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Abstract. Lightning is a rapidly evolving phenomenon, exhibiting both mesoscale and microscale characteristics. Its prediction significantly
relies on timely and accurate data observation. With the implementation of new generation weather radar systems and lightning detection
networks, radar reflectivity image products, and lightning observation data are becoming increasingly abundant. Research focus has shifted
towards lightning nowcasting (prediction of imminent events), utilizing deep learning (DL) methods to extract lightning features from very large
data sets. In this paper, we propose a novel spatio-temporal fusion deep learning lightning nowcasting network (STF-LightNet) for lightning
nowcasting. The network is based on a 3-dimensional U-Net architecture with encoder-decoder blocks and adopts a structure of multiple branches
as well as the main path for the encoder block. To address the challenges of feature extraction and fusion of multi-source data, multiple branches
are used to extract different data features independently, and the main path fuses these features. Additionally, a spatial attention (SA) module is
added to each branch and the main path to automatically identify lightning areas and enhance their features. The main path fusion is conducted in
two steps: the first step fuses features from the branches, and the second fuses features from the previous and current levels of the main path using
two different methods—the weighted summation fusion method and the attention gate fusion method. To overcome the sparsity of lightning
observations, we employ an inverse frequency weighted cross-entropy loss function. Finally, STF-LightNet is trained using observations from the
previous half hour to predict lightning in the next hour. The outcomes illustrate that the fusion of both the multi-branch and main path structures
enhances the network’s ability to effectively integrate features from diverse data sources. Attention mechanisms and fusion modules allow the
network to capture more detailed features in the images.
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1. Introduction The prevailing approach to lightning prediction in-
volves extrapolation reliant on real-time data. This
approach involves various techniques such as optical
flow [7-10], TITAN [11], SCIT [12], and machine
learning method [13-17], often coupled with numer-
ical weather predictions (NWP) [10, 18] or stochastic
field perturbations [10, 19]. The deployment of new
generation weather radar systems and lightning obser-
vation systems has resulted in the acquisition of a mas-
sive amount of high-resolution spatio-temporal obser-

Lightning, known for its destructive impact, poses
a significant threat due to the substantial economic
and human losses it often incurs. Given its rapid
evolution, intense weather phenomena, and small
spatio-temporal scales, accurate prediction of light-
ning events is crucial, and the typical lead-time ranges
from O to 2 hours [1], which is called nowcasting.

Amidst concerns about global warming and the rising
occurrence of extreme weather events, the significance
of accurate lightning prediction is escalating [2—-6].
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vation data. However, the extrapolation method, which
heavily relies on the motion features of the observa-
tions, struggles to handle the complex non-linearities
inherent in convective systems. The intricate informa-
tion necessary for accurate prediction is often con-
cealed within the vast high-resolution dataset.



Just like in other fields [20-28], weather forecasting
systems driven by spatio-temporal data and based on
deep learning (DL) [29-37] have demonstrated supe-
rior performance compared to Numerical Weather Pre-
diction (NWP) methods [38-42]. Nevertheless, these
global weather forecasting models face challenges in
balancing the trade-off between forecasting coverage
and computational efficiency. Consequently, the res-
olution of these models is often limited, typically at
0.25° latitudex0.25°longitude (In geography, 0.01° is
roughly equivalent to 1 kilometer). This low resolu-
tion proves to be a drawback when predicting light-
ning events with small spatio-temporal scales. Conse-
quently, the majority of these models focus solely on
forecasting precipitation.

Data-driven lightning forecasting/nowcasting with
DL methods can be broadly categorized into two
types: architectures based on recurrent neural net-
works (RNN) [43] and those based on convolutional
neural networks (CNN) [44,45]. In the realm of RNN-
based architecture, Shi et al. introduced the Con-
volutional Long Short-Term Memory (ConvLSTM)
model in 2015. This model cleverly combines the
strengths of convolutional neural networks and LSTM
recurrent neural network models, demonstrating supe-
rior performance compared to traditional optical flow
techniques [46]. In 2017, the same authors expanded
on their work by incorporating gated recurrent units
(GRUs) and introducing the convolutional gated re-
current unit (ConvGRU) and trajectory GRU (Traj-
GRU) algorithms [47]. Building upon Shi et al.’s foun-
dation, Geng et al. proposed LightNet, a model that
utilizes numerical models (WRF) and real-time light-
ning observations to predict lightning occurrences in
the next 0—6 hours [48,49]. In 2022, a novel approach,
Seamless Lightning Nowcasting with RNN, emerged.
This method nowcasts lightning at five-minute inter-
vals within the next hour by leveraging multi-source
data, including lightning detection data, weather radar
observations, satellite imagery, weather forecasts, and
elevation data [50]. Later on, the Lightning Nowcast-
ing with RNN was extended to nowcast multiple haz-
ards [51]. In the latest research, [52] incorporated the
surface feature data in addition to radar and light-
ning data. They extended the ConvLSTM algorithm
by integrating GAN (Generative Adversarial Network)
[53,54] to achieve more accurate prediction results.

The RNN structure exhibits advantages in extract-
ing temporal features from time series, but it cannot
capture spatial features. Although ConvLSTM com-
bines CNN with RNN to address this limitation, it still
falls short in terms of spatial feature extraction com-
pared to a CNN-based structure [55]. Semantic seg-
mentation networks, such as the U-Net, with its unique
encoder-decoder structure, are recognized for achiev-
ing pixel-wise segmentation [56]. In fact, the encoder-
decoder structure has been proven to be very effective
in many application fields [57-60]. Notably, the U-Net
incorporates skip connections from the encoder to the
decoder, establishing semantic connections between
encoding and decoding feature layers. This architec-
ture allows for the simultaneous extraction of both
coarse and fine image features. Viewing convective
systems nowcasting as a semantic segmentation prob-
lem has led to the proposal of lightning nowcasting
using semantic segmentation networks [61,62]. Zhou
et al. (2020) introduced the LightningNet method,
leveraging multi-source data, including satellite cloud
images, radar reflectivity, and lightning observations.
They replaced the 2D convolutional layers in SegNet
with a 3D convolution, treating convective systems
nowcasting as a semantic segmentation task [61]. Due
to the lower spatial and temporal resolution of satel-
lite observation data compared to radar and lightning
data, [61] uses linear interpolation to unify the spa-
tial and temporal resolution of radar and lightning data
with that of satellite data. However, this also results
in a decrease in the spatial and temporal resolution of
the lightning nowcast results. Fan et al. (2023) pro-
posed Light3Dunet, based on the 3D U-Net architec-
ture, which constructed a high-dimensional dataset by
integrating lightning observations and radar reflectiv-
ity data. This approach aimed to enhance the accuracy
of lightning nowcasting by utilizing the spatial posi-
tion coupled features of Cloud-to-Ground and Intra-
Cloud lightning and the 3D U-net network [62]. Both
methods simplify the process by stacking multi-source
data into a 3D dataset and directly extracting features
using 3D convolutions, rather than independently ex-
tracting features from each data source and then fusing
them. It has been demonstrated in many applications
that feature selection and fusion can enhance model
performance, improving predictive accuracy [63—70].



Based on the above analysis, this paper introduces
a novel spatio-temporal fusion deep learning network
for lightning nowcasting, termed STF-LightNet. The
proposed method adopts a 3D U-Net architecture, fea-
turing a multi-branch and main path configuration
for the extraction and fusion of features from diverse
data sources in the encoder block. To address the
mesoscale and microscale characteristics of lightning,
each branch incorporates a Spatial Attention (SA)
module to autonomously identify and enhance the
lightning region. The fusion process in the main path
unfolds in two steps for extracting spatio-temporal fea-
tures: first, the fusion of features from each branch,
followed by the fusion of features from the current
layer and the previous layer. Considering the spar-
sity of lightning images, a reversed frequency cross-
entropy loss function is incorporated during training,
assigning larger weights to less frequent grids. The
proposed algorithm is then trained and evaluated using
observational data from the middle of China, demon-
strating its effectiveness in lightning prediction for the
next hour.

The structure of the paper is organized as follows:
Section 2 describes the materials used, including the
architecture of the proposed model presented. The ver-
ification results are detailed in Section 3, and the con-
clusion is presented in Section 4.

2. Materials and Methods
2.1. Study Area

Our study area encompasses the region between
112°-117°E and 28°-33°N in the middle of China, as
illustrated in Fig. 1. A S-Band weather radar, denoted
by the red cross in Fig. 1, is centrally located within the
study area. Operating at a 6-minute interval, the radar
conducts a total of 240 scans per day. The resulting
products cover a radius of 232 km with a resolution of
0.01°%0.01°, represented as a 640x480 floating-point
matrix. The Lightning Detection Network servicing
this area consists of 18 sensors, with only 12 shown in
Fig. 1.

Subsequently, we will undertake further processing
of the data acquired from the aforementioned sensors.

Study Area in the Middle of China
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Fig. 1. The study is conducted in the middle of China, with the
weather radar’s location indicated by a red cross and the stations of
lightning detection sensors represented by black triangles.

2.2. Data

2.2.1. Radar Data

The S-band radar depicted in Fig. 1 is part of the
China Next Generation Weather Radar (CINRAD)
Network. Reflectivity image products generated by the
radar can be obtained from the China Meteorological
Administration (CMA) website (http://data.cma.cn,
accessed on November 22, 2022). We downloaded
products covering two precipitation seasons (May to
August) from 2018 to 2019, resulting in a total of
59,040 maps.

To address redundant information on each map, data
cleaning procedures are applied, involving the removal
of annotations, crack filling at the removed pixels,
and cropping. The fundamental data cleaning steps
align with those in [62,71]. The reflectivity image be-
fore and after cleaning can be referred to [62]. Ul-
timately, each cleaned radar reflectivity image com-
prises 480x480 grid points, retaining only the pixel
values corresponding to the colors matched with the
“Reflectivity Colorbar.” The “Reflectivity Colorbar”
divides radar echo reflectivity intensity from O to 75
dBZ into 15 different colors; for more detailed illustra-
tions, please refer to [62]. In 6 and 7 of this paper, we
retained the pixel values of radar reflectivity greater
than or equal to 30 dBZ and provided the correspond-
ing colorbar. The resolution of the study area is 0.01°
% 0.01°. The total number of images used in this study
is 59,040, with dimensions of 480 x 480.



2.2.2. Lightning Data

The sensor network depicted in Fig. 1 is part of
the National Lightning Detection Network (NLDN)
in China. NLDN provided raw data products, which
include the location, time, type, and other descrip-
tors of individual lightning strikes, encompassing both
Cloud-to-Ground (CG) and Intra-Cloud (IC) occur-
rences. Similar to the method in [72] that maps 1D
data to 2D data processing, we map the temporospa-
tial discretized lightning data to 3D. The map utilized
to project the raw data maintains consistency with the
reflectivity images covering the study area, featuring
480x480 grid points and a resolution of 0.01°x0.01°.
Leveraging the recorded latitude and longitude of each
strike, individual CG and IC strikes are aggregated into
lightning density maps, representing 6-minute periods
and serving as lightning observation images compat-
ible with our network. Additionally, these lightning
strikes contribute to the creation of labels. Given the
strong coupling of CG and IC in the two-dimensional
spatial projection, a pixel is assigned a value of 1 if a
lightning event occurred at that location within the last
hour; otherwise, it is set to 0.

2.3. Methodology

Due to the mesoscale/microscale characteristics
(few minutes to hours in time, and tens to thousands of
meters in space) of lightning phenomena in meteorol-
ogy, the lightning density images/label images exhibit
small scale, sparse (percentage of non-zero points on
each lightning density image is only 0.5% on average),
scattered (many non-zero pixels are not adjacent), and
unclear boundary (lightning strikes are discontinuous
in the image) features in the images. The U-Net ar-
chitecture excels at extracting image features across
multiple scales through a series of cascaded CNNs,
utilizing skip connections to merge features and gen-
erate predictions at both coarse and fine levels, effec-
tively addressing fine spatial details [73]. In light of
these capabilities, a spatio-temporal fusion network is
proposed based on the standard U-Net architecture in
this paper. The proposed algorithm’s encoder block in-
tegrates multi-branch and main path structures. Each
branch and the main path are equipped with a spatial
attention (SA) module to identify lightning-prone ar-
eas autonomously. Furthermore, a fusion module is in-

troduced to amalgamate feature maps in the main path.
The foundational framework is illustrated in Fig. 2.

2.3.1. Overall Architecture of Spatio-temporal
Fusion Network for Lightning Nowcasting

U-Net is widely utilized for image segmentation
tasks due to its excellent performance. Additionally,
the 3D U-Net employs 3D CNN to extract features
in the spatial-temporal dimension of the dataset [74].
Consider an image X € REH>*WxD with a spatial res-
olution of H x W, C channels, and D depths (corre-
sponding to the time dimension). The encoder block
on the left in Fig. 2 encodes the inputs into high-level
feature maps. The decoder block on the right decodes
high-level feature maps back to the full spatial reso-
lution, generating the corresponding pixel-wise label
map. The output of the decoder is represented as an
image Oy € RN>H>W 'where N, is the number of la-
bel types.

In contrast to existing approaches, the proposed
method’s encoder block comprises both the main path
and multiple branches, each corresponding to different
data sources. These branches take inputs from differ-
ent data sources to extract image features in convolu-
tional layers. Subsequently, the feature maps outputted
by the layers are fused in the main path. To extract
coarse and fine features in the spatial-temporal domain
of the input data sources, Spatial Attention (SA) mod-
ules and Fusion modules are introduced into the en-
coder block. The detailed explanations of these two
components follow.

2.3.2. Spatial Attention

To automatically identify lightning areas, we em-
ploy the Spatial Attention (SA) mechanism. The de-
tailed principle of SA is illustrated in Fig. 3. The SA
module consists of a ReLU and a Sigmoid block. Each
block incorporates a linear transformation channel-
wise 1x1x1 convolution and a BatchNorm, followed
by either ReLU or Sigmoid. The output O; of the SA
is:

O, = Sigmoid(Conv(ReLU(Conv(X)))))oX; (1)

where, X; is the input feature-map in layer [, X; €
RE>HXWixD; | F i the number of channels, o denotes
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Fig. 2. The overall structure of Spatio-temporal Fusion Network (STF-LightNet). The STF-LightNet uses 3D U-Net architecture, which has
the encoder-decoder block and the skip connections between the encoder and decoder. Within the encoder block, two branches are responsible
for extracting features from distinct data sources, while the main path combines feature-maps from these branches along with those from the

previous and current layers in the main path.

&

Fig. 3. Spatial attention module.

the Hadamard, the output is O; € REXHxWixDy  The
Spatial Attention (SA) module dynamically assigns
probability weights to each grid of the input. High
probabilities indicate focused regions, enhancing the
features of the input feature-map, while low probabil-
ities diminish their contributions.

2.3.3. Fusion Method

The fusion method shown as “Fuse” block in Fig.
2 enhances the exploitation of observation data fea-
tures by combining the feature-maps output from the
branches in the current layer and merging the feature-
maps output from the previous- and current-layer in

the main path. In this method, two types of fusion
techniques are employed: the Weighted Fusion (WF)
method and the Attention Gate Fusion (AGF) method.
Detailed illustrations of WF and AGF are provided in
Fig. 4 and Fig. 5 respectively. In both fusion methods,
the process involves two steps: the first step combines
the feature-maps from two branches, as depicted in the
green dashed rectangle region in Fig. 4 and Fig. 5. The
second step combines the fusion output of the current
layer with the Spatial Attention (SA) output of the pre-
vious layer in the main path.

The Weighted Fusion (WF) method involves two
steps of weighted fusion, while the Attention Gate Fu-
sion (AGF) method comprises both a weighted fusion



Fig. 4. Weighted fusion module.

(WF) and an Attention Gate (AG), with AG draw-
ing inspiration from [75]. If O] and O represent the
feature-maps of radar reflectivity and lightning obser-
vations in layer /, the formulation for the first fusion
step in both WF and AGF is as follows:

O =w[0] +w{ O} 2)

where, OZZ is the output of first fusion step, wy,wy € R
are the scalar in layer / which are initialized to 1 and
can be trained.

Then, let Z;_; be the output of the previous layer in
the main path, the second fusion step in WF is:

Z1 =w0f +wiz,, 3)

where weight wy, wlZ € R are the scalar in layer / which
are initialized to 1 and can be trained. And, the second
fusion step in AGF is:

7; = Sigmoid(Conv(ReLU(Conv(0?)
+Conv(Z;_1)))) 0 Of

where, Z; is the output of the Fusion method, and
{07,09,2,_,2; € RF<H>WixPi} The STF-LightNet
using the Weighted Fusion (WF) module is named
ST-WF-LightNet, while the STF-LightNet employing
the Attention Gate (AG) fusion is named ST-AGF-
LightNet.

2.3.4. Dataset

Lightning prediction involves nowcasting lightning
events in the near future (e.g., within 0-2 hours) based
on past and current observations. Given the strong spa-
tial and temporal continuity of observations over a rel-
atively short period, we leverage this property by con-
structing training samples with temporal information.
Specifically, we utilize observations from the past half

hour, including radar reflectivity and lightning obser-
vations, to nowcast lightning for the subsequent hour.
With weather radar data produced at a 6-minute inter-
val, there are 5 reflectivity maps within half an hour.
Additionally, due to lightning density maps being ac-
cumulated every 6 minutes, there are 5 lightning maps
within half an hour. These 5 maps for each data source
in every half hour are stacked into a 4-dimensional
training sample. The label corresponding to each sam-
ple is generated based on lightning observations in the
hour following the end time of the sample. For a de-
tailed explanation of how lightning density and labels
are created, please refer to Section 2.2.2. The two sets
of samples are separately fed to two branches at the
encoder block. The shape of the sample is denoted as
X € ROHXWXD ‘where C =3 and D = 5. The param-
eter D = 5 represents the number of maps in half an
hour. Based on the structure of the dataset, the input/
feature map sizes for each layer in the network encoder
block are shown in Table 1, where F is the number of
channels and F' = C for the input images at the begin-
ning of the network.

Table 1. The layer size in each branch/main path of encoder block

Size

FxHXxWxD
Layer

Input 3x480x480x5

1 64 x 480 x 480 x 5
2 128 x 240 x 240 x 4
3 256 x 120 x 120 x 2

4 512 x60 x 60 x 1

5 1024 x 30 x 30 x 1

As our goal is to nowcast lightning, the effective-
ness of the data for training the neural network in-
creases with a higher occurrence of lightning within an
hour. Consequently, we discarded samples with fewer
than 30 lightning strikes in the corresponding labels.
After this selection process, the dataset consists of
1641 samples of radar reflectivity and lightning obser-
vations. The dataset is divided into a training set and a
test set. The test set encompasses 279 images, with the
training set encompassing the remaining 1362 images.
We used a validation set by randomly selecting 15%
of the images belonging to the training set.
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Fig. 5. Attention gate fusion module.

2.3.5. Model Training, Validation, and Testing

To prevent overfitting during the training process,
it is essential to have a substantial number of sam-
ples. Dataset augmentation techniques, such as ran-
dom mirroring and random rotations at 90°, were em-
ployed to enhance the diversity of the training sam-
ples. In Section 3, we presented the training results
after data augmentation without directly comparing
them to the results from unaugmented data. This com-
parison has already been extensively studied in the
literature [61, 62, 71]. The cross-entropy loss, widely
used for predicting the probability of a binary event, is
expressed by the following formula:

N

1 L,
loss = N Z Z yilog[p§] (5

i=1c=0

where ¢ € {0,1}, N denotes the total pixel count, i
represents an individual pixel, ¢; indicates the label of
pixel i, p; denotes the probability associated with each
pixel i, and ¢ stands for the total number of classes.

Given the sparsity of lightning events in the ob-
servation maps, where the number of pixels without
lightning events exceeds those with lightning events,
the dataset exhibits an imbalance. To address this im-
balance, we utilize in this study the weighted cross-
entropy loss.

1 N 1 o
loss,, = N Z Z weyelog[pf] (6)
i=1c¢=0

where w, is the weight coefficient associated with the
class ¢ € {0,1}. We adopted the Inverse Frequency
Weighted to give a higher weight to the less repre-
sented class:

we = (2f) 7! (7)

where f. is the frequency of that class, fo+ f1 = 1.

The optimizer function used is ADAM with a learn-
ing rate of 1073, ST-WF-LightNet has a total of
26,936,898 parameters, with 26,926,914 being train-
able. On the other hand, ST-AGF-LightNet has a to-
tal of 28,350,678 parameters, with 28,333,006 being
trainable. The batch size is set to 2. The training was
conducted using a Tesla V100 GPU with 32GB of
video memory and 32GB of RAM. With this hard-
ware setup, one step required approximately 4 sec-
onds for both STF-LightNets. An early stopping strat-
egy was implemented: the learning rate is divided by
5 if the loss in the validation set does not improve
for 3 epochs. In case there is no enhancement in the
loss over six consecutive epochs, the training process
is interrupted, and the model weights associated with
the most optimal validation loss is preserved. The out-
put of the network consists of a two-channel matrix,
Oy € RNXHXW "where N, = 2. The nowcast proba-
bility for each grid point in the matrix is determined
through the softmax classifier. Channel O corresponds
to no lightning events, and channel 1 corresponds to
lightning events.

2.3.6. Evaluation

When assessing the nowcasting performance of
STF-LightNet, this study utilizes four traditional skill
metrics: probability of detection (POD), false alarm
ratio (FAR), threat score (TS), and equitable threat
score (ETS). Let n be the total pixel count, while n,
nm, iy, and n stand for the counts of TP (True Pos-
itive), FN (False Negative), FP (False Positive) and
TN (True Negative), respectively. Detailed informa-
tion on the four skill scores is provided in Table 2. To
calculate the scores as mentioned above, determinis-
tic nowcasts are required. Therefore, the probabilis-
tic nowcasts, which are the network’s output in chan-



nel 1, are transformed into deterministic ones using
a given threshold 7. In strict terms, TP is only con-
sidered when lightning falls within the predicted grid.
However, as indicated in [76], neighborhood-based
metrics demonstrate better characteristics when eval-
uating predictions on high-resolution grids compared
to strict metrics. Therefore, this paper adopts the same
neighborhood-based metric with a radius of 1, as used
in [48], when evaluating nowcasting performance.

3. Results

Here, we present an identification performance
comparison of the proposed ST-WF-LightNet and ST-
AGF-LightNet with Light3DUnet [62] using the test-
ing dataset. The lightning prediction network in [62]
employed two baselines, U-Net and DeepLabV3+. Ex-
perimental results indicated that the lightning predic-
tion network based on U-Net outperformed the one
based on DeepLabV3+. Therefore, in this paper, our
proposed algorithm is compared with Light3DUnet.
However, the Light3DUnet used in this comparison in-
corporates the Attention Gate (AG) [75] in the decoder
block, a departure from the original Light3DUnet [62].
Meanwhile, to observe the impact of the SA module
on the network, the prediction results of the ST-AGF-
LightNet without SA (called NoSA-AGF-LightNet)
are given. We begin by examining the ability of these
four networks to extract spatio-temporal features.

3.1. Network Model Analysis

Fig. 6 presents two cases of the prediction results for
T+60 min on August 8, 2019, at two different times: T
=19:00 BJT and T = 19:30 BJT. Case 1 is illustrated
in Figs. 6(a) - 6(g), while Case 2 is depicted in Figs.
6(h) - 6(n). Fig. 6(a)-Fig. 6(c) and Fig. 6(h)-Fig. 6(j)
represent observations at 10-minute intervals over the
past 30 minutes at T-20 ~ T-30, T-10 ~ T-20, and T-10
~ T. Fig. 6(d)-Fig. 6(g) and Fig. 6(k)-Fig. 6(n) display
the contour plots of the lightning nowcasting for T+60
min generated by the four networks.

We first analyze the predicted outputs of STF-
LightNets and Light3DUnet. Fig. 6(a)-Fig. 6(c) depict
the movement and development of convective systems
in the discussing region during the past 30 minutes for

Case 1. Initially, there was one mesoscale convective
system A, and two microscale convective systems B
and C. Convective system A rapidly intensified and
moved towards the southeast, accompanied by more
and more lightning events, whereas convective system
B gradually disappeared with fewer and fewer light-
ning events. Convective system C remained virtually
unchanged for half an hour.

The prediction results shown in Fig. 6(d) - Fig. 6(g)
correspond to the four networks for Case 1. Firstly, it
is evident that all four networks can effectively capture
the spatial and temporal features of the data. The net-
works anticipate the movement of lightning towards
the southeast in the next hour and make accurate pre-
dictions for mesoscale lightning A. The distinction
lies in the prediction output of STF-LightNets, con-
sidering both lightning observations and radar reflec-
tivity, while Light3DUnet is more responsive to light-
ning observations. Consequently, STF-LightNet ex-
hibits a broader prediction range and more accurate
nowcasts for real convective systems and lightning lo-
cations, while Light3DUet excels in accurately now-
casting dense lightning areas. This suggests that al-
though all the above models are based on 3DUnet ar-
chitecture and also use AG modules. However, the net-
work proposed in this paper adopts a multi-branch +
main path for feature extraction and fusion, where the
branch part effectively extracts the features of different
data sources and fuses them in the main path, which
makes the network learn the spatio-temporal charac-
teristics of different data sources at the same time.
While Light3DUnet did lose some of the features of
the radar reflectivity images during the feature extrac-
tion process. Obviously, the use of multi-branches +
main path for feature extraction and fusion in the en-
coder stage is superior to the use of the AG module for
feature fusion in the decoder stage.

Secondly, we observe that STF-LightNets possess
the ability to nowcast microscale lightning, repre-
sented as dots in A, B, and C in Figs. 6(d), 6(e) and
6(f). However, Light3DNet lacks this capability and
misses microscale lightning B and C. This further con-
firms that the strategy of using multi-branch + main
path effectively extracts and restores features from dif-
ferent data sources.

Similar conclusions can be drawn from Fig. 6(k)-
Fig. 6(n) for Case 2, where Fig. 6(k) - Fig. 6(m) repre-



T-20 ~ T-30 T-10 ~ T-20 T~T-10
B4 B ¥ B &
-C -C e
(a) (b) ©
S °E €
-C “eC
(d (e) ® (2)
1-20 ~1-30 1-10 ~ 1-20 1T~1-10
1
R
- r
(h) () G)

ST-WF-LightNet Noweasting: T + 60 ST-AGF-LighiNet Nowcasting: T + 60 NoSA-AGF-LightNet Nowcasting: T + 60 Light3DUnet Nowcasting: T + 60

(] ® (m) ()

dBZ ]

% 3% 4 45 S0 55 60 65 70

Fig. 6. Two cases of lightning nowcasting for the next 0-60 min of three networks and the observations of the past 30 min, case one is (a)-(g),
case two is (h)-(n). The (a)-(c) and (h)-(j) are the observations for the past 30 min at 10 min intervals. The (d)-(g) and (k)-(n) are the contour plots
of lightning nowcasting, which show the nowcast probabilities of 0.5, 0.7, and 0.9 in the colors blue, blue, and green respectively. The black dots
denote lightning observations, while the color-shaded areas are radar reflectivity which is retained only if the intensity is greater than or equal to
30 dBZ. The (a) (h) are the past observations from T-20 to T -30. The (b) (i) are the past observations from T-10 to T -20. The (c) (j) are the past
observations from T to T -10. The (d) (k) are ST-WF-LightNet Nowcasting for T+60 with the ground-truth. The (e) (1) are ST~ AGF-LightNet
Nowcasting for T+60 with the ground-truth. The (f) (m) are NoST-AGF-LightNet Nowcasting for T+60 with the ground-truth. The (g) (n) are
Light3DUnet Nowcasting for T+60 with the ground-truth.
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Fig. 7. Lightning nowcasting by ST-WF-LightNet and ST-AGF-LightNet for next 0-60 min across different training epochs (6, 9, 12, 18, 30).
The left column is the contour plots of ST-WF-LightNet lightning nowcasting, and the right column is the contour of ST-AGF-LightNet. The
nowecast probabilities of 0.5, 0.7, and 0.9 are shown in the colors blue, blue, and green respectively. The black dots denote lightning observations,
while the color-shaded areas are radar reflectivity which is retained only if the intensity is greater than or equal to 30 dBZ.

sent STF-LightNets’ predictions, and Fig. 6(n) repre-
sents Light3DUnet’s prediction.

Next, we delve into the discussion of two STF-
LightNets utilizing different fusion strategies. Let’s
begin by examining Case 1. By comparing Fig. 6(d)
and Fig. 6(e), it is evident that ST-WF-LightNet cap-
tures less information in the time dimension com-
pared to ST-AGF-LightNet. Consequently, for convec-
tive system A, which exhibits temporal movement, ST-
WF-LightNet provides predictions at the same loca-
tion solely based on the past half-hour of observa-
tions, resulting in a loss of predictions for newly de-
veloped lightning. In contrast, ST-AGF-LightNet ac-
quires more temporal information for inferring the
motion of the convective system, leading to more rea-
sonable nowcasts.

Turning to Case 2, a similar trend is observed in Fig.
6(k) and Fig. 6(1). The contour regions provided by

ST-AGF-LightNet, with probabilities of 0.5, 0.7, and
0.9, respectively, are all larger than those produced by
ST-WEF-LightNet.

Finally, comparing SA-AGF-LightNet with NoSA-
AGF-LightNet, as shown in Fig. 6(e), Fig. 6(1) and Fig.
6(f), Fig. 6(m), we found that due to the absence of the
SA module, the feature maps extracted by the branches
lack finer details. During main path fusion, there is a
tendency to directly merge the two features. Therefore,
as seen in Fig. 6(f), the contour lines with high prob-
abilities directly encompass both lightning areas and
radar reflectivity areas, without effectively integrating
the detailed features of both.

3.2. Visualization Analysis of Network

Here, we present a visualization of the results ob-
tained from STF-LightNets to analyze the network’s



functioning. The lightning nowcasting pertains to the
period from 19:00 to 20:00 BJT on 8 August 2019. In
Fig. 7, the lightning nowcasting results are depicted
concerning training epochs (6, 9, 12, 18, 30) for both
ST-WF-LightNet and ST-AGF-LightNet.

A common observation reveals that both proposed
networks undergo gradual updates, with a focus on lo-
calizing the lightning areas and the boundaries of con-
vection systems. Moreover, both algorithms initially
provide a broad outline of the convection system at
coarser scales during the early stages of training. As
training progresses, more detailed information and ir-
regular boundary details are extracted. Subsequently,
not only is a fine outline of the mesoscale lightning
area gradually predicted, but point predictions for scat-
tered, microscale lightning, and the boundaries of con-
vection systems are also provided at finer resolutions.
This is evident as the blue and green dots gradually ap-
pear with increasing training epochs, as illustrated in

Fig. 7(g) - Fig. 7(j).
3.3. Nowcast Performance

This section assesses the performance of lightning
nowcasting for ST-WF-LightNet, ST-AGF-LightNet
and Light3DUnet. Initially, two widely utilized met-
rics for evaluating image classification algorithm per-
formance are introduced: the receiver operating char-
acteristic (ROC) and the area under the curve (AUC),
presented in Fig. 8. It can be observed that, compared
to Light3DUnet, the ROC curve of STF-LightNet is
closer to the upper-left corner, and the AUC is closer
to 1. This indicates that the performance of the STF-
LightNet model is superior to Light3DUnet. Further-
more, among the two STF-LightNet methods, ST-
AGF-LightNet outperforms ST-WF-LightNet.

Using the ROC curves, we calculated the Youden
index to determine the optimal thresholds, which are
Tw = 0.7 for ST-WF-LightNet, Ty = 0.8 for ST-AGF-
LightNet and Ty = 0.5 for Light3DUnet based on the
maximum Youden index, respectively.

Utilizing the optimal thresholds Ty = 0.7, Tyg =
0.8 and Ty = 0.5, we compute the four metrics men-
tioned in Section 2.3.6 to assess the performance of
the three algorithms. The results are presented in Ta-
ble 2. By definition of the skill scores, for POD, TS,
and ETS, larger is better, and for FAR, smaller is bet-
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Fig. 8. ROC and AUC of one-hour lightning nowcasting produced
by ST-WF-LightNet, ST-AGF-LightNet and Light3DUnet for the
testing dataset. False positive rate = n7/(ns+n.) and true positive rate
= ":/(nﬁrnm).

ter. In table 2, we have underlined the best scores for
three methods. Remarkably, both STA-LightNet meth-
ods demonstrate superior performance compared to
the Light3DUnet method in terms of POD scores, TS
scores, and ETS scores, despite some minor shortcom-
ings in FAR. It is important to acknowledge that an
improvement in POD might result in a proportional
increase in FAR. However, the STF-LightNet mod-
els notably enhance POD, TS, and ETS with only a
marginal increase in FAR. Additionally, the perfor-
mance of ST-AGF-LightNet is superior to that of ST-
WF-LightNet. Consequently, the ST-AGF-LightNet
model exhibits advantages such as a high detection
rate, robust resolution capability, and stability.

Table 2. Skill scores of lightning 0-1 hour nowcasting results by
STF-LightNet and Light3DUnet on testing set. The equations of
POD, FAR, TS and ETS are presented in the table, where n, ng, 1y,
ny and n are defined in Section 2.3.6, and r = (ns+n7)x(ns+mm)/n is
the expectation of the number of lightning hits in random nowcasts.

Method POD FAR TS ETS
n ny n (ng—r)
(ns+mm) (ns+ny)  (nstnmtny)  (ngFnm+ns—r)
SA-WF-LightNet ~ 0.815 0.589 0.398 0.386
SA-AGF-LightNe  0.854 0.570 0.422 0.405
Light3DUnet 0.731 0.512 0.382 0.373

The differences in optimal thresholds for the two
STF-LightNets indicate variations in the distribution
of probability matrices output by the two networks.
For a more in-depth analysis, we statistically aver-
aged all the probability nowcast outputs greater than
0.5 obtained on the testing dataset and created a his-
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Fig. 9. The histogram for all prediction results obtained on the validation dataset for two STF-LightNets: (a) ST-WF-LightNet; (b) ST-AGF-

LightNet.

togram, as shown in Fig. 9. First, let’s explain why
we only count grids with probability values greater
than 0.5. As known in section 2.3.5, the network out-
puts a probability matrix with two channels, where the
sum of probability values for grids in channels 0 and
1 equals 1. Channel 1 corresponds to the probability
of lightning occurrence. Before determining the opti-
mal threshold, we assume that grids with probability
values greater than 0.5 indicate lightning occurrence.
Therefore, we only tally grids with probability values
exceeding 0.5 at this stage. From Fig. 9, it can be ob-
served that the probability values of ST-WF-LightNet
are mainly distributed between 0.5 and 0.7, while the
probability values of ST-AGF-LightNet are distributed
between 0.6 and 0.8. To quantify this, we calculated
the percentage of grids with probability values greater
than 0.7: 24.3% for ST-WF-LightNet and 45.6% for
ST-AGF-LightNet. This indicates that the grids in ST-
AGF-LightNetd attain higher probability values, and
these elevated values are achieved by the automatic
recognition of lightning regions and the assignment of
high weights by the attention gate fusion module.

3.4. Visualization Results

Fig. 10 visualizes typical lightning nowcasting for
the next hour using the two proposed algorithms. Fig.
10(a) and Fig. 10(b) present the results for ST-WF-
LightNet and ST-AGF-LightNet every half hour from
14:30 to 17:30, respectively. Each subfigure, from left
to right, corresponds to the time at 14:30, 15:00, 15:30,
16:00, 16:30, 17:00, and 17:30 BJT on 2 August 2019,
respectively. The red dots represent TP, blue dots de-

note FN, and green dots indicate FP, using the opti-
mal threshold obtained in Section 3.3. As observed in
Fig. 10, the lightning nowcasting of both algorithms
appears promising. The algorithms provide more pre-
cise details for the boundaries of mesoscale convective
systems, and for microscale convective systems, they
offer scattered point-like nowcasting. Furthermore, the
visualization results in Fig. 10 align with the skill
scores in Table 2, confirming that the nowcasting per-
formance of ST-AGF-LightNet surpasses that of ST-
WE-LightNet.

4. Conclusion and future works

In this paper, we introduce a spatio-temporal fusion
deep learning lightning nowcasting network (STF-
LightNet), which comprises ST-WF-LightNet based
on weighted summation fusion and ST-AGF-LightNet
based on attention gate fusion. These variations arise
from different fusion methods employed in the main
path within the encoder block. The network is assessed
using observational data from central China, encom-
passing radar reflectivity images and lightning obser-
vation data. Experimental results demonstrate the ro-
bust capabilities of STF-LightNets for lightning now-
casting. The predictions not only delineate the bound-
aries of mesoscale convective regions but also nowcast
microscale convective regions in the form of scattered
spots. This success is attributed to the multi-branches
+ main path structure, incorporating spatial attention
and fusion modules. Firstly, the multi-branches + main
path structure allows the network to extract and con-



Fig. 10. The one-hour lightning nowcasting results of two STF-LightNets: (a) ST-WF-LightNet; (b) ST-AGF-LightNet. For each subfigure, from
left to right, there are 7 moments of 2 August 2019 at 14:30, 15:00, 15:30, 16:00, 16:30, 17:00 and 17:30 BJT, respectively. The red dots denote

TP, blue dots denote FN, and green dots denote FP.

solidate features from diverse data sources, evident in
the nowcasting outputs displaying the edge profile of
radar reflectivity images while focusing on lightning
areas. Secondly, the spatial attention module and fu-
sion module automatically identify and enhance light-
ning regions, enabling predictions that reveal the fine
irregular boundaries of mesoscale convective regions
and the scattered spots of microscale convective ar-
eas. The use of the inverted frequency-weighted cross-
entropy loss function further enhances less common
classes in the images, thereby improving the proba-
bilistic output of the network. Finally, in terms of fu-
sion methods, the attention gate fusion method outper-
forms the weighted summation fusion method. Com-
pared to ST-WF-LightNet, ST-AGF-LightNet acquires
more timely information, resulting in superior perfor-
mance. ROC curve analysis and Youden index calcu-
lations aid in determining optimal thresholds for the
two STF-LightNets.

The incorporation of the multi-branches + main
path structure for processing multi-source data and
fusing features is pivotal for achieving optimal now-
casting performance in this study. Additional work
can be pursued in three main areas. Firstly, expanding
data sources involves integrating satellite data, auto-
matic weather station (AWS) data, and digital eleva-
tion model (DEM) data, with a preference for high-

resolution AWS observational data. Secondly, imple-
menting a multi-task model is essential for simulta-
neously predicting precipitation and lightning. While
this paper predominantly focuses on lightning now-
casting, which involves a binary classification task for
each grid in the image, a multi-task model could ex-
tend the capabilities of the algorithm. Thirdly, explore
newer and sophisticated supervised machine learn-
ing/classification algorithms [77-79] to enhance now-
casting performance.
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