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Abstract

This article introduces the radical approach of applying alkaline anion-exchange membranes

(AAEMs) to meet the current challenges with regards to direct methanol fuel cells (DMFCs).

A review of the literature is presented with regards to the testing of fuel cells with alkaline

membranes (fuelled with hydrogen or methanol) and also to candidate alkaline anion-

exchange membranes for such an application. A brief review of the directly related patent

literature is also included. Current and future research challenges are identified along with

potential strategies to overcome them. Finally, the advantages and challenges with the direct

electrochemical oxidation of alternative fuels are discussed, along with how the application

of alkaline membranes in such fuel cells may assist in improving performance and fuel

efficiency.
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Research Challenges for Direct Methanol Fuel Cells (DMFCs)

The hydrogen-fuelled proton-exchange membrane (PEM) fuel cell (PEMFC) is highly

developed, with good performances and power densities obtainable with low catalyst

loadings (< 0.2 mg Pt / cm2 electrode area, with the platinum particles usually supported on a

carbon substrate) [1,2]. For example, Qi and Kaufmann achieved a high fuel cell power

density of 720 mW cm-2 (current density of over 1.4 A cm-1 at a cell voltage of ~ 0.5 V) at

75°C with Nafion®-112 membrane, and catalyst loadings of 0.12 mg cm-2 (20%wt Pt/C) [3].

A further example with a reduced anode catalyst loading was recently reported in the

literature by Gamburzev and Appleby [4]; current densities of 600 mA cm-2 were obtained at

a cell potential of 0.7 V (420 mW cm-2) with Nafion®-111 membrane (DuPont, Scheme 1), a

cathode platinum loading of 0.2 mg cm-2 and an ultra-low anode platinum loading of 0.05 mg

cm-2. Ultra-low catalyst loadings of 0.014 mg cm-2 have also been reported using a novel

sputtering method [5,6]. A recent comprehensive review of PEMFC electrodes published by

Lister and McLean is recommended for further details on catalyst structures / preparation [7].

However, PEMFCs have a low CO tolerance and so performances are more limited when the

hydrogen is supplied from the reformation of organic fuels [8].

The fuel cell reactions for a PEMFC are described below (Figure 1a):

Anode: H2 → 2H+ + 2e- (Ea = 0 V vs. SHE at 1 bar, 298.15 K)

Cathode: 1/2O2 + 2e- + 2H+ → H2O (Ec= 1.23 V vs. SHE at 1 bar, 298.15 K)

Overall: H2 +
1/2O2 → H2O (Ecell = 1.23 V at 1 bar, 298.15 K)

Interest in solid polymer membrane direct methanol fuel cells (DMFCs) stems mainly from

the higher volumetric energy density and reversible efficiencies of methanol (CH3OH, often
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denoted MeOH) compared with liquid hydrogen (see Table 1 [9,10]), and the relative ease of

conversion of the current petroleum distribution networks to methanol compared with the

costly whole new distribution structure required for hydrogen. The relative advantages, and

comparisons of the costs (both fiscal and environmental) of DMFCs compared with PEMFCs

(fuelled directly with hydrogen or indirectly fuelled via on-board reformation) are currently a

hot source of debate in the transportation sector and have been comprehensively and recently

reviewed [11-13].

The fuel cell reactions for a DMFC with proton-transport through an acid membrane are

shown below (Figure 1a):

Anode: CH3OH + H2O → 6H+ + 6e- + CO2 (Ea = - 0.02 V vs. SHE at 1 bar, 298.15 K)

Cathode: 3/2O2 + 6e- + 6H+ → 3H2O (Ec= 1.23 V vs. SHE at 1 bar, 298.15 K)

Overall: CH3OH + 3/2O2 → 2H2O + CO2 (Ecell = 1.21 V at 1 bar, 298.15 K)

DMFCs producing < 500 W power and operating in the temperature range of -20 – 50°C are

ideally positioned and urgently required to act as a “disruptive technology” to replace

batteries in portable devices (laptops, cellular phones, PDAs, human (e.g. soldier) portable

power packs, digital cameras, and power tools) [14,15]; the driver is the ever increasing

power demands which, in the immediate future, will surpass levels projected to be achievable

with secondary battery technology (e.g. lithium ion batteries). Inconvenient power saving

features have already been introduced on some laptops, (e.g. dimming LCD screens when in

battery mode, which leads to visibility problems in bright light, i.e. when outdoors etc). It is

increasingly believed that portable DMFCs will be the first fuel cells commercially available

to the general public; there has been a recent increase in the number of pre-commercial

portable devices (e.g. PDAs, laptops) powered by DMFCs that have been demonstrated in the
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press and at conferences (e.g. DMFC powered laptops announced by NEC in 2003). DMFCs

are amenable to such applications due to the good energy density (theoretically up to 5 - 10

times that of batteries) of liquid methanol [16,17]. Another benefit of using DMFCs instead

of batteries is “instant” refuelling (also referred to as “hot-refuelling”) when utilising a plug-

in methanol cartridge.

The performance obtained with the direct oxidation of methanol at the anode in a solid

polymer DMFC is inferior compared with a PEMFC supplied with pure hydrogen. There are

three main reasons for this: (1) With PEMFCs the electrokinetic overpotenial is effectively

due solely to the oxygen reduction at the cathode (hydrogen oxidation occurring near

reversibly). In contrast, with DMFCs the anode electrokinetics are also sluggish (as it takes 6

electrons to fully oxidise methanol to carbon dioxide and water). (2) The proton transport

through the PEM leads to methanol molecules being transported (via electro-osmosis and/or

diffusion) from the anode to the cathode. This methanol crossover leads to a mixed (reduced)

potential at the cathode and a lowering of the overall fuel cell voltage, with a consequential

lowering of cell efficiencies (directly proportional to the cell voltage). (3) Severe electro-

osmosis of water from the anode to the cathode (of up to 19 H2O molecules per proton) also

occurs with the supply of diluted methanol at the anode of a DMFC (stoichiometrically 1

H2O molecule to 1 CH3OH is required, see Figure 1); this creates very severe flooding at the

cathode, introducing large overpotentials due to mass transport effects.

Traditional methods of overcoming the electrokinetic shortfalls include high, usually

unsupported, catalyst loadings (prohibitively expensive loads of around 4 mg cm-2 are

common cf. < 0.2 mg cm-2 for PEMFCs) at the anode to maximise methanol oxidation; the

anode catalysts also commonly involve binary platinum/ruthenium alloys because carbon
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monoxide is a reaction intermediate which will poison platinum-only catalysts (leading to a

significant lowering of cell performance over time). Another approach is to raise the DMFC

operating temperature to > 150°C where the electrokinetics are more facile; this approach is

feasible with acid-doped polybenzimidazole membranes (PBI, Scheme 2) which have been

reported to retain high proton-conductivity at high temperatures and lower membrane

humidification [18-20]; long term stability of these membranes is, however, still a concern,

especially when considering that in most reports the acid species is not attached to the

polymer backbones. These PBI-based acid electrolytes are being commercially developed by

Celanese Ventures GmbH (an example patent is given in reference [21])

To alleviate the effects of methanol crossover, thick (high resistance) PEMs (typically

Nafion(R)-117 at 7 mil {178 µm} thickness), dilute solutions of methanol (< 2 mol dm-3 in

water), and high loadings of unsupported platinum black (again at prohibitively expensive

levels of the order of 4 mg cm-2) at the cathode are used. Despite this, power performances of

200 mW cm-2 can be obtained at cell potentials of 0.5 V with a DMFC when operated at

120°C, a methanol concentration of 0.5 mol dm-3, catalysts loadings of > 2 mg cm-2, and back

pressures of 2 atm at the cathode [22]. Peak power performances have attained around 300

mW cm-2 [23]. A detailed review of the current status of DMFC research and development is

given by Aricò et al. [24], while a discussion of the aging mechanisms and lifetimes of

DMFCs (and PEMFCs) has been given by Knights et al. [25].

As already mentioned, these DMFC power densities are well below those obtained with

PEMFCs. There is still much research being undertaken to maximise DMFC performance by

optimising the structure and loading (especially lowering) of platinum-based electrocatalysts

[26]. There is also some research into alternative methanol-resistant cathode catalysts, an
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example of which is carbon supported Pt-Fe alloys [27,28]. However, the authors of this

review (along with others [29,30]) firmly believe that for more substantial increases in

DMFC performances, a more radical approach is required.

One innovative approach being investigated by Scott et al. (Newcastle, U.K.) is the mixed-

reactants solid polymer DMFC [30]; this approach seeks to simplify fuel cell design by

relying on selective catalysts to separate the electrochemical oxidation of methanol and

reduction of oxidant without physical separation of the fuel and oxidant; initial operation with

unoptimised conditions has yielded performances of 50 mW cm-2 and 20 mW cm-2 at 90°C

with methanol/oxygen and methanol/air respectively. Another approach, which is the main

subject of this article, involves the use of alkaline anion-exchange membranes (AAEMs); this

approach combines the advantages of PEMFCs (simple all solid-state construction), AFCs

(facile electrokinetics) and DMFCs (high energy density of the fuel), while also minimising

disadvantages of each type.

Potential Benefits and Disadvantages of the Use of Alkaline Anion-Exchange

Membranes (AAEMs) in a DMFC.

Alkaline fuel cells (AFCs, which in this review are considered to mean hydrogen-fuelled cells

with a liquid electrolyte such at KOH(aq)) are the best performing of all known fuel cells

(AFCs, PEMFCs, and DMFCs) operable below 200°C. This is mainly due to the facile

kinetics at the cathode as well as at the anode; cheaper non-noble metal catalysts can be used

(such as nickel and silver [31-33]), reducing cost. McLean et al. give a recent comprehensive

review of alkaline fuel cell technology [34].
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The fuel cell reactions for a traditional AFC and a hydrogen-fuelled alkaline membrane fuel

cell (Figure 1b) are described below:

Anode: 2H2 +4OH- → 4H2O + 4e- (Ea = 0.83 V vs. SHE at 1 bar, 298.15 K)

Cathode: O2 + 2H2O +4e- → 4OH- (Ec = 0.40 V vs. SHE at 1 bar, 298.15 K)

Overall: 2H2 +
1/O2 → 2H2O (Ecell = 1.23 V at 1 bar, 298.15 K)

One of the main issues with traditional AFCs is that of electrolyte and electrode degradation

caused by the formation of carbonate/bicarbonate (CO3
2-/HCO3

-) in the liquid alkaline

electrolyte on reaction of OH- ions with CO2 contamination in the oxidant gas stream

[34,35,36]. This has limited the application of such fuel cell systems in which pure oxygen

can be supplied e.g. the fuel cells currently used on NASA’s space shuttle orbiter (there are

plans to replace the AFCs with PEMFCs). Nevertheless, Kordesch operated an AFC-powered

car daily, with partial scrubbing of the air using soda lime and with replacement of the liquid

electrolyte every few hundred operational hours. The major cause of the degrading

performance on CO3
2-/HCO3

- formation is the precipitation of large solid metal carbonate

crystals (most commonly Na2CO3 or K2CO3, depending on the alkaline electrolyte used) in

the electrolyte-filled pores of the electrodes; these crystals not only block the pores but also

mechanically disrupt and destroy the active layers.

The formation of carbonate / hydrogen carbonate are as below:

CO2 +2OH- → CO3
2- + H2O

CO2 + OH- → HCO3
-

Methanol produces CO2 on electro-oxidation and so CO3
2-/HCO3

- formation can be even

more of a problem when a methanol fuel cell is operated with a liquid alkaline electrolyte.
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Methanol has been operated in alkaline fuel cells in the past. An example is a methanol fuel

cell operating with aqueous KOH (6 mol dm-3) by Murray and Grimes [37]. Performances at

0.3 V decreased steadily over 70 h at 60°C and 94 h at 30°C, mainly due to anode

degradation. A 40-cell module, with a total electrode area of 480 cm2 and operated at 49°C

and gas pressures of up to 5 psi, produced 440 W (917 mW cm-2) at 0.4 V and a maximum

power output of 730 W at 0.25 V with pure oxygen as oxidant. A recent short review by

Koscher and Kordesch details past and present work involving alkaline methanol-air systems

with liquid caustic electrolytes and emphasises the design of effective electrode structures

[38].

The fuel cell equations for the direct use of methanol with an alkaline electrolyte are (Figure

1b):

Anode: CH3OH +6OH- → CO2 + 5H2O + 6e- (Ea = 0.81 V vs. SHE at 1 bar, 298.15 K)

Cathode: 3/2O2 + 3H2O +6e- → 6OH- (Ec = 0.40 V vs. SHE at 1 bar, 298.15 K)

Overall: CH3OH + 3/2O2 → 2H2O + CO2 (Ecell = 1.21 V at 1 bar, 298.15 K)

It is well known that methanol oxidation is more facile in alkaline media [10,39,40]. Even if

PtRu is required due to catalyst poisoning by intermediate CO (absorbed CO has been

detected using FT-IR techniques on pure Pt in alkaline media [41]), CO stripping occurs to a

greater extent at lower potentials with PtRu catalysts in alkali (compared to acid) and so

allows the use of lower loadings of PtRu (compared with traditional DMFCs) [42].

Encouragingly, the oxidation methanol of carbon-supported nickel has been reported in

alkaline media [43]. The use of an AAEM in both AFCs and in alkaline-membrane DMFCs

(AMDMFCs) may solve the problems with the use of alkali, while still allowing the

electrokinetic advantages of AFCs. Firstly orientation limitations are overcome; the
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conducting species is now in a fixed solid polymer membrane. Secondly, even though there

will be some CO3
2-/HCO3

- formation at the anode, there are no mobile cations (Na+ or K+) to

precipitate solid crystals of metal carbonate to block or destroy the electrode layers; with

alkaline membranes the cations are already immobilised on the polymer (often polymer

bound benzyltrimethylammonium ~C6H4CH2NMe3
+ cation sites, Scheme 3). Finally, as there

is no liquid caustic electrolyte present, electrode weeping and component corrosion will also

be minimised [35].

The use of AAEMs in DMFCs may allow other advantages. The ion transport within the

membrane in an operating AMDMFC will be from the cathode to the anode, opposing the

direction of, and hence reducing the level of, methanol crossover from anode to cathode;

water will actually be electro-osmotically transported from the cathode to the anode, which is

the reverse of the situation found with PEM-based DMFCs. As the water is now produced at

the anode and consumed at the cathode, the water management regime is altered and

potentially simplified. The two factors above avert the problem of catastrophic flooding at the

cathode (from electro-osmosis of water from the anode to the cathode in PEM-based

DMFCs) mentioned previously, reducing mass-transport-derived voltage losses.

The larger repertoire of effective electrocatalysts in an alkaline environment would facilitate

the search for a methanol-tolerant catalyst for the cathode to reduce the effects of any residual

methanol crossover even further; this reduced methanol crossover enables the use of thinner,

hence lower resistance, membranes. Another potential consequence of this large number of

catalyst options with substitution of the PEM with an AAEM is an extended choice of

selective catalysts for application in mixed reactant-oxidant fuel cells as evaluated by Scott et

al. [30]. A CO-tolerant anode catalyst with lower metal loadings in alkaline media would also
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allow the use of reformed hydrogen with improved performances. Finally, major cost,

physical size, and machinability concerns with traditional graphite-based bipolar plates have

stimulated research into thinner, cheaper, and more easily machined metal bipolar plates

(such as stainless steels) [44-46]. There are, however, significant corrosion problems

associated with such metal plates and acidic PEMs. The replacement of the acidic membranes

with alkaline membranes will potentially reduce such corrosion problems and allow cheaper

metals to be used (nickel current collectors are already used in traditional AFCs [47]).

A widely quoted concern with anion-exchange membranes (AEMs) is membrane stability in

the alkaline forms, especially at elevated temperatures [48,49]. Instability is mainly due to the

displacement of the ammonium group by the OH- anions (an excellent nucleophile) via (a) a

direct nucleophillic displacement and/or (b) a Hofmann elimination reaction when β-

hydrogens are present (Scheme 3); methyl (CH3) groups may also be displaced by OH- ions

forming tertiary amines and methanol [48,49]. However, as mentioned above, a major

application of DMFCs is as power sources for portable devices; such fuel cells must be

operated at low temperatures, ideally below 60°C, which means such degradation can be

minimal. A commercially available (but undisclosed) AAEM containing

benzyltrimethylammonium moieties radiation-grafted onto PTFE membranes was stable at up

to 60°C in aqueous sodium hydroxide (6 mol dm-3) [50]; this stability in such a caustic

environment demonstrates stability can be adequate for the above proposed application.

Review of the Application of AAEMs in Fuel Cells

As mentioned above, acid-doped PBI membranes (Scheme 2) allow higher temperature

operation of DMFCs and lessen electrokinetic performance losses. PBI can also be doped
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with alkaline salts and such membranes have been applied to hydrogen fuel cells by Xing and

Savadogo [51]. PBI doped with various alkali metal hydroxides exhibited conductivities in

the range 5 x 10-5 – 10-1 S cm-1. Conductivities approaching 10-1 S cm-1 were obtained with

PBI treated with KOH (aq, 6 mol dm-3) at 70 – 90°C. The conductivities dropped when

increasing amounts of metal carbonates were added to the alkaline doping solution; the

mechanism of conductivity was suspected of changing on addition of metal carbonates, and it

was reported that this was to be further investigated by those authors.

A H2/O2 fuel cell was constructed (6.25 cm2 electrode area) and tested with a KOH-doped

PBI membrane of thickness 40 µm at 50°C with an anode and cathode catalyst loading of

0.35 mg cm-2 (from 20%wt Pt supported on C). Neither gas was humidified and the H2/O2

pressure ratio was 3/5, while O2 and H2 flow rates were 800 cm3 min-1 and 1200 cm3 min-1 

respectively. At 0.60 V cell voltage, a current of 620 mA cm-2 was achieved, which

corresponds to a power density of 370 mW cm-2. This performance was similar to that of the

same apparatus with a Nafion®-117 membrane and also, remarkably, with a KOH- and

K2CO3-doped PBI membrane; this last result is encouraging with respect to application of

such AAEMs in fuel cells. As a further comparison, current density at 0.60 V cell voltage for

a PEMFC constructed with sulfuric-acid-doped PBI and testing on the same apparatus was

810 mA cm-2, corresponding to a power density of 490 mW cm-2.

Fauvarque et al. have evaluated two alkaline AEMs in a H2/O2 AFC [52,53]. Membrane 1

was a polymer denoted H55 (epichlorhydrine polymer) that was quaternised with 1,4-

diazabicyclo[2,2,2]octane (DABCO) and membrane 2 was the same polymer quaternised

with a 1:1 ratio of DABCO and triethylamine. The membranes were observed to deteriorate

when immersed in KOH(aq) at concentrations > 1 mol dm-3. The ion-exchange capacity
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(IEC) was reported to be in the range 0.5 – 0.6 meq g-1, which is lower than the IEC of a

commercial membrane (Solvay Type ADP). The intrinsic conductivity of membrane 2 in

water was 5 x 10-5 – 10-4 S cm-1; these conductivities increased to around 10-2 S cm-1 when

the membrane absorbed further KOH(aq). Anion transport numbers were determined to be

between 0.95 and 0.99.

The performances of H2/O2 AFCs with the above membranes are as follows. Electrodes were

prepared with Pt loadings of 0.13 mg cm-2 supported on carbon, and the fuel cell was

operated at 25°C with gases supplied at atmospheric pressure, which are the conditions of

interest for application in portable devices. A maximum power density of 20 mW cm-2 was

obtained with membrane 2. The performance of membrane 1 was inferior. For membrane 2,

the testing was repeated, but this time an interfacial solution was added between the

electrodes and the AAEM; the maximum power density increased to 43 mW cm-2. Fauvarque

et al. also reported extended work on the electrode-AAEM interface [54]. The interface

materials studied were: (1) aqueous alkaline solutions absorbed onto a polyamide film, (2) a

solution of the prepared film, (3) an alkaline-gel based on a mixture of polyacrylic acid and

potash, and (4) other unspecified interfaces; no results were, however, described in the

published extended abstract of that presentation.

Ogumi et al. have studied direct alcohol fuel cells (methanol and ethylene glycol) constructed

with a commercial membrane (AHA of ammonium type, Tokuyama Co, Japan; thickness ≈

240 µm when in the Cl- form) [55]. The IEC of this membrane was 1.15 – 1.25 meq g-1 in the

OH- form. A membrane electrode assembly (MEA) with the AHA membrane was

constructed with carbon-supported platinum at loadings of 1 mg cm-2 and 5 mg cm-2 for the

cathode and anode respectively. The MEA was pressed at room temperature at 140 kg cm-2 
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for 3 min. Solutions of ethylene glycol and methanol were made to a concentration of 1 mol

dm-3 dissolved in KOH (aq, 1 mol dm-3). Fuel cell testing was conducted at 50°C with oxygen

at unspecified pressures and stoichiometries. Despite using pure Pt for the anode (not Pt/Ru),

anode potentials were reported as 0.41 V and 0.33 V at a current density of 20 mA cm-2 

respectively for methanol and ethylene glycol. Cell voltages were around 100 mV higher for

ethylene glycol compared to methanol. Maximum power densities were 9.2 and 5.5 mW cm-2 

respectively for ethylene glycol and methanol; the power densities with methanol are inferior

to those recorded at lower temperatures by Agel et al. above. This fuel cell is not quite an

alkaline analogue of a PEMFC, as the authors added alkaline solution into the system.

Ethylene glycol is an interesting candidate fuel (see Table 1); no indication was given

concerning completeness of oxidation of the ethylene glycol to CO2 and H2O in this study.

The possibilities when operating fuel cells with AAEMs and organic fuels other than

methanol are discussed further below.

Yu and Scott reported the operation of a direct methanol alkaline fuel cell with platinised

titanium mesh anodes (1.5 mg cm-2 Pt/Ti) and a commercial alkaline anion-exchange

membrane (Morgane ADP membrane from Solvay S. A.) [56]. The electrochemistry of the

mesh electrodes in alkali was explored in a previous publication [57]. The cathode consisted

of platinum on carbon (loading of 2 mg cm-2, 60 %wt. Pt/C) painted onto a teflonised Ketjen

black gas diffusion layer and Toray carbon paper backing layer. The cell (4.9 cm2 active area)

was operated at 60°C; the methanol solution was made to a concentration of 2 mol dm-3 in

aqueous sodium hydroxide (1 mol dm-3) and supplied at 1 bar pressure and with a flow rate of

60 ml min-1. This setup produced a peak power density of 7.8 mW cm-2 and a maximum

current density of 65 mA cm-2 at short circuit; the same cell operated with an anode

consisting of Pt/C (1.5 mg cm-2) on non-teflonised Toray produced a peak power density of
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7.0 mW cm-2 and a maximum current density of 59 mA cm-2 at short circuit. While the

performance of both setups were comparable at open circuit and at high current densities, at

low current densities (< 10 mA cm-2) the platinised titanium mesh was superior indicating

lower activation losses at the anode. No deterioration in fuel cell performance over a period

of 48 h was observed with the platinised titanium mesh anodes. The addition of alkaline

species to the aqueous methanol anode stream may well assist in the prevention of CO3
2-

/HCO3
- formation in the alkaline membrane.

Zhuang et al. recently conducted a feasibility analysis of the use of AAEMs in DMFCs [58];

this important study concentrated on the thermodynamic disadvantages versus kinetic

advantages of such AMDMFCs by studying the reactions taking place in aqueous solutions.

The authors, on examining the reaction mechanism, showed a large pH difference would be

created in the AAEM between the anode, (where CO2
2-/HCO3

- is formed from reaction of the

AAEM with the CO2 produced from oxidation of methanol) and the cathode (where very

little CO2
2-/HCO3

- is found due to continuous production of OH- ions). It was calculated that

at 20°C, a pH difference of 6.1 would exist corresponding to a thermodynamic voltage loss of

ca. 360 mV; at 80°C the pH difference drops to 4.1 resulting in a reduced voltage loss of ca.

290 mV. The authors also demonstrated that, with operation of an AMDMFC at 80°C at a

current density of 100 – 200 mA cm-2, a voltage gain of 100 mV due to improved electrode

kinetics would be obtained at the anode, and a further gain of 100 mV would be obtained at

the cathode. If methanol crossover were suppressed, as is hoped with an AMDMFC system,

another voltage gain will arise. The authors concluded that the thermodynamic voltage losses

found for an AMDMFC, due to the pH difference across the AAEM, would be roughly

cancelled out by the kinetic voltage gains and that operation at elevated temperatures would

reduce thermodynamic voltage losses (this may be challenging with respect to AAEM
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stability). Finally, from infrared studies of the reactions in solution reported in the same

article, it was shown that methanol could be completely oxidised to CO2 and water in the

presence of CO2
2-/HCO3

-, which is an important and encouraging finding.

Review of Other Relevant AAEM Systems

The recent fuel cell studies with AAEMs (reviewed above) show promising initial results on

what are unoptimised membranes, MEAs, and/or fuel cell operating conditions. This section

describes work on other AAEMs that may be applicable to H2/O2 and methanol fuel cells,

including recent work in our laboratory.

There is extensive worldwide research being conducted on replacement proton exchange

membranes (PEMs) [59,60]; the main problems with current generation PEMs (such as

Nafion®) are high methanol permeabilities and fiscal cost. A significant proportion of recent

fuel cell membrane research involves the radiation-grafting of styrene onto low and high

density polyethylene films (LDPE, HDPE), partially fluorinated films such as

poly(vinylidene fluoride) (PVDF) and poly(ethylene-co-tetrafluoroethylene) (ETFE), and

fully fluorinated poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) films; subsequent

sulfonation yields cation-exchange sites (sulfonic acid groups) [61-64]. The properties and

compositions of the final materials are easily controlled via alteration of the grafting and

sulfonation conditions [61,62]. Reviews by Hill et al. describes the radiation chemistry of

fluoropolymers [65] and the high energy radiation-grafting of monomers onto fluoropolymers

[66]. A very comprehensive review on the preparation of ion-exchange membranes using

radiation-grafting of polar monomers onto non-polar films has been recently published by

Nasef et al. [67]. Radiation-grafted PEMs have been tested in DMFCs by Scott et al. [68].
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Radiation-grafted PVDF-based cation-exchange membranes (CEMs) and AEMs produced at

Surrey have also been applied to salt-splitting technologies in joint studies with Newcastle

University [69-71]. Radiation grafting methodology produces ionomer membranes cheaply

and has major advantages in that preformed commercial polymer films are modified,

alleviating the need for film formation steps, with the wealth of adjustable experimental

parameters (e.g. radiation dose, temperature, film thickness) allowing a large degree of

tailorability.

Anion-exchange membranes, formed using the radiation-grafting synthetic route, have in the

past been developed for electrodialysis [72,73] and ion-exchange applications [74]. Svarfar et

al. have studied radiation-grafted PVDF AEMs for medical applications [75]. Recent studies

in our materials chemistry laboratories at Surrey have concentrated on producing and

optmising stable and conductive AAEMs in the same way (Scheme 4). Extensive solid-state

NMR and vibrational spectroscopic studies showed that PVDF was an unsuitable base

polymer for producing AAEMs due to lack of backbone stability when converted to the OH-

forms [76,77]; therefore, caution is advised with the use of the PVDF-based AEMs

mentioned above if any trace of alkali is present. FEP was the base material of choice and

was grafted with vinylbenzyl chloride (VBC); subsequent amination and alkali anion-

exchange yielded the desired AAEMs. Using Raman-microscopy, it was shown that the

grafting of VBC progressed throughout the thickness of the FEP (referred to as graft

penetration, see Figure 2). AAEMs were obtained with IECs of up to 0.96 meq g-1 in the Cl-

forms and these AAEMs show good conductivities of the order of magnitude of 10-2 S cm-1 in

the exchanged OH- forms. Monitoring the IEC of an example membrane with time while

heating in water (open to air and therefore traces of CO2) at 60°C demonstrated good ex situ
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membrane stability over a period of 2500 h (Figure 3); this temperature is effectively an

upper limit for operating fuel cells in portable devices.

The diffusion coefficient of OH- ions is less than that of protons [52] in nearly all media, so it

is essential to maximise IECs to get conductivities as high as possible with AAEMs. It is also

essential that the effect of the reaction conditions on the membranes produced is explored in

detail for each parent polymer film / monomer combination [62]. Further studies were

undertaken at Surrey with these two aims in mind [78]: FEP can be grafted with VBC with

degrees of grafting (DOG) of at least 29% (by mass), with the graft penetration improving on

increasing DOG; membranes with improved IECs (Cl- forms) of up to 1.1 meq g-1 (cf.

Nafion® 11x-series of membrane have IECs of 0.91 meq g-1) were produced, which exhibited

conductivities (OH- forms) of ~ 10-2 S cm-1 (initial 2-probe impedance spectroscopy

measurements); however, further improvements in grafting levels (and hence IECs) are

required to get conductivities at levels equivalent to current PEMs. Fuel cell measurements of

these radiation-grafted AAEMs (RG-AAEMs) are now commencing alongside in situ

impedance spectroscopy measurements to confirm membrane conductivities and electrode

overpotentials.

There are many reports of work on different anion-exchange materials in the literature, the

majority of which concentrate on applications other than in fuel cells. Childs et al. have

studied highly crosslinked AEMs synthesised from poly(vinylbenzyl chloride) quaternised

using the diamines DABCO and piperazine [79,80] for various applications, including water

softening; the crosslinked anion-exchange polymer phase was supported in the pores of

microporous polypropylene and further crosslinking was enabled by subsequent reaction with

α,α’-dibromo-p-xylene. A detailed study was conducted by Tomoi et al. concerning the
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synthesis of thermally stable alkaline anion-exchange resins [81]; incorporating a “hexyloxy

spacer group” (OC6H12 ether linkage) between the benzyl CH2 carbon and the quaternary

ammonium anion-exchange site (Scheme 5) yielded resins which retained > 80% of their

IECs after treatment at 120°C for 30 days, and retained 98% at 100°C for the same period of

time. If membranes, as opposed to resins, could be made with such functionalities and

thermal stabilities, these would be excellent candidates for alkaline membrane fuel cells; at

such elevated temperatures, the thermodynamic voltage losses previously mentioned in the

feasibility study of Zhuang et al. [58] would be minimised.

Yang et al. produced alkaline poly(vinyl alcohol) / poly(epichlorohydrin) copolymers for

application in Zn-air batteries [82]. Arof et al. produced poly(vinyl alcohol)-KOH blend

alkaline electrolytes with conductivities < 10-5 S cm-1 for a nickel-zinc cells [83]. Vargas et

al. also studied PVA-KOH electrolytes and obtained conductivities up to 2.3 x 10-3 S cm-1 for

application in humidity sensors and alkaline batteries [84]. Sun et al. studied highly

conductive poly(sodium acrylate) / tetramethylammonium hydroxide blends and mentioned

AFCs as a potential application [85]. AEMs produced from a simultaneous amination and

crosslinking process were reported by Tongwen et al. for desalination processes, with IECs

of the order of 10-3 S cm-1 [86,87]. Bowman et al. [88] and Moon et al. [89] have looked at

functionalised poly(vinylbenzyl chloride) and LDPE/polyvinylbenzyltrimethylammonium

salt copolymer AEMs respectively, for ion-exchange applications. Sanchez et al. reported the

synthesis and characterisation of amorphous anion conducting polyether networks with

conductivities between 10-9 and 10-5 S cm-1 [90]. A study of the thermal membrane potentials

of poly(styrene-co-divinylbenzene) based AEMs containing various trialkylammonium

groups was reported by Tasaka et al. [91]. A commercial anion-exchange resin (in alkali

form), from Amberlite IRA-900, has been applied in catalysts for the aldol condensation of
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acetone [92]. Polymer-supported onium salts based around vinylbenzyl chloride, and

produced using an emulsion polymerisation methodology, have been applied as phase

transfer catalysts in the alkylation of isopropylidene malonate [93]. All of these AEMs and

resins, however, exhibited conductivities well below levels required for application in fuel

cells.

Sata et al. conducted an extensive study on the stability of commercial AEMs from various

commercial manufacturers (Tokuyama, Ashai Glass, Pall-RAI etc.) [50]; most of these

membranes contained either trimethylammonium or N-methyl pyridinium groups. AEMs

were also prepared in this study based on both chloromethylated polysulfone (Scheme 6) and

polymerised vinylbenzyl chloride. It was concluded that AAEMs based on

trimethylammonium groups were the most stable to treatment in hot alkaline solutions; this

conclusion directed the choice of functional group chemistry selected at Surrey for

application in alkaline membrane fuel cells. Ohya et al. [94,95] and Hao et al. [96] have also

studied AEMs based on chloromethylated polysulfones (Scheme 6) for electrodialysis

applications; there is, however, no evidence in the literature that such polysulfone-based

AEMs have been applied to fuel cells.

A Brief Survey of the Patent Literature

This is not intended to be an exhaustive survey of patent applications; there are, however, a

small number of patents of interest in relation to alkaline membrane fuel cells. Related

patents and patent applications from J. Divisek describe the invention of a methanol fuel cell

utilising an anion-exchange membrane [97-99]. J.-F. Fauvarque was granted a patent on

aqueous alkaline solid electrolyte based around polyether polymer matrices [100]. W. Yao, T.
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Tsai, Y.-M. Chang, and M. Chen were granted related patents on alkaline polymers

containing alkyl quaternary ammonium salts, nitrogen containing heterocyclic quaternary

ammonium salts, and metal hydroxide salt for potential applications in alkaline batteries and

fuel cells [101-103]. A patent was issued to F. Jaouen concerning a novel cathode structure

for a solid polymer fuel cell [104]; that cathode structure consisted of a solid polymer anion-

exchange membrane surrounding the catalysts particles (entirely within the cathode

structure), which was in contact (surrounded) with a cation-conducting polymer membrane. J.

Lu and L. Zhuang were granted a patent on alkaline-resin-containing fuel cells with direct

fuelling with liquid organic fuels [105].

Patents relating to the application of radiation-grafted ion-exchange membranes in fuel cells

have been granted to G. G. Scherer, F. N. Büchi, and B. Gupta [106] and to C. Stone and A.

Steck [107,108]. All these patents mention the functionalisation of base polymers with

quaternary ammonium groups to yield alkaline polymers. The use of fluoro-substituted

styrenic monomers is also claimed to improve membrane chemical stability when utilised in

fuel cells (removal of undesired and reactive C-H bonds).

Future Research Challenges

It is evident from all of the above studies that there are a number of research challenges that

must be overcome before AAEMs can be successfully applied to pre-commercial fuel cells:

(1) As a priority and to compliment ex situ stability measurements [77] (Figure 3),

AAEMs must be evaluated in H2/O2, H2/air, and methanol/air fuel cells for several

thousand hours to ensure adequate in situ membrane stability and assess the effect of
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and level of CO2
2-/HCO3

- formation. The effect of adding alkali to the methanol

solution [56] must also be thoroughly investigated over long timescales.

(2) AAEMs must be created with higher conductivities, to ensure good fuel cell

performances at high current densities. It should be noted, however, that with

application of an AMDMFC as a power source for portable devices an overriding

priority is maximising the energy density of the fuel and fuel efficiency (cell voltage).

These DMFCs will be operated at low-to-medium current densities (higher

efficiencies), where electrode overpotentials are the dominant cause of voltage losses.

(3) It is also essential that a solublised form of an alkaline anion-exchange polymer be

developed to improve the interface between the electrodes and the AAEM electrolyte.

Success in this effort will further decrease MEA resistances; the soluble material will

be analogous to the commercially available Nafion(R) solutions in water/alcohol

mixtures used to optimise MEA interfaces in acid form PEMFCs and DMFCS

[109,110]. A water-based soluble form which can be rendered water insoluble when

cast would be preferred, as there are safety concerns (primarily with industrial scale

production) about using organic solvents near finely dispersed (pyrophoric) metal

catalysts (unsupported or supported on carbon).

(4) If AAEMs are to be applied to fuel cells for other applications (such as automotive

power etc.), more temperature stable AEMs must be developed. Operation of alkaline-

membrane-based fuel cells at elevated temperature would reduce thermodynamic

voltage losses due to pH differences across the AAEM [58] and would also improve

the electrokinetics. Successful, stable over the long term, operation at elevated

temperatures would allow application in fuel cells for the automotive mass-market.
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The article on thermally stable alkaline anion-exchange resins by Tomoi et al. [81]

hints at chemistry required in targeting this outcome.

(5) If AAEMs are proven to be stable in fuel cells over 1000’s of hours, an in-depth

investigation into effective and cheaper non-noble metal catalysts (e.g. Ni, Ag etc.) is

indicated. There would also be a greater chance of finding methanol-tolerant catalysts

for use in the cathodes than in related PEM-based DMFCs.

(6) Another, more technical, challenge will be to measure anode performances and

electrokinetics in the fuel cell. Whereas hydrogen can be fed to the cathode with

PEM-based DMFCs, to act as a dynamic hydrogen reference electrode (when testing a

fuel cell [111] and conducting impedance spectroscopy measurements [112,113]) to

assist evaluation of anode performances, this cannot be done using an AAEM; that is

because oxygen must be present at the cathode to generate the OH- ions. Therefore, a

separate reference electrode must be present, adding to the complexity of the test

system; this has, however, been carried out with an AAEM in a recent study [55].

(7) Finally, removal of fluorine from the polymer systems would be of interest to enhance

the environmental credentials (facilitate easier disposal) and reduce costs. The

substitution of fully fluorinated FEP with non-fluorinated LDPE is feasible. While

oxidative radical degradation is a problem at the cathode and anode (via oxygen

diffusion through the membrane) with non-fluorinated PEMs [114-116] (e.g. the

poly(styrene sulfonic acid) PEMs used in the fuel cells for NASA’s Gemini space

program in the 1960’s and other polymers containing benzyl C-Hα bonds, see Scheme

7), it has been shown using electron paramagnetic resonance (EPR) studies that such

degradation is prevented in highly alkaline (pH > 11.7) conditions intrinsic to AAEMs

[114].
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Feasibility of Alternative Fuels Coupled with the Application of AAEMs in Fuel Cells

There is considerable interest in evaluating organic fuels other than methanol in fuel cells,

especially if full and facile electro-oxidation can be achieved. Methanol is toxic, while

alcohols such as ethanol are less so. The direct use of “higher” alcohols is of interest due to

potentially higher energy densities and higher maximum thermodynamic efficiencies [9,10]

(Table 1). The use of ethanol would be especially attractive due to its availability from

renewable sources such as the fermentation of sugar-containing raw materials (Brazil already

distributes ethanol through the gas station network to fuel internal combustion powered cars);

concentrated ethanol solutions up to 40% by weight in open containers have already been

cleared by the various aviation authorities for use in aircraft cabins (relevant for lap-top

computer / PDA power supplies). Incredibly, there has recently been a US$400,000

investment by seed-capital company BioGenerator jointly with a US$250,000 investment by

St. Louis University into a project to develop biofuel cells fuelled with vodka, beer and other

ethanol-based substances [117].

There have been many recent reports concerning the operation of PEM-based direct alcohol

fuel cells (DAFCs) with “higher” alcohols such as propanol and ethanol. It has been reported

[9,10,118] that ethanol gives similar performances to methanol at high operating

temperatures with acidic membranes. A further point of interest is that Pt/Sn anode catalysts

are more active than Pt/Ru in the case of direct fuelling with ethanol [119-121] in cells with

acidic membranes. CuNi-modified Pt/Ru have shown superior ethanol oxidation in alkaline

media [122]. However, complete electrooxidation of ethanol has still not been achieved.
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In contrast, complete oxidation (C-C bond cleavage) of ethylene glycol in a proton-exchange

membrane fuel cell has been claimed [123]. It has also been reported that the electroactivity

of ethylene glycol (EG) in alkaline media is high [124]. Ethylene glycol has an existing

production and distribution infrastructure in place (as anti-freeze) and could be a promising

fuel for portable devices. As reported above, Ogumi et al. have conducted preliminary studies

on the use of a commercially available AAEM in direct alcohol fuel cells [55]; superior

performance and power densities were reported when ethylene glycol was used, compared

with methanol, but no investigation into the degree of oxidation of EG or into the oxidation

products was conducted. Vielstich et al. have studied the electrocatalysis of EG with Pt/Ru

catalysts showing good activity [125]; by-products such as oxalic acid and glycolic acid from

incomplete oxidation of EG were detected. Fuel cell measurements at 70°C using Nafion(R)

and Pt/Ru catalysts at the anode also showed that crossover of EG to the cathode and/or

oxidation products leads to a substantial decrease in the cathode potential; a conclusion of the

report was that new alternative membranes are required to effectively use EG in direct

alcohol fuel cells.

Umeda et al. concluded [126] that the use at ambient temperature of 2-propanol (aq, 0.5 mol

dm-3) produced better performances than methanol at low current densities, while more

concentrated 2-propanol (aq, 5 mol dm-3) produced superior performance to methanol at all

current densities; performances were, however, poor compared with state-of-the-art DMFCs,

and 2-propanol produced acetone as the only product (incomplete oxidation), which tended to

accumulate around the anode, reducing performance. Qi and Kaufman reported [127] high

performance at temperatures below 80°C, particularly at low current densities, with the use of

undiluted 2-propanol and an S-PEEK (sulfonanted polyetheretherketone) PEM; an example

performance at 80°C (pure 2-propanol at the anode) with an air flow rate at the cathode of
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870 cm3 min-1 gave a cell voltage of 0.485 V at a current density of 200 mA cm-2 

(corresponding to 97 mW cm-2). Superior performance and low fuel-crossover with 2-

propanol, compared to methanol, was also reported when a Nafion® PEM was used [128].

These performances at low current densities and temperatures, located in the operating

regime for portable devices, suggests the direct use of this fuel could be applicable to such

applications, but poisoning of the anode by intermediate oxidation products reduces

performance at high current densities and reduces the intrinsic fuel energy density (the cell

self-refreshed, however, on being shutdown).

The challenge for AAEMs in this arena is to enable catalysts to be found that, in conjunction

with the alkaline environment, allow complete oxidation to maximise the energy extracted

from these alcohols; if ethanol is to be used as feed, it is important to get good performance at

lower temperatures if the benefits of using this fuel (infrastructure and renewability) are to be

conferred onto fuel cells for portable devices.

Three alternative (non-alcoholic) fuel vectors are of interest with respect to alkaline

membrane fuel cells. Firstly, Yasuda et al. have studied the application of AEMs in a

hydrazine fuel cell [129]; hydrazine (H2NNH2, theoretical mass energy density of 2.6 kW h kg-1 

[121]), once used as rocket fuel with associated interesting safety considerations and corrosive

properties) is alkaline in aqueous solution and is expected to be highly compatible with an

AAEM. A now commercially unavailable AEM (Tosflex® SF-17, Tosoh, 175 µm thick) was

attached to Pt electrodes by electroplating to a Pt loading of 1 mg cm-2. A 10 cm2 single cell

heated to 70°C was constructed, an aqueous solution of hydrazine (2 mol dm-3) was supplied

to the anode at 2 cm3 min-1 and humidified oxygen was supplied to the cathode at 400 cm3

min-1. A current density of around 20 mA cm-2 was obtained at a cell potential of 0.4 V,
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corresponding to a power density of 8 mW cm-2; this performance was vastly superior to

comparable use of a PEM in a direct hydrazine fuel cell.

Secondly, there is the direct borohydride (BH4
-) fuel cell. Binder et al. reported a sodium

borohydride / air fuel cell utilising an AAEM (2259-60 Pall RAI) [130]. The maximum cell

voltage obtainable with the sodium borohydride / oxygen couple (BH4
- + 2O2 → BO2

- +

2H2O) is 1.64 V and the theoretical maximum energy density is 9.3 kW h kg-1. A commercial

gas diffusion electrode (Johnson Matthey) was used at the cathode, while carbon silks

deposited with gold and gold/platinum particles were used as anode materials. Maximum

power densities were obtained with a 3%Pt/97%Au mix dispersed on the carbon silk (at 0.4 V

cell voltage 20 mW cm-2 was obtained at room temperature and 63 mW cm-2 at 70 °C).

However, maximum energy density was obtained with an Au-only-dispersed carbon silk

anode (184 W h kg-1, undisclosed borohydride concentration). Further experiments with the

Au-only anode with a 5% NaBH4 / 25% NaOH solution demonstrated that ~ 6.9 electrons

were released per BH4
- unit out of a maximum of 8; this excellent faradaic efficiency

demonstrated low amounts of competing borohydride hydrolysis reactions (BH4
- + 2H2O →

BO2
- + 4H2, especially facile at pH < 7). It was noted that selective anion-exchange

membranes would be an advantage to minimise BH4
- crossover.

Finally, it has been proposed that ammonia would make a good energy vector / carrier [35]

and an indirect fuel for a hydrogen fuel cell; ammonia is environmentally benign (it is already

used as a fertiliser and neutralises acid rain), already available cheaply ($1.2 / kW h

compared with $3.8 for methanol and $25 for hydrogen), contains 50% more H per dm3 than

liquid hydrogen, and is a liquid at much lower pressures (8 – 9 bar); it also has the advantage

of a strong smell, allowing the easier location of leaks. However, cracking ammonia to form
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hydrogen for traditional PEMFCs requires temperatures of above 900°C to remove all traces

of NH3; PEMFCs cannot tolerate any such contamination. The advantage of AFCs is that

they can tolerate low levels of NH3 contamination, and so cracking can be undertaken at

lower temperatures if hydrogen is to be supplied to such an AFC; this is a final potential

benefit of using an alkaline membrane as opposed to an acid form membrane.
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Table 1: The standard thermodynamic voltages (Eo), energy densities (We), and maximum

reversible efficiencies (ηrev) of hydrogen and selected pure alcohols when electrochemically

oxidised [9,10] under standard conditions. †2-propanol

Figure 1: A schematic of (a) a proton-exchange membrane and (b) an alkaline membrane

fuel cell both fuelled either with H2 gas or directly with methanol. The stoichiometric ratio of

reactants and products are shown in each case.

Figure 2: The graft penetration Raman-microscopy profile reproduced from reference [77],

obtained with the radiation-grafting of vinylbenzyl chloride onto FEP fluoropolymer with a

degree of grafting of 25.6% (ratio of mass gain / initial mass). The graph shows the variation

in the ratio of intensities of the poly(vinylbenzyl chloride) band at 1002 cm-1 and the FEP

band at 387 cm-1, which indicates the level of grafting at each point (spaced at 1 µm)

throughout the thickness of the membrane.

Figure 3: The long-term ex situ thermal stability profile of a prototype RG-AAEM (of initial

IEC = 0.71 meq g-1) produced by monitoring the IEC of membrane samples over time when

heated in deionised water at temperatures of 60°C (O) and 100°C (▲); reproduced from

reference [77]. The initial sharp drops in IEC are due to un-grafted residual quaternised

poly(vinylbenzyl trimethylammonium hydroxide) formed as a by-product, which has leached

out the during heat treatment in water.

Scheme 1: The generic structure of per-fluorinated polymers such as Nafion®.

Scheme 2: The structure of polybenzimidazole (PBI)
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Scheme 3: The two alternative (and sometimes simultaneous) mechanisms of displacement

of the trimethylammonium groups by hydroxide anions in AAEMs at elevated temperatures.

Scheme 4: The radiation-grafting of vinylbenzyl chloride onto FEP and subsequent

amination and alkali-exchange, yielding alkaline anion-exchange membranes (RG-AAEMs).

Scheme 5: A thermally stable alkaline anion-exchange resin based on those reported by

Tomoi et al. [81].

Scheme 6: Formation of AAEMs from polysulfone via a direct chloromethylation step.

Scheme 7: The benzyl CHα sites susceptible to peroxy-radical attack in poly(styrene sulfonic

acid) (PSSA) and FEP-grafted poly(styrene sulfonic acid) (FEP-g-PSSA) at low pH.
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Fuel E° / V We / kW h kg-1 [kW h dm-3] ηrev

Hydrogen (H2) 1.23 39.0 [2.6 (liquid H2)] 0.83

Methanol (CH3OH) 1.21 6.1 [4.8] 0.97

Ethanol (C2H5OH) 1.15 8.0 [6.3] 0.97

Propanol (C3H7OH) 1.07 8.6 [6.8†] 0.93

Ethylene glycol (HOC2H4OH) 1.22 5.3 [5.9] 0.99

Table 1

Figure 1
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Figure 2

Figure 3

Scheme 1
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Scheme 2

Scheme 3

Scheme 4
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Scheme 5

Scheme 6
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Scheme 7


