

provided for the RT and its measurements.

6.2.1 Theory and background

Estimation of RT has been investigated for a long time. The RT of an enclosed en-
vironment is defined as the time for which a sound prevails after it has been turned
off, due to its multiple reflections from the different surfaces within the enclosed envi-
ronment. The RT is usually referred to as the time for the sound level to drop to 60
dB below its original value [137], [138], [144]. Reverberation leads to speech distortion
both in terms of its envelop and fine structure, therefore RT is an important parameter
that measures the listening quality of the enclosed environment, i.e., room. The effect
of reverberation is most perceptible when speech recorded by microphones is played
back via headphones. The distortions previously unseen in the sound pattern are now
clearly noticed even by normal listeners, pointing the extraordinary echo suppressién
and dereverberation capabilities of the normal auditory system when the ears receive
sounds directly [66]. For hearing impaired listeners, the reception of a reverberant sig-
nal via the microphone of a hearing aid intensify the problem of listening in challenging

environments.

Although dereverberation is an active area of investigation, state-of-the-art hearing aids
or other audio processing instruments, apply signal processing strategies complying to
specific listening environments. These instruments are anticipated to have the ability
to assess the characteristics of the environment, and to trigger the most suitable signal
processing strategy. Hence a method that can characterize the RT of a room from

passively received microphone signals represents an important area of research.

In the early days of 20th century, Sabine [144] implemented an empirical formula for
the calculation of RT based entirely on the geometry of the environment (i.e., volume
and surface area) and the absorption attributes of its surfaces. Later on, Sabine’s RT
equation has been greatly modified and its accuracy irnproved (refer to [89] for the
details of the modifications), and thats why currently it has been used in numerous

commercial software packages for the acoustic design of interiors, anechoic chamber
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measurements, design of concert halls, classrooms, and other acoustic environments
Wheré the quality of the received sound is of high importance and magnitude of rever-
berations must be controlled. However, such methods require that the room geometry
and absorptive characteristics of the room be determined first. When these can not be
determined easily, it is important then to find some method which is based on the test

sound signal radiated in the enclosed environment.

Methods using the test sound signal for measuring RT are based on sound decay curves.
In the interrupted noise method [75], a burst of noise having broad or narrow band is
radiated into the test room. In the time instant where the sound field attains the steady
state, the noise source is switched off and the decay curve is obtained. The slope of
the decay curve is used to estimate the RT. As the noise source signal has fluctuations,
the decay curve obtained will differ from trial to trial. Hence to estimate the reliable
RT averaging must be applied to the large number of obtained decay curves. In order
to overcome this issue, Schroeder developed an integrated impulse response method in
1965 [153] in which the excitation signal is a pulse either broad band or narrow band.
The enclosure (room) output for a pulse is simply the impulse response of the room in
the specified frequency band. Schroeder proved that the impulse response of the room
is related via a certain integral to the overall average of the decay curve obtained using
the interrupted noise method, and hence the repeated trials were inessential. Both
the methods require controlling environment for the experiﬁent, specifically a suitable

excitation signal must be available a priori.

While Schroeder’s method has been used immensely over the past few decades for the
estimation of RT, and has been improved over the years (see for example, [31,183)),
there is a need of some blind method that can estimate room RT from the available
microphone signals, i.e., without any information about the room geometry and ab-
sorption attributes, or when the test sound signal is not available. Such blind method
which works with speech sound directly will be very useful for incorporating in hear-
ing aids or hands free telephony devices. Some partial blind methods have also been
developed in which the room characteristics are learned using neural network ap-
proaches [36,113,162], or some sort of segmentation procedure is used for detecting

gaps in the sounds so that the sound decay curve can be tracked [94]. Several meth-
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ods have been developed recently that can estimate RT blindly, i.e., directly from the
recorded reverberant signals [99,100,137,138]. These methods are based on the statisti-
cal modelling of the sound decay such that the ML estimator can be used to determine

the RT.

Ratnam et al. [138] developed an algorithm for the blind estimation of RT based en-
tirely on the available recorded sound. The estimator is baséd on a noise decay curve
model explaining the reverberation characteristics of the enclosure. Sounds in the test
environment are processed such that a running estimate of RT is achieved by the sys-
tem employing the ML parameter estimation procedure. A decision making step is
then applied to collect the estimate of RT over a period of time and attains the most
likely RT using an order statistics filter. However detecting the correct sound decay
from a reverberant speech signal is a challenging problem and a method in [138] used
an iterative approach for that purpose, which makes the algorithm computationally
expensive. Later on Ratnam et al. presented another algorithm in [137] based on their
original model in [138] in order to improve the computational efficiency of the original
method. Very recently Lollmann et al. [100] presented an algorithm for the blind esti-
mation of RT from reverberant speech sighals. The method is using a statistical model
for the sound decay based on the sound decay model developed in [138], followed by
the ML estimation approach to estimate the decay rate presented in [137]. However,
the method of Lollmann et al. is employing a pre-selection mechanism to detect the
possible sound decay which makes it robust and computationally efficient. The method
presented in this chapter for the blind eétimation of RT is based on Lollmann et al.
method. Therefore, the next subsections will describe in detail the sound decay model
and ML estimation approach presented in Ratnam et al. method, the pre-selection
mechanism to detect the possible sound decay presented in Lollmann et al. method,
and our proposed method based on using Laplace distribution for modelling the decay

rate.
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6.2.2 Sound decay model and ML estimation

The sound decay model used by the Lollmann et al. method [100] is based on the
original model presented in [138]. The model is based on the assumption that the
reverberation tail of a decaying sound denoted here as y is the product of a fine structure
denoted as x that is a random process, and an envelop a that is deterministic. Suppose
z(n) is a random sequence for n > 0, of independent and identically distributed (i.i.d.)
random variables having normal distribution with zero mean and variance o, N'(0,0).
Similarly for each n a deterministic sequence is defined as a(n) > 0. As a result the
model is obtained for the room decay in which the observations y are represented as
y(n) = a(n)z(n). As a(n) is a time varying term, therefore y(n) are independent but

not identically distributed, and hence their probability density function is N'(0, oa(n)).

In order to estimate the decay rate, consider a finite sequence of observations, n =
0,...,N — 1. For notational convenience, N-dimensional vectors of y and a are denoted
as y and a respectively. Hence the likelihood function of y (the joint probability

density), parameterized by a and o, is [138]
1 1 \"? om0 (W(n)/a())?
Liy;a,0) = a(0)---a(N —1) <27r02> % e:vp( B 202 ) (6.1)

where a and o are the (IV + 1) unknown parameters that are required to be estimated

from the observation y. As the main goal here is to model the sound decay in a room and
the likelihood function obtained in Equation (6.1) can be further simplified. Suppose
a single decay rate ps define the damping of the sound envelop during the regions of
free decay (i.e., the period following the sharp offset of a speech sound) instead of those
regions where sound is actually ongoing, onset, or gradually declining speech offsets.

As a result the sequence a(n) is determined by
a(n) = exp(—n/p2) . (6.2)

Hence, the N-dimensional parameter a(n) can be replaced by a single scalar parameter
a which is denoted by p; as
a = exp(—1/p2) - (6.3)

As a result Equation (6.2) can be written as

a(n) = a" (6.4)
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Now Equation (6.1), after incorporating Equation (6.4) becomes

Liyia,o) = (é) . ea:p( _ T ey ")2> (6.5)

2ra(N-1)g2 202

ML approach is then used to estimate the parameters a and o [131,138]. Firstly, the
logarithm of Equation (6.5) is taken to obtain the log-likelihood function

inL(y;a,0) =~ 0~

N-1
1 -
— “In(a) — ln(27T02) ~ 53 > a7 y(n)? (6.6)
) n=0
To find the maximum of In(L), differentiate the log-likelihood function in Equation

(6.6) with respect to a to obtain the score function SF, [131]

dlnl(y;a,0) | _N(N-1) LNZ_lna‘z"y(n)2 (6.7)
2 .

da 2a aoc

Sky(a;y,o) =

Let 0lnL(y;a,0)/0a = 0, then the log-likelihood function achieves the extremum, given

as [138]

iv(NTﬁ‘U Z na"yn)?=0 - (6.8)

The zero of the score function achieves the best estimate in the sense that E[SF,] =
0, which is denoted by a™ZL). It can be demonstrated that the second derivative
*nL(y;a,0)/0a? |,_zmry< 0, ie., the estimate a®L) maximizes the log-likelihood

function.

2

Similarly, the variance o“ can be estimated by differentiating the log-likelihood function

in Equation (6.6) with respect to o,

. _ OInL(y;a,0) N 1 9 9
SE(o3y,0) = PR o Ny SN gy (2 (69)
Now again the log-likelihood function achieves the extremum when dlnL(y;a,0)/0c =

0, which results in
V-l
= N Z a_Qny(n)z (6.10)
n=0
As done above, it can be also shown here that E[SF;] = 0, which leads to the optimal

: A (ML
estimate of the variance, denoted by 02( ). It can be shown that the second derivative

(ML
&?InL(y;a,0)/00? | ,_sm1) < 0, i.e., the estimate 02( ) maximizes the log-likelihood
0=6 g



6.2. Blind Reverberation Time Estimation 111

function. Note that (6.8) is an implicit expression for ¢ and hence a can not be solved
directly, whereas (6.10) provides the ML estimate of o directly if a is known. Now if the
solution for 02 in Equation (6.10) is substituted into Equation (6.6), the log-likelihood

function can be rewritten as [100,138]

InL(a;y) = —% < (N = 1)In(a) + In (-2]% Jg a_zny(n)2> + 1) (6.11)

Therefore, Equation (6.11) is used to find the estimate of a, i.e., #™L). The approach
proposed in [137] is implemented by quantizing the range of a. As in Equation (6.3)
defined already, ps is a time constant. to be estimated. It is noted that a € [0,1) maps
one-to-one onto py € [0,00). Now the given range of a is quantized such that the bins
of the histogram of a are formed. Then the likelihood values are calculated, and the

highest likelihood is assigned to that bin in the histogram.

Let the range of a € [0,1) be quantized into Q values, so that a; is obtained with
j = 1,..,Q. Then, for each a;, the log-likelihood function given by Equation (6.11)

can be written as
N 27 =
) — Y _ , T —2 2
InL(ajy) = 5 ((N 1) In(a;) +ln<N ;aj "y(n) ) + 1) (6.12)
The best estimate of a, i.e., aML) is selected as
aMD) = max{inL(a;;y)} (6.13)
a

Then Equation (6.3) is used to obtain the estimate of the decay rate gy™% , followed by

ML)

the calculation of the RT value, i.e., Tgy ~ using the following formula [138]

TGO = 6.908 x p2 (6.14)

6.2.3 Effective RT estimation

As the original method presented in [138] used an iterative approach to estimate the
sound decay rate which makes the algorithm computationally very demanding. The
method presented in [137] improves the computational efficiency of the original method,

however it considers the whole recorded reverberant speech signal during the process
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of ML estimation of the sound decay rate instead of using only the free sound decay
regions. Hence there is a need for some method which can capture the free sound
decay regions first in the reverberant speech signal so that only the detected sound
decay regions can be used for ML estimation of decay rate. Therefore, Lollmann et
al. devised an efficient estimation procedure which can capture correctly the regions of
free decay in the reverberant speech first, and thfen used such detected regions only for
the ML estimation of decay rate, which improves the computational efficiency of the
algorithm as well as reduces the effects of the outliers on the estimated RT value. The
sequence of the reverberant signal defined in Chapter 5 (Equation(5.1)) is processed

within the frames of B samples shifted by instants of AB samples [100], given as
Y\ b) = y(MAB +b) with b=0,1,..,B 1 (6.15)

where A € N. In the first step, pre-selection is carried out to detect the possible sound
decays. In order to achieve this, the current frame Y (A, b) is divided into L= B/P € N

sub frames

V()\) lsub7 k’sub) = Y()\, lsubP + ksub) (6'16)

where kgyp, = 0,1, ..., P—1 and sub-frame index g = 0,1, ..., L—1. Now it is examined
whether the maximum energy and minimum energy values of a sub-frame deviates from

the succeeding sub-frames according to [100]

P-1 P-1
Z V2 (A7 lS’lLb? ksub) > Tlsub ) Z V2()\, lsub + 1, ksub) (6.17&)
ksub‘_’o ksub=0

max{V (A, Lsup, ksup) } > 71, - max{V (A, Lsup + 1, ksup) } (6.17b)

“sub ksup

gcniIbl{V(Aa lsub: ksub)} <7 min{V()\, lsup + 1) ksub)} (6'170)

ksub

sub

where 0 < 7, <1 is a weighting factor. If one of these conditions is violated, it is
examined whether the counter I, has reached a minimum value 1 < lgypmin < L—2. If
this is not the case, the comparison is terminated and the next signal frame Y (A+1, b)
is processed. Otherwise, the sequence of sub-frames for which Equation (6.17) applies
is detected as a possible sound decay. For this detected frame, the RT, i.e., Tééw D i
calculated using Equations (6.12), (6.13), (6.3), and (6.14) for a finite set of RT values

(decay rates).
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A new ML estimate is used now in which a histogram with a bin size 10 is generated and
contains the estimated RT values obtained above (i.e., Tééw L)), and updated each time
when another RT value (i.e., Tééw D ) is obtained. The current RT estimate denoted here
as TG%) is-associated with the maximum of this histogram (The maximum instead of
the first peak can be taken as this histogram contains no significant number of outliers
due to thé pre-selection). The variance for the estimated RT is reduced by a recursive

smoothing such that the final estimate is given by

Too(N) = o Too(A = 1) -+ (1 = a) - 5 (V) (6.18)

where 0.9 < o < 1. The final RT value is estimated by

Teo = mean(Tso(N)) (6.19)

6.2.4 Proposed method

In this section a new method is proposed for RT estimation based on the Laplacian
distribution. The method is motivated from the findings in [130], where it has beeh
shown that the amplitude distribution of the reverberant speech is better modeled by
Laplace distribution. Therefore, the reverberant tail of a decaying sound is modeled
using a sequence of random variables with Laplace distribution £(6, g), where 6 is
the mean considered as zero here and p is the variance of the Laplace distribution.
Consider again the random sequence as z(n) for n > 0 of i.i.d. random variables having
laplace distribution £(0, g). Based on the model described above in Section 6.2.2 for
the observations y(n), a new model is proposeci in this work for the observations y(n)

whose probability density function is £(0, ga(n)).

In order to estimate the decay rate, consider again a finite sequence of observations,
n =0,..,N — 1. Hence the likelihood function of N-dimensional vector of y, i.e., ¥
(the joint probabﬂity density), parameterized by N-dimensional vector of a, i.e., a and
0, is [87]

L 1 1\" N ly(n)/a(n) |
L(y’a’g)‘a(o)---a(N_l)(5> Xemp(_ o ) (6:20)
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where a and p are the (N + 1) unknown parameters that are required to be estimated
from the observation y. Based on Equation (6.4) for the sequence a(n), Equation (6.20)
can be written as

L(y;a,0) = <2Q(N+1)/29)N X ea:p( _ Zno [a7y(n) I) (6.21)

e

ML approach is then used to estimate the parameters a and p. Firstly, the logarithm .
of Equation (6.21) is taken to obtain the log-likelihood function

| N-1 !
InL(y;a,0) = —Nin(2) — Z In(a™ - g) — 2 Z a ™ | y(n) | (6.22)
) n=0 n=0

To get the maximum of lh(L), differentiate the log-likelihood function in Equation
(6.22) with respect to a to achieve the score function SF, [131]

N-1

SF(a;y,0) = M 1N Z n=Ynlym) [t (6.23)
n=0

Let dlnL(y;a,)/0a = 0, then the log-likelihood function attains the extremum, as

given
’ 1.N—l N—-1
- — n—1 _
aZn any(nﬂa =0 (6.24)
n=0 n=0

Denote the zero of the score function SF,, and satisfying Equation (6.24), by M),
It can be verified that the second derivative 8%InL(y;a, 0)/0a? |,_sarry< 0, i.e., the

estimate (ML) maximizes the log-likelihood function.

Similarly differentiate the log-likelihood function in Equation (6.22) with respect to g,

' dinL(y;a, N 1%
sEevia) = XD Ty I e | (629)

When 9InL(y;a, p)/0¢ = 0, the log-likelihood function achieves the extremum, which

results in
1 N-1
=5 > a7 | y(n) | (6.26)
n=0

Using the score function SF,, the log-likelihood function can be maximized for g also

in the same way as done above by taking the second derivative.

It can be observed that Equation (6.24) is an implicit expression and a can not be

solved explicitly, while Equation (6.26) provides the explicit estimate of g if a is known.



6.2. Blind Reverberation Time Estimation 115

Table 6.1: The proposed blind RT estimation method

Task: Use Laplacian distribution based energy decay model for the estimation of RT.
Input: Reverberant speech, i.e., z(n).
Output: Estimated RT, i.e., Ts0. ]
Initialization: 1) In (6.15), B = 1631 and AB = 67 are used.
2) In (6.16), P = 233 is used.
3) In (6.18), a = 0.995 is used.
4) In (6.27) and (6.28), j = 1,...,Q while Q@ = 10 is used.
Case: The goal is to estimate the RT from reverberant speech signal. The steps are:
1) Use (6.15)-(6.17) to detect the free decay regions indexed by frame number .
2) For the detected regions, use (6.27), (6.28), (6.3), and (6.14) to obtain Tééw L)(A).
3) Apply recursive smoothing via (6.18) to the estimated RT values, i.e., ’f’ééw L)()\).
Output: Compute Tgo according to (6.19).

Based on the derivation pattern of Equation (6.12) from (6.11), a log-likelihood function
used here in Equation (6.22) can be re-written as to select the best estimate of a, (i.e.,

a(ML)) given as

N—-1 N-1
1 _
InL{ajiy) = ~Nin(2) = 3 In(a} - ) = 5 > a5 | y(n) | (6.27)
n=0 n=0
Now aML) can be selected as
aMD) = mélx{lnL(aj;y)} (6.28)

Now the estimate of the decay rate g™~ is obtained using Equation (63) Finally the
RT value, i.e., Tééw L) is estimated using the formula in Equation (6.14). The effective
RT estimation procedure described in Section 6.2.3 is applied then to obtain the final
estimated single RT value for the reverberant speech signal. The proposed blind RT
estimation algorithm using the Laplacian distribution based energy decay model is

summarized in Table 6.1.

6.2.5 Simulation example

The performance of the proposed method for blind estimation of RT shall be illustrated
by some simulation examples. To this end, similar to the experiments performed in

Chapter 5, 10 different anechoic speech signals randomly selected from the TIMIT
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database, uttered by 5 males and 5 females all sampled at 16 KHz, are convolved
with the real RIRs from the AIR database [79] to generate the different reverberant
speech files. The employed RIRs were recorded in four different room environments,
namely booth, office, meeting, and lecture (Note that the stairway case is not considered
from the AIR database in this example, as the mean RT values for the stairway are
not reported in the original paper that describes the AIR database [79]). For each
room environment, a pair of source-microphone distances {D;,Ds} m respectively, are
selected, i.e., {0.5, 1.5}, {1, 3}, {1.45, 2.8}, and {2.25, 7.1}. The rest of the parameters
used are given as : Q =10, L = 7, lgypmin = 3, @ = 0.995, B = 1631 (corresponds
approximately to a time span of 0.10 s), P = 233, AB = 67 (corresponds approximately
to a frame shift of 0.0042 s), 7,, = 1.

For each room environment and each source-microphone distance, 10 different rever-
berant speech signals have been generated and then tested for the RT estimation. For
each room type and source-microphone distance, the average results of estimated RT
over the 10 different signals, are given in Figures 6.1 and 6.2 respectively, where RT
estimated directly from RIRs based on Schroeder’s method [153] and mean RT reported
in [79] are also plotted for comparison purpose. For estimated RT based on Schroeder’s
method, the recorded RIRs in four different rooms for distances D, and D5 have been
used to estimate the RT value. On the other hand, the actual RT values are obtained
from the results reported in {79], which are calculated for each room by taking the aver-
age of the RT values obtained over all measured positions of source-microphone in the
room (further details can be found in [79]). The standard deviations are also plotted

as short lines on top of the different color bars symbolizing the different methods.

Note that the results shown in Figure 6.1 are obtained for the shorter source-microphone
distances from the above used pairs, i.e., D;, while the results in Figure 6.2 are obtained
for the longer source-microphone distances from the pairs, i.e., Dy. It can be observed
that the difference between the estimated RT obtained using the proposed method
and the actual RT (shown by red bars) is small in different room environments. For
example, for the office room at Dy, the RT value obtained by the proposed method is
0.43 seconds and the actual RT value is 0.37 seconds, and similarly for the office room

at Dy, the RT value estimated by the proposed method is 0.46 seconds and the actual
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Meeting

Room type

Figure 6.1: Performance measurement of different RT estimation methods in terms of
accuracy obtained for different room environments from the AIR database. The mean
RT is shown by red bars, the RT estimated from the RIRs by Schroeder’s method is
shown by blue bars, RT estimated by the Lollmann et al. method is shown by yellow
bars, and RT estimated by the proposed method is shown by green bars. The distances
between source and microphone for all of the four rooms are D]={0.5, 1.0, 1.45, 2.25}

m respectively. The standard deviations are also plotted as short lines on top of the

yellow and green bars.
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Meeting

Room type

Figure 6.2: Performance measurement of different RT estimation methods in terms of
accuracy obtained for different room environments from the AIR database. The mean
RT is shown by red bars, the RT estimated from the RIRs by Schroeder’s method is
shown by blue bars, RT estimated by the Lollmann et a/. method is shown by yellow
bars, and RT estimated by the proposed method is shown by green bars. The distances
between source and microphone for all of the four rooms are D2={1.5, 3.0, 2.8, 7.1}

m respectively. The standard deviations are also plotted as short lines on top of the

yellow and green bars.
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RT value is 0.48 seconds. Therefore, in the next section the proposed RT estimatiom

method is used for blind dereverberation.

6.3 Blind Dereverberation

With the RT estimated by the methods described in Section 6.2, the dereverberation
method which was already discussed in detail in Section 5.3 of Chapter 5, can be
devised to work in a blind manner, i.e., without knowing the RIRs. Equation (5.8) in
Chapter 5, which represents the model used to estimate the spectral variance of late
reverberation from the RIRs, however, is devised here such that the spectral variance of
late reverberation can be estimated from the available reverberant speech signal instead

of the RIRs (which are not available in practice).

A dereverberation example is presented here for the real data from the AIR database
[79]. This example will focus on the comparison between the dereverberation based
‘on the frequency dependent statistical model with the knowledge of RIRs (the method
developed in Chapter 5), the proposed blind dereverberation method based on the fre-
quency dependent statistical model and the RT estimation using the Laplacian model,
and the dereverberation achieved from the Jeub ef al. method employing the frequency
independent statistical model [78]. For comparison purpose, a revised version of both
the proposed method and Jeub et al. method were also tested. Note that the revised
version of the proposed method is a blind dereverberation method based on the fre-
quency dependent statistical model and the RT estimation using the Gaussian model.
Similarly the revised version of the Jeub et al. method is employing the reverberant
speech for the estimation of RT instead of the RIRs used in the original version. The
real RIRs used in this example are from the AIR database [79] which contains five
different types of RIRs, recorded in five different room environments, namely booth,
office, meeting, lecture, and stairway. Ten different anechoic speech signals from the
TIMIT database, pronounced by 5 male and 5 female speakers with sampling frequency
of 16 KHz, have been used here to generate the different reverberant speech signals.
To establish the comparison between different dereverberation methods in this exam-

ple, a pair of source-microphone distances {D;, D2} m, {0.5, 1.5}, {1, 3}, {1.45, 2.8},
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{2.25, 7.1}, and {1, 3} are selected respectively for the five different room environ-
ments. Performance indices used in the evaluation and comparison in this example are
the segmental signal to reverberation ratio (SegSRR) [88], and the signal to distortion
ratio (SDR) [103], as already defined in Chapter 5 (section 5.5). As 10 signals have been
used in this example to generate different reverberant speech signals after convolving
with the RIRs for five different room environments, and each environment is tested for
a pair of source-microphone distances, in total 100 different reverberant speech signals
have been tested. For each room type and source-microphone distance, the average
results of SDR and SegSRR over the 10 different signals, are given in Figures 6.3 and
6.4 respectively. |

It can be observed that for all the testing cases, dereverberation performance for the
proposed blind dereverberation method (shown by the green bars) both in terms of
SDR and SegSRR is better than the Jeub et al. method (78] (shown by the gray bars)
especially for shorter source-microphone distances. Similarly, the proposed method is
giving improvement for nearly all the testing cases in comparison to the Jeub et al.
method [78], however the improvement decreases when the source-microphone distance
increases. Also it can be seen that the dereverberation performance of the proposed
blind dereverberation method is comparable to the dereverberation method using the
RIRs. Hence it is feasible to use the proposed blind dereverberation method instead of

the one employing the assumption of the RIR to be known a priori.

6.4 Joint Blind Dereverberation and Separation

This section presents results of joint blind dereverberation and separation algorithm for
speech mixtures based on the algorithms developed in Chapter 3, Chapter 5, and the
previous sections of this chapter. The proposed method is assessed in three different
ways. In the first scheme, mixture signals are employed to estimate the RT blindly
using the proposed blind RT estifnation method followed by the blind dereverberation
using frequency dependent statistical model employing the RT obtain from the previous
step to estimate the spectral variance of room reverberation and then the spectral

subtraction mask and the smoothed mask which is used to dereverberate the mixtures.
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Figure 6.3: Comparison of the proposed blind dereverberation method (green bars),

revised version of the proposed blind dereverberation method (blue bars), dereverber-

ation method using the RIRs developed in Chapter 5 (yellow bars), revised version of

the Jeub et a/l method [78] (black bars), and Jeub et al. method [78] (gray bars) for

the AIR database in terms of SDR. For each of the five rooms, two different source-

microphone distances were tested, respectively Di = {0.5, 1, 1.45, 2.25, 1} m and D:

= {1.5, 3, 2.8, 7.1, 3} m. The standard deviations are also plotted as short lines on top

of the bars.



6.4. Joint Blind Dereverberation and Separation 122
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Figure 6.4; Comparison of the proposed blind dereverberation method (green bars),
revised version of the proposed blind dereverberation method (blue bars), dereverber-
ation method using the RIRs developed in Chapter 5 (yellow bars), revised version
of the Jeub er al. method [78] (black bars), and Jeub et al method [78] (gray bars)
for the AIR database in terms of SegSRR. For each of the five rooms, two different
source-microphone distances were tested, respectively DI = {0.5, 1, 1.45, 2.25, 1} m
and £2 = {1.5, 3, 2.8, 7.1, 3} m. The standard deviations are also plotted as short

lines on top of the bars.



6.4. Joint Blind Dereverberation and Separation 123

2,(«)
RT Blind Multistage
estimation dereverberation algorithm

Figure 6.5: Block diagram showing the first scheme for the proposed joint blind dere-
verberation and separation algorithm. zi(n) and Z2(n) are the available mixtures (mi-

crophone signals).

z(«) S
Multistage RT Blind
algorithm estimation dereverberation SG’Q

Figure 6.6: Block diagram showing the second scheme for the proposed joint blind
dereverberation and separation algorithm. Zi(n) and Z2(n) are the available mixtures

(microphone signals).

Next the separation algorithm developed in Chapter 3 (called as Multistage algorithm
hereafter) is applied to the dereverberated mixtures in order to segregate the speech

signals. A block diagram is given in Figure 6.5 explaining the structure of this scheme.

In the second arrangement, Multistage algorithm is applied first to the mixtures to
obtain the separated speech signals. Then using the proposed blind RT estimation
method, RT is estimated blindly from the separated speech followed by the frequency
dependent statistical model employing the estimated RT from the previous step to
estimate the spectral variance of room reverberations and then spectral subtraction
mask and the smoothed mask which is used to dereverberate the separated signals. A

block diagram is given in Figure 6.6 describing the second scheme.

In the third approach, a Multistage algorithm is split such that the constrained con-
volutive ICA method is applied first to the mixtures to obtain the estimated source
signals. Next the signal obtained from the convolutive ICA is used to estimate the RT
by applying the proposed blind RT estimation method followed by the dereverberation

of these signals using frequency dependent statistical model. Again the frequency de-
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Figure 6.7: Block diagram showing the third scheme for the proposed joint blind dere-
verberation and separation algorithm. zi(n) and % (n) are the available mixtures (mi-

crophone signals).

pendent statistical model is employing the RT obtained in the previous step to estimate
the spectral subtraction mask followed by smoothing to achieve dereverberation. Then
the T-F representation of the signals obtained in the previous step is used to estimate
the IBM followed by smoothing of the estimated IBM in the cepstral domain. A block

diagram is given in Figure 6.7 which is used to demonstrate the third scheme.

The performance of the proposed joint blind dereverberation and separation method
has been evaluated using simulated RIRs from the image model [4] and real room
recordings that were obtained in [129]. A pool of 10 different speech signals from the
TIMIT database, uttered by 5 male and 5 female speakers and all sampled at 16 KHz,
has been used in the experiments to generate the reverberant mixtures. A system with
two inputs and two outputs is considered here in this work. The size of the room used in
the case of simulated RIRs is 6.5 x 7x 8 (m”). The position matrices of two sources and
two sensors (microphones) are set as, [1 1 3;3 1 3], and [2 3 3;3 3 3] respectively.
Performance indices used in the evaluations are the segmental signal to reverberation
ratio (SegSRR) [88], and the signal to distortion ratio (SDR) [103], as already defined
in Chapter 5, in Equations (5.34) and (5.35) respectively. Notations 4SegSRR and
ASDR are used in the evaluations, where 4 SegSRR = mSegSRRo —mSegSRRi and
ASDR = mSDRo —mSDRi. SegSRRi and SDRi can be obtained by replacing s(n)

with an input mixture signal in (5.34) and (5.35) respectively. Similarly SegSRRo
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and SDR, can be obtained by taking $(n) in (5.34) and (5.35) as the enhanced signal
respectively. Note that mSegSRR,, mSegSRR;, mSDR,, and mSDR,; are the average
results for fifty random tests. The performance of method proposed in this chapter is

compared with that of the Multistage algorithm.

First the simulated room model [4] is used to generate the reverberant mixture signals
from the pool of the clean speech signals described above, at different reverberation
times, i.e., Tgo = {200, 250, 300, 350, 400, 450, 500} ms to evaluate and compare
the performance of the proposed method at different RTs. For each 50, 10 énechoic
signals from the pool has been used to generate different reverberant mixtures, with
each consisting of two speech sources randomly picked up from the pool. In total
50 random tests have been carried out for each Ty, and hence in total 350 different
reverberant mixtures have been used here in evaluation. Table 6.2, 6.3, and 6.4 shows
for each Tgo, the results averaged over the 50 random tests for the first, second, and
third scheme of the proposed method respectively in comparison to the Multistage

method.

In another set of experiments real room recordings have been used that were obtained
in [129]. The real recordings were made in a reverberant room with Tgo = 400 ms.
Two omnidirectional microphones vertically placed and closely spaced are used for
the recordings. Different loudspeaker positions are used to measure the room impulse
responses. The room dimensions are 5.2 x 7.9 x 3.5 (m3), and the distance between the
microphones and the loudspeakers is 2 m. Further details about the recordings can be
found in [129]. Clean speech signals from the pool of 10 speakers were convolved Wifh
the room impulses to generate the source signals. The average results of ASDR and
ASegSRR over the 50 different random tests are given in Table 6.5, 6.6, and 6.7 for

the first, second and third scheme of the proposed method respectively.

Now if the results obtained for both simulated and real data are observed in a sequence
of the different schemes, it can be found that the proposed method implemented in
the first scheme consistenﬂy giving better results both in terms of SDR and SegSRR
than the Multistage method. For the real recordings, the proposed method in scheme
1 achieves approximately 1.5 dB gain for both SDR and SegSRR. over the Multistage
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Table 6.2: ASDR and ASegSRR For Simulated Data under Different Tgos

Teo ASDR (dB) ASegSRR (dB)
(ms) | Proposed | Multistage | Proposed | Multistage
method method method method
(scheme 1) (scheme 1)

200 4.52 - 3.61 2.15 1.45
250 3.73 2.91 1.88 1.14
300 3.22 2.45 1.66 0.94
350 2.88 2.18 1.48 0.82
400 2.68 1.96 1.35 0.75
450 2.50 1.77 1.23 0.68
500 237 1.62 1.12 0.63

Table 6.3: ASDR and ASegSRR For Simulated Data under Different Tsos

Tso ASDR (dB) ASegSRR (dB)
(ms) | Proposed | Multistage | Proposed | Multistage
method method method method
(scheme 2) (scheme 2)

200 4.49 3.61 2.06 1.45
250 3.73 291 1.78 1.14
300 3.20 2.45 1.55 0.94
350 2.88 2.18 1.37 0.82
400 2.63 1.96 1.22 0.75
450 2.42 1.77 1.10 0.68
500 2.27 1.62 1.01 0.63

Table 6.4: ASDR and ASegSRR For Simulated Data under Different Tgos

Tso ASDR (dB) ASegSRR (dB)
(ms) | Proposed | Multistage | Proposed | Multistage
method method method method
(scheme 3) (scheme 3)

200 3.64 3.61 1.45 1.45
250 2.88 291 1.13 1.14
300 2.44 2.45 0.93 0.94
350 2.16 2.18 0.82 0.82
400 1.93 1.96 0.74 0.75
450 1.74 .77 0.67 0.68
500 1.60 1.62 0.63 0.63
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Table 6.5: ASDR and ASegSRR For the Real Data

Algorithm ASDR (dB) | ASegSRR (dB)
Proposed method 6.40 3.55

(scheme 1)

Multistage 4.74 2.01

,v method

Table 6.6: ASDR and ASegSRR For the Real Data

Algorithm ASDR (dB) | ASegSRR (dB)
Proposed method 4.85 2.54
(scheme 2)
Multistage 4.74 ) 2.01
method

Table 6.7: ASDR and ASegSRR For the Real Data

Algorithm ASDR (dB) | ASegSRR (dB)
Proposed method 4.75 2.03
(scheme 3)
Multistage 4.74 2.01
method
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method. it is observed that in the first scheme blind dereverberation applied to the
reverberant mixtures prior to separation helps in improving the separation performance.
Similarly it can be found that the proposed method in the second scheme also performs
better than the Multistage method for both simulated and real data. However, it can
be noticed that in the second scheme of the proposed method improvement is less than
the improvement achieved in the first scheme especially for real recordings. This is
because in the second scheme, the separation algorithm is applied first and hence the
enhancement performance is not as good as in the first scheme due to the reverberant
effects in the mixture at the time of separation. The third scheme of the proposed
method provides no improvement at all and the résults obtained for both real and
simulated data are comparable to the Multistage algorithm. Therefore, it is concluded
that the proposed blind dereverberation and separation algorithm implemented in the
first scheme provides better results in comparison to the implementation of the second
and third scheme. Note that the proposed joint blind dereverberation and separation
method has been tested based on RT estimation step employing the Gaussian decay
model and it has been found that the results obtained in all the three schemes are similar

to the results of the proposed joint blind dereverberation and separation method.

6.5 Summary

In this chapter a method has been developed to perform blind dereverberation and
separation of convolutive speech mixtures jointly. The method has been evaluated in
three different arrangements. In the first scheme, mixture signal is used to estimate
RT followed by blind dereverberation and then the separation algorithm is applied to
the dereverberant mixture to obtain the segregated speech signals. In the second ar-
rangement, separation algorithm is applied first to the mixtures in order to achieve the
separated speech signals. Then the obtained separated signal is used to estimate the
RT blindly followed by the blind dereverberation. In the third and final scheme, the
separation algorithm is divided such that the convolutive ICA is used first to obtain
the estimated source signals. Then the signal obtained after convolutive ICA is used to

estimate the RT followed by the blind dereverberation. Then the T-F representation
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of the obtained dereverberant signals are used to estimate the IBM and finally cepstral
smoothing of the IBM. As shown in the experiments that the proposed method imple-
mented in scheme 1 performs better than scheme 2 and 3, in comparison to the related

recent approach.



Chapter 7

Conclusions and Future Research

7.1 Conclusions

In this thesis the major challenging issues related to the cocktail party problem are
addressed, i.e., blind separation of target speech signal from the convolutive mixtures,
denoising and dereverberation, and joint blind dereverberation and separation of speech

mixtures.

Firstly, the well-known problem of blind separation of speech signals is investigated. A
multistage algorithm is proposed in Chapter 3 for the separation of convolutive speech
mixtures using two-microphone recordings, based on the combination of ICA and IBM,
together with a post-filtering process in the cepstral domain. The proposed approach
consists of three major steps. A convolutive ICA algorithm [178] is first applied in
order to take into account the reverberant mixing environments based on a convolutive
unmixing model. Binary T-F masking is used in the second step for improving the
SNR of the separated speech signal, due to its effectiveness in rejecting the energy of
interference by assigning zeros to the T-F units in the masking matrix in which the
energy of the interference is stronger than the target speech. The artifacts (musical
noise) due to the error in the estimation of the binary mask in the segregated speech
signals are further reduced by applying the cepstral smoothing technique. Compared

* with smoothing directly in the spectral domain, cesptral smoothing has the advantage

130
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of preserving the harmonic structure of the separated speech signal while reducing the

musical noise to a lower level by smoothing out the unwanted isolated random peaks.

The proposed method achieves considerable improvement in comparison to [178] in
terms of both ob jective measurements using SNR and subjective listening tests, mainly
due to the introduction of the binary T-F masking operation and the cepstral smooth-
ing. The binary masking contributed mostly to the improvement of intérference caﬂcel-
lation, and cepstral smoothing further improved the perceptual quality of the separated
speech. Although the proposed method and Pedersen ef al.’s method [129] have the
similar combination structure, i.e., combination of an ICA algorithm with the IBM tech-
nique. However, the proposed algorithm directly addresses the convolutive BSS model
based on the frequency-domain approach, while Pedersen ef al.’s method is based on
an instantaneous model and an instantaneous ICA algorithm, even though their algo-
rithm has also been tested for convolutive mixtures. Second, the algorithm in [129] is
iterative, which is computationally demanding. Moreover, cepstral smoothing has been
introduced in the proposed method, which has the advantage of reducing the musical

artifacts caused by the IBM technique.

In Chapter 4, a method is developed to deal with the effects of reflections on the target
speech signal contaminated by the white Gaussian noise in a cocktail party environment.
The proposed method is a one-microphone multistage algorithm. In the first step, an
EMD algorithm is applied to the reverberant speech signal corrupted by white Gaussian
noise to decompose it into its corresponding IMFs. Then, the IMF components with
the high level of noise have been selected and denoising is applied to these selected
~ IMFs. The denoising technique employed here is based on MMSE filtering approach
called EMD-MMSE. The silence periods of the signal are detected and then the noise
power spectrum is estimated by averaging the power spectra of the noisy signal. Then
the MMSE estimator is applied to enhance the. selected IMF components, resulting
in the denoised IMF components and remaining unprocessed IMF components. In
the next step, the denoised IMF components and the remaining IMF components are
used to estimate the power of late reverberations as here the main focus is on late
reflections which is the main cause of reducing intelligibility of target speech. It has

been observed that the energy of the late reverberations is spread over the different
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IMF's with different magnitudes. For this reason, spectral subtraction is applied to
each IMF component according to the energy of the late reverberations present in the
corresponding IMF components. Finally, the enhanced signal is reconstructed from the
processed IMF components. The experimental results are provided which clearly show
that using spectral subtraction for the IMF components of the noisy reverberant speech
offers better denoising and dereverberation in comparison to the related method that

directly uses the full-band noisy reverberant speech.

In Chapter 5, an algorithm is developed to tréat the room reflections only by targeting
at the late as well as the early reflections. The proposed method has two steps. In
the first step a frequency dependent statistical model of the decay rate of the late
reverberations is used to estimate the spectral variance of the late reverberations, and
then the mask is estimated containing the spectral subtraction gain functions in the
T-F domain. In order to remove the processing artifacts (musical noise) due to the
error in the estimation of the mask, a smoothing function is applied to the mask in the
T-F domain to filter out the artifacts. Finally, the smoothed gain function is applied
to the reverberant speech to reduce the late reverberations. In the second step of the
proposed method, a Wiener filtering approach is applied to reduce the early reflections.
This step of the algorithm exploits the low coherence of the sound field between the
different microphones (sensors) to estimate the power spectral density of the direct
speech and to remove all non-coherent signal parts while keeping the coherent parts
unaffected, as only the direct speech shows a high coherence among sensors. As a result
the early reverberations are attenuated. It has been shown in the experimental results
that the proposed algorithm offers considerably higher dereverberation performance as

compared with a related recent approach using the frequency indepehden’c model.

In Chapter 6, an algorithm is presented in which the separation performance of the
method proposed in Chapter 3 has been improved by incorporating the dereverbera-
tion technique developed for late reverberation in Chapter 5, with an additional step
of estimating the RT blindly from the reverberant signal énd hence the developed algo-
rithm operates in a blind manner. The developed method has been employed in three
different ways. Firstly, ;che available mixture signals are used to estimate blindly the

RT based on a ML method and statistical modelling of the sound decay rate of the re-
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verberant speech, followed by the dereverberation of the mixture signals to suppress the
late reflections using the method based on the frequency depenedent statistical model
as described in Chapter 5. Theri, the separation algorithm proposed in Chapter 3 is
applied to these resultant mixtures so that the source speech signals can be obtained.
Secondly, the separation algorithm is applied first to the mixtures to segregate the
speech signals, followed by the blind estimation of RT from the separated speech sig-
nal. Then, the dereverberation is employed to the segregated speech signals to suppress
the late reflections. In the third scheme, the multistage separation algorithm proposed
in Chapter 3 is split such that the convolutive ICA is first applied to the mixtures to
obtain the estimated source signals. Then, the signal obtained from the convolutive
ICA is used to estimate the RT followed by the blind dereverberation of the signals
obtained from convolutive ICA. Then, the T-F representation of dereverberant signals
are used to estimate the IBM followed by cepstral smoothing to enhance the separated
speech signals. The evaluation results show that the proposed algorithm further en-
hances the separation performance of the multistage separation algorithm developed in

Chapter 3 of the thesis.

7.2 Future Research

This dissertatién suggests different directions for %uture research. An obvious one is
the extension of the algorithm developed in Chapter 3 to the underdetermined cases.
Currently this algorithm is working efficiently for the determined scenario, however its
extension can offer research in the direction that is envisaged to have some potential.
Similarly in Chapter 4 the method developed is based on single microphone derever-
beration system. Futher research might be conducted to investigate the potentials of
this method for multi-microphone system. Also the developed method is only treating
the late reverberations, hence some method can be incorporated to deal with the early

reflections also.

In Chapter 5 the proposed method is based on the fact that the acoustic impulse
response has an exponential decay and hence the spectral variance estimator for late

reverberations is using such decays. Despite the fact that this assumption is true for
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many enclosed spaces, generalization will make it more interesting. For example in
some cases there are coupled rooms (an enclosed space connected together using some
opening), here the exponential decay rate that exhibits in each room is different and

hence the total decay consists of a sum of exponential decays [161].

Another interesting idea is about the estimation procedure of RT proposed in Chapter 6,
in which a statistical model based approach is adopted for estimating the RT. Currently,
the proposed method is locating the free decay regions first in the reverberant speech
and then employ the statistical model based ML approach to these regions to estimate
RT. It can be extended in future such that the RT can be estimated from the reverberant

speech without locating the free decay regions first.
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