
Towards a Constraint-based Multi-agent
Approach

To
Complex Applications

Selvaratnam Indrakumar

Ph. D. Thesis

Submitted to the University of Surrey in partial fulfilment of
requirements for the degree of Doctor of Philosophy

Artificial Intelligence Group
Department of Mathematical and Computing Sciences

University of Surrey
Guildford GU2 5XH

Surrey
United Kingdom

October 2000

Abstract
A society of agents based on constraint logic as a formalism that could support an
agent environment for solving complex problems is explored. Within such society,
the rights of individual agents and duties of these agents to others are often
expressed in notions like communication, co-operation, negotiation, autonomy, and
so on. The motivation comes from the fact that a contract net is essentially an
imposition and cannot be easily reconciled with the notion of autonomy, social
order, co-operation, and negotiation, and was related to a logistics problem. Our
approach is to use constraint-based theories and methods to introduce an
abstraction that can be used to articulate how the agents communicate, co-operate,
negotiate, and how social laws are to be introduced.

A CANET (Constraint-based multi-Agent Network) framework is proposed in
which various societal notions can be put into operation. The CANET approach is
based on relations, not on hierarchy. Within the CANET architecture, agents
interact via a constraint store that consists of basic constraints; agents are treated as
autonomous, reactive, pro-active, and as a social system. Each agent consists of
layers of reactive, planning, and co-operation components. Communication
between agents is treated as constraint passing. Co-operation and co-ordination are
treated as constraint propagation whereas negotiation is treated as constraint
relaxation. Social laws are treated as hard constraints.

A prototype is developed that extends the scope of a logistics system that includes
trucks operated by a number of companies. Fischer and Kuhn's (1993) approach
has limitations in the sense that a contract net approach is presented, which is a
highly regulated, ordered society and does not reflect preferences of agents. The
role of constraint logic for such application is not explored. That fact holds in many
other application areas.

CANET is implemented in Oz (now called Mozart), an object-oriented language
developed at DFKI (German Research Centre for Artificial Intelligence) for logistics
application. A CANET agent is seen as `concurrent objects', and CANET multi-
agents as `concurrent objects with constraints'. We have extended the contract net
message passing by constraint passing. That change facilitates communication by
constraint passing. Further, we have shown that task allocation, co-operation,
negotiation, social laws, and co-ordination can be discussed in a single framework
based on constraint logic.

We have developed a framework in which various societal notions can be
operationalised. We have made a limited comparison with other approaches,
notably with a contract net approach that allows us to look at the definition of an
agent, agent architectures, agent communication language, and agency in different
perspectives. This research encourages us to incorporate notions like learning and
evolution within the CANET architecture, and apply these to complex applications.

Acknowledgements
I am very grateful to my supervisor Professor Khurshid Ahmad for
invaluable guidance throughout every stage of this research and for his
criticisms, comments and suggestions.

I wish also to thank Professor Roland Price for his generous support and
encouragement and to Dr David Pitt for his advice and feedback which
helped me a lot to improve my ideas on my work.

Many members of Al group, specially Andrew Salway and Steve
Collingham have contributed greatly to my work during the years I have
been working on this thesis. I would also like to acknowledge the
contribution of Mrs Caroline Jones who offered helpful comments.

Thanks are also due to Professor Gert Smolka, Professor Seif Heiridi,
Christian Schultze, Martin Henz, Michael Mehl at DFKI for helpful
discussions on Oz.

I wish to express my sincere gratitude to Hydraulic Research plc, and the
Department of Mathematical and Computing Sciences, University of Surrey.

My warmest thanks go to my parents and my sister Kanjhana for their
constant support and interest in my academic activities. My wife, Bama, has
been a source of encouragement and advice. Many thanks for her love and
support.

1. Introduction .. 3
1.1 Background to the research 3
1.2 Research problems and hypotheses/research questions 7

1.2.1 Knowledge-based simulation and modelling 7
1.2.2 Multi-agent simulation model 9
1.2.3 A constraint-based approach to agency and its uses in modelling and
simulation? ... 10

1.3 Justification for the research .. 12
1.3.1 Agent-oriented programming .. 14
1.3.2 Logic programming to constraint logic programming 16
1.3.3 Societal notions and computational agency based on consistency 17
1.3.4 The transportation-domain' problem revisited ... 18
1.3.5 Task decomposition and task allocation in less centralised models 20

1.4 Methodology ..
21

1.5 Contributions .. 23
1.5.1 Inside the agent community .. 23
1.5.2 Outside the agent community ... 23

1.6 Outline of the thesis ... 24
1.7 Delimitations of scope and key assumptions ... 24

2. Literature review - Agent-based systems ... 26
2.1 Motivation .. 26
2.2 Evolution of agent-based systems .. 26
2.3 Terminology of an agent-based system ... 28
2.4 DAI and classification models ... 33

2.4.1 Agent classification models .. 33
2.4.2 Agent architectures ... 37
2.4.3 Agent communication languages .. 41
2.4.4 Overview of commercial and research products, applications, benefits, and
weaknesses ... 43

2.5 Conclusion ... 49
3. Proposed modification to existing systems - Constraint logic 50

3.1 Motivation .. 50
3.2 Terminology of constraint-based systems ... 51
3.3 Evolution of constraint-based systems ... 54
3.4 Justification for constraint-based systems, constraint-based applications, and
methodology .. 59

3.4.1 Justification for constraint-based systems .. 59
3.4.2 Constraint-based applications ... 60
3.4.3 A constraint store and constraint types ... 62

3.5 Towards a Constraint-based multi-Agent (CANET) approach 66
3.5.1 Proposed CANET agent .. 69
3.5.2 The structure of the proposed CANET agent ... 70
3.5.3 Proposed interaction between CANET agents .. 72
3.5.4 Strengths and limitations of the CANET approach 73

3.6 Related work ... 74

3.7 Conclusion ... 75
4. System Design/ Implementation of constraint-based multi-agent system, and
applications 76

4.1 Motivation 76
4.2 Implementation of CANET 76

4.2.1 Objects to concurrent objects 76
4.2.2 Agent as ̀ concurrent objects' under constraints 77
4.2.3 Multi-agents as concurrent objects, agent behaviours, agents interaction as
Constraint Satisfaction 77
4.3.4 Suitability of Oz language (now called Mozart system) for CANET
applications 78

4.3 Towards a constraint network formulation 81
4.3.1 Logistics scenario 81
4.3.2 Logistics problem 81
4.3.3 The relevance of constraints, agents for logistics applications 82

4.4 CANET experiments 82
4.4.1 Constraint-based contract net, communication as constraint passing....... .. 83
4.4.2 Social laws as hard constraints, co-operation, co-ordination as constraint
passing 83
4.4.3 Task allocations as constraint satisfaction 86
4.4.4 Constraints network and task scheduling 88
4.4.5 Negotiation as constraint relaxation for conflict resolution 91

4.5 Analysis of results 93
5. Conclusions and future directions 96

5.1 Introduction 96
5.2 Conclusions about research questions or hypothesis ... 96

5.2.1 Comparisons of CANET with Fischer and Kuhn (1993) 96
5.2.2 CANET `Society of agents' .. 99

5.3 Conclusions about the research problem ... 100
5.4 Implications for the theory ... 101
5.5 Implications for further research .. 102

REFERENCES .. 105
Figures and tables .. 127

2

1. Introduction

Modern information systems, amplified by communication networks (such as the

Internet), are typically large and complex. Existing software applications (simulation

models) and their components are also complex. Agent-based computing (modelling)

has provoked enormous interest in research engineering communities; software agents

are becoming an essential part of these systems because they mitigate complexity.

They achieve this in two important ways: technical and psychological. Technically,

each agent provides a locus of intelligence for managing a subset of the information in

the system, either on its own initiative or under the direction of a user.
Psychologically, people need abstraction by which they can understand, manage, and

use complex systems effectively. A natural and convenient abstraction is one based

on separation of the complex system into components - objects - and treating them as
human agents (multi-agent systems) which is much closer to people's understanding.

Therefore very basic research on how such complex systems can be conceptualised

and implemented using a multi-agent approach is clearly needed.

This thesis is concerned with the provision of a constraint-based multi-agent approach
(CANET) for a wide range of multi-agent task scenarios such as transportation

schemas, telecommunication networks, modelling and simulation. The approach is

also relevant to unify various existing notions within agent-based systems such as co-

operation, negotiation, task allocation, and social laws. In addition, the approach

facilitates discussion of the notion of an agent.

i. 1 Background to the research

The size and complexity of today's modem information systems is generally owed to

the introduction and continuing development of communication networks (such as the

Internet. Existing software applications (simulation models) such as
telecommunications, air traffic control problems, and enterprise wide applications are

complex, involving the use of experiential knowledge, the use of simulation models,

access to a set of legacy systems and to various databases.

3

Within such complex systems, dynamic interaction between various components takes

place. The input/output to a component is quite varied, and not always known in

advance. The input/output can consist of partial information. There are various

restrictions on each component, and how they may be able to interact with others.

The relationships between components are quite complex. Changes in one component

may need to propagate to other components. Components can be added or be

removed from the system. Each component can have different levels of autonomy.

Components may be distributed based on knowledge, resource, authority, and control.

Further, such complex systems impose a substantial burden of interpretation on the

end-users of such systems. This burden manifests itself in three distinct, yet

overlapping stages.

First, the burden manifests itself when the users select input data sets generally

emanating from disparate disciplines, amend the data by filtering some input and

smoothing others in accordance with the actual and perceived needs of the model that

underpins the simulation system.

Second, the user makes assumptions about the limits and the scope of the

underpinning model because of the person's training and background, or the person

has either not had explained the limits and the scope in the simulation system's

documentation, or the person lacks an understanding of certain bases of the model

itself.

Third, the burden actually manifests when the user of a simulation system interprets

the output of the system. At this stage the cumulative assumptions of the previous

two stages have a substantial bearing on how the user infers the relationship between

inputs and outputs and how decisions are made on the basis of the output of the

simulation system.

The above is a functional, input-compute-output, description of what happens during

the entire life cycle of a simulation. The description itself is a surface manifestation

of how policy makers, network designers, space scientists work. The working pattern

4

is through fusing various items of data, by using knowledge of different domains in

building and in understanding the workings of the `real world' system being

modelled, and through bringing their own knowledge and experience to bear on the

results produced by models. They comprise unarticulated assumptions about the real

world.

What usually happens in a simulation situation is that one person uses the knowledge

of experts from different disciplines as these individual items of knowledge are

encapsulated in a mathematical/numerical or logistic/heuristic model. The same is

true of the choice related to the input data sets: each data set is associated with the

individual knowledge sources. The data set may be an array of numbers, a collection

of axioms, or it may be just a number or axiom - usually referred to as a model

parameter like gravitational constant or charge parameters, in themselves a

microcosm of empirical augmentation and theoretical speculations.

In general, the tools that have developed tend to stand alone, and there are no
interactions between various components. That also presents various problems.
Firstly, such tools do not provide overall information for decision making. Secondly,

it is extremely difficult to make any changes such as legal, or business rules.

There are tools that address the interaction issues but each interaction is hard-coded.

That also presents various problems. The system cannot deal with unplanned

scenarios. Further, when new components are introduced, interaction needs to be

specified.

Artificial Intelligence (Al) techniques, and expert systems technology in particular,
have often been used to tackle some of the more difficult automation problems. After

more than a decade of exploitation there are now thousands of expert systems being

used in hundreds of companies all over the world to solve complex problems in

numerous domains (Feigenbaum et al. 1988). However as this technology has

proliferated and individual systems have increased in size and complexity, new

problems and limitations have been noted (Partridge 1987; Steels 1985):

5

" Scalability: the complexity of an expert system may rise faster than the

complexity of the domain;

" Versatility: a complex application may require the combination of multiple

problem-solving paradigms;

0 Reusability: several applications may have requirements for similar expertise,

which has to be coded afresh in new situations;

0 Brittleness: expert systems operate on a high plateau of knowledge and

competence until they reach the extremity of this knowledge when they fall off

sharply to the level of ultimate incompetence;

" Inconsistency: as the knowledge base increases in size, it becomes

correspondingly more difficult to ensure that the knowledge embodied

remains consistent.

Various approaches for circumventing these problems have been advocated. The first

proposal involves building an extremely large base of common-sense knowledge

(Guha and Lenat 1990). This work is predicated in two assumptions. Firstly,

performing a complex task requires a great deal of knowledge about the world.

Secondly, to behave intelligently in unexpected situations requires the ability to fall

back on increasingly general knowledge and analogising too specific but superficially
far-flung knowledge (Lenat and Feigenbaum 1991).

A second approach is to allow the sharing and reuse of knowledge (Neches et al.
1991). In this vision, rather than constructing knowledge base systems afresh,

reusable components are assembled. This work is based on the observation that

application systems contain many different kinds and levels of knowledge.

Finally, the approach pursued in this research is to build systems of smaller, more
manageable components which can communicate and co-operate (Bond and Gasser

1988, Gasser and Huhns 1989, Huhns 1988). In the current parlance of Distributed

6

Artificial Intelligence that is a subfield of AT, complex problems are solved in the real

world through a loosely-coupled network of specialised solvers, an intelligent agent.

Each problem solver usually complements the rest, can modify his or her own

behaviour as the real-world undergoes temporal or causal change, plan its subsequent

actions and is able to communicate with others, resolve conflicts, co-operate with

others.

This approach has several advantages. Firstly, divide and conquer has long been

championed as a means of constructing large systems because it limits the scope of

each processor. The reduced size of the input domain means the complexity of the

computation is lower, thus enabling the components to be simpler and more reliable.
Decomposition also aids problem conceptualisation; many tasks appear difficult

because of the sheer size, they are too big to conceptualise all at once.

A second major advantage is that a distributed approach often provides a more natural
fit to the problem. Examples include distributed sensor networks (Lesser and Corkhill

1983), air traffic control (Cammarata et al. 1983). Indeed, Hayes-Roth (1980) even

goes so far as to state "all real systems are distributed".

Other potential advantages include: reusability of problem-solving components;

greater robustness in the case of component failure; enhanced problem solving due to

the combination of multiple problem solving paradigms and sources of information;

problem solving speed up due to parallel execution, and increased system modularity
(Bond and Gasser 1988).

1.2 Research problems and hypotheses/research questions

1.2.1 Knowledge-based simulation and modelling

The literature on simulation and modelling shows increasing awareness of the fact

that for simulation purposes, one needs to use a mixture of analytical (usually

mathematical) and heuristic (generally knowledge-based) techniques (Round 1989).

And for model building, including specification and implementation, a typical

scientist needs access to domain-specific databases that compose not only a data set

7

but a set of logical and ontological relationships between domain variables (Keller,

Rimon, and Pas 1994).

Knowledge-based simulation can be traced both to the emergence of discrete event

simulation languages, like SIMULA, and continuous simulation languages, like

CSIM, in the late 1960s. Much later, SMALLTALK was also used in such

simulations.

During the early 1980s, several systems were developed in domains that involved a

number of what we now call agents. For instance, within such applications as factory

management, cancer therapy, ecological modelling, and control and calibration of

complex machinery, various tasks need to be performed.

Knowledge-based simulation systems that were developed for such domains involved

a depth mixture of rule-based problem solving and planning in conjunction with the

race of sophisticated mathematical models (Table 1 describes systems, their domains,

the tasks they perform etc.).

SIGMA, a modelling system developed by NASA, is a good example of a system that

supports the construction of complex physical systems - like atmospheric systems

(Keller et al. 1994). The modelling system provides access to a suite of self-contained

simulation programs, relevant data sets and a library of abstracts of domain texts.

However, like knowledge-based simulation systems, SIGMA helps only in accessing

a variety of data sets and programs, and still expects the user to reconcile differences

and conflicts between the data and programs: co-operation, negotiation, and constraint

management between the knowledge sources has to be effected by the users.

8

Table 1: Knowledge-based simulation system

Acronym Domain Tasks performed Implementation and
Originators

Discrete Event Simulation
MOSYS Factory Use analytical techniques for determining of a FMS PROLOG

Management model Seliger et al (1987)
System Propose model refinement using a knowledge base
(FMS) to interpret output

Refine model
ONYX Cancer Generate plans using general treatment strategies for LISP

Therapy a given patient Langlotz (1987)
Planning Design/ plan simulation about effect on the therapy

on human body
Rank plans using decision analysis tools

Model building
ECO Ecological Specify ecological components in an incremental PROLOG/FORTRAN

Modelling fashion (e. g. trees then grass, then sheep...) Meutzfield (1987)
Checking consistency of growing model using a
KBS
Specify and assert models
Stimulate mathematical relationships (FORTRAN)
and ontological relationships (PROLOG)

ABLE Knowledge- Plan experiments KEE
based Execute rules (forward chaining) Selig (1987)
Control for Compute fit to data (backward chaining)
Accelerator Executing planning rules (forward chaining)
Magnets

Simulation workbenches
SOFTLAB Virtual Stimulate and control of a chromatography Hoftman et al (1993)

laboratories laboratory and an electronics laboratory
Used in the stimulation of rigid body dynamics

SIGMA Knowledge- Construct, modify, share, and understand scientific CommonLISP and GINA
based models (Keller et al 1994)
software
development
environment

TAEMS Co-operating Specify, reason, analyse, and stimulate LISP
problem computational environments Decker and Lesser (1995)
solving Real- Task oriented approaches works together with
time agent-based approaches
Scheduling Description of coordination algorithms and agents

1.2.2 Multi-agent simulation model

Conventionally, a simulation program is defined as a computer program that is used in

the simulation of a model of a real-world system, and is regarded as the simulation of

a mathematical model. The mathematics usually refers to differential/integral

equations, usually in their finite difference, finite element or matrix manifestation
approximations, or refers to stochastic description of the real world, generally with
one or more distribution functions governed by statistical measures like averages,
standard deviation, etc. And this mathematical interpretation of a model might also

9

well be true for isolated and autonomous events with well-defined boundary

phenomena.

What we have in mind here is the volatile movement of stock markets, transportation

of goods with strict restrictions on weight, contents, distribution of energy,

computation of tax on strict criteria on salary, age, martial status etc. Within the

applications, the model is not just a set of equations, but a set of entities. The

mathematical/logical model is encapsulated within the entity.

A multi-agent simulation model is based on the idea that programs exhibit behaviours

that can be entirely described by their internal mechanisms, the instructions. In a

multi-agent simulation, the model is not a set of equations as in mathematical models,
but a set of entities that can be described by the quadruple "agents, objects,

environment, communications" (Ferber and Drougoul 1992) where agents are the set

of all simulated individuals, objects are the set of all passive entities that do not react

to stimuli, environment is the topological space where agents and objects are located

and communication is the set of all communication categories.

According to Ferber and Drogoul (1992), the aim of using a multi-agent framework

for simulation is threefold. Firstly, it can be used to test hypotheses about the

emergence of social structures from the interactions of the agents and the reasoning,

reacting capabilities of the agent. The second goal relates to the claim that such a

simulation can help to build theories that contribute to the development of a general

understanding of ethnological systems, by relating to behaviour and structural and

organisational properties. Thirdly, such an approach can be used to integrate different

theories from various disciplines into a general framework.

1.2.3 A constraint-based approach to agency and its uses in modelling and
simulation?

What we are arguing here is that a simulation is situated: situated in a specific

physical and temporal location, situated in the context of the modeller and its user.
An intelligent simulation system can not only help in the simulation process, but

should be able to autonomously articulate its input data requirement, and be explicit

about the knowledge it uses in processing the data. An intelligent simulation should

10

be aware of the multidisciplinary data and knowledge required for even the simplest

of simulations, and should be able to help its user in interpreting the output.

An intelligent simulation system, therefore, not only has sophisticated mathematical

models implemented on a computer system, but comprises knowledge bases that

enable the users to seek help in the input, compute, and output functions.

The aim of this thesis is to discuss some of the crucial issues in simulation and

modelling of large-scale systems. We attempt to show that modelling such systems

requires a considerable amount of knowledge from diverse sources, and such

knowledge can be better managed if there are pro-active entities working in

conjunction with conventional simulation and modelling systems.

This brings us to the notion of agency and the societal issues that are connected with
the discussion of how groups of people, or, more accurately, computer programs

mimicking people, work together to achieve a common set of goals.

Within complex systems, we have mentioned numerous components working together

to solve common goals. Within such systems, the behaviour of components, and the

interaction between them, may be constrained. Moreover, based on the discussion of

the previous section, it is relevant that there is a necessity to have general architecture

to unify distinct stand-alone participants such as various databases, knowledge bases,

and browsers.

The research question is as follows: how can we create a society of agents for solving

complex problems, where the rights and duties are expressed in a common

framework? That research question triggered the following sub questions. How is

everything connected in complex applications? Would such systems accommodate

constraints and irregularities? How is it possible to pass partial information between

entities? How can everything dynamically interact? How should a behaviour of a

component be constrained as well as the interaction between components? How can

changes in one component be propagated? How may components communicate

between each other given the consideration of constraints? Examples for interactions

include atoms, humans, computers, household appliances, and physical bodies.

11

Our own experience in the field of constraint satisfaction suggests that it is important

to investigate the promise of constraint-based approaches for simulating the behaviour

of agents that do, or are expected to, work together.

1.3 Justification for the research

According to BIS strategic decisions: "Agents will be the most important computing

paradigm in the next 10 years. By the year 2000, every significant application will

have some form of agent enablement" (Aparicio 1996). And according to the Gartner

Group Report: "Worldwide market for agent software will grow by an estimated value

of $3M in 94 to $2.6B by the year 2000"(Aparicio 1996).

We have discussed that software agents are thus becoming an essential part of

complex systems because they mitigate complexity. They achieve this in two
important ways: technical and psychological.

Technically, each agent provides a locus of intelligence for managing a subset of the

information in the system, either on its own initiative or under the direction of a user.

Psychologically, people need abstraction by which they can understand, manage, and

use complex systems effectively. A natural and convenient abstraction is one based

on disaggregation of the complex system into components - objects - and treating

them as human agents (multi-agent systems) which is much closer to people's

understanding. Therefore very basic research on how such complex systems can be

conceptualised and implemented using a multi-agent approach is clearly needed.

Complex applications consist of various knowledge sources. Within such knowledge

sources there is a degree of autonomy, duty, and social ability. Moreover, there are

constraints that are associated with these applications such as precedence, and

resource. Such applications require an analytical approach to solve problems that

may arise.

12

Traditionally, the problems in these areas are addressed by distributed artificial

intelligence (DAI) methods. In the current parlance, DAI shows multiple inheritance

from behavioural and cognitive psychology, sociology, anthropology (particularly

ethnography), computational theories and neurobiology. Complex problems like

policy planning, network design, war games, are solved in the real world through a

loosely coupled network of specialised problem-solvers. Each problem-solver, an

intelligent agent, usually complementing the rest, can modify his or her behaviour as

the real world undergoes temporal and causal change, can plan its subsequent actions,

can communicate with others, can resolve conflicts, can impose his or her own ideas,

can adapt other ideas. In another words, research in DAI is concerned with

understanding and modelling action and knowledge in collaborative enterprises.

People usually distinguish two main areas of research in DAI (Bond and Gasser

1988): distributed problem solving and multi-agent systems.

Distributed problem solving (DPS) considers how the task of solving a particular

problem can be divided among a number of modules (or "nodes") that co-operate in

dividing and sharing knowledge about the problem and about its evolving solution(s).

In a pure DPS system, all interactions (co-operation, co-ordination if any) are

incorporated as an integral part of the system.

Research in multi-agent systems (MAS) is concerned with the behaviour of a

collection of (possibly pre-existing) autonomous agents aimed at solving a given

problem. A MAS can be defined as "a loosely coupled network of problem solvers

that work together to solve problems that are beyond their individual capabilities"

(Durfee at al. 1989). A multi-agent system, that is a sub-field of DAI, is concerned

with co-ordinating intelligent behaviour among a collection of autonomous intelligent

agents and how they can co-ordinate their knowledge, goals, skills, and plans jointly

to take action to solve problems.

Jennings et al. (1998) argues that there are two major impediments to the widespread

adoption of agent technology: (i) the lack of systematic methodology enabling
designers to clearly specify and structure their applications as multi-agent systems;

and (ii) the lack of widely available industrial strength multi-agent system toolkits. In

addition, they show agent-based computing to be chaotic and incoherent.

13

Constraint-based approaches are applied to applications such as scheduling and so on.
However, there is not much emphasis on the idea of agents. Currently, the scope of

those applications is very limited. However, it is believed that as these complex

applications tend to have various constraints, they can be used to define various

behavioural and interaction aspects.

1.3.1 Agent-oriented programming

Agent-oriented programming (AOP) is a term that Shoham (1977) has proposed for a

set of activities necessary to create software agents. What he meant by `agent' is "an

entity whose state is viewed as consisting of mental components such as beliefs,

capabilities, choices, and commitments". Agent-oriented programming can be

thought of as a specialisation of object-oriented programming (OOP), with constraints

on state-defining parameters, message types, and methods as appropriate. From this

perspective, an agent is essentially "an object with attitude". Table 2 summarises the

relation between AOP and OOP.

Table 2: OOP versus AOP

Parameters OOP AOP
Basic unit Object A ent
Parameters defining state of
basic unit

Unconstrained Beliefs, commitments,
capabilities, choices,...

Process of computation Message passing, and response
methods

Message passing and response
methods

Type of message Unconstrained Inform, request, offer, promise,
decline,...

Constraints on methods None Honesty, consistency

An agent's "mental state" consists of components such as beliefs, decisions,

capabilities, and obligations. Shoham formally describes the state in an extension of

standard epistemic logics, and defines operators for obligation, decision, and

capability. Agent programs control the behaviour and mental state of agents. An

agent interpreter executes these programs. In the spirit of speech-act theory,
interagent communication is implemented as speech-act primitives of various types,

such as inform, request, or refrain.

14

An agent interpreter assures that each agent will iterate through two steps at regular

intervals: read the current messages and update its mental state (including beliefs and

commitments); and execute the commitments for current time, possibly resulting in

further belief change. Shoham's original interpreter, AGENT-0, implements five

language elements:

" Fact statements ("John is an employee of NET");

" Communicative action sequence (inform, request, refrain);

" Conditional action statements ("If, at time t, you believe that John is an

employee of NET, then inform the agent A of the fact");

0 Variables; and

0 Commitment rules.

The basic concepts described by Shoham have influenced the direction of many other

agent researchers. He and his colleagues have continued their investigations on

several fronts including mental states, algorithmic issues, the role of agents in digital

libraries, and social laws among agents.

Both the theoretical developments of mental categories, and the AGENT-0

programming language, concentrated on a single agent. Indeed, the view promoted

was of agents functioning autonomously. However, if a society of agents is to

function successfully, some global constraints may be imposed. Such an approach is

not suited for industrial strength applications where a robust response is required with

distinct constraints.

Apart from Shoham's work, which has weaknesses such as a single-agent solution for

complex applications, there is a relative neglect of specific research of constraints on

behaviour and interaction of agents for modelling and simulation. In chapter 2, we

will review the field of agents, and reiterate the neglect in research on interaction and
behaviour with constraints and methodological weaknesses.

15

1.3.2 Logic programming to constraint logic programming

Logic programming is an appealing language for complex problems, thanks mainly to

its relational form and its nondeterminism. Its relational form makes it convenient for

stating constraints, as a constraint is nothing other than a relation. Its nondeterminism

makes it a powerful conceptual tool for designing backtracking problems.

Unfortunately, logic programming in its current state of development is very

inefficient for executing the natural formulation of problems. The reason is that this

formulation, when executed on a logic programming system, leads to a generate and

test, or a standard backtracking (i. e. depth first search with chronological

backtracking) approach. Both search procedures exhibit pathological behaviour and

their performance decreases drastically as the problem size grows. As a matter of

fact, these search procedures are oriented to recovering from failures and do not try to

avoid failures. The basic reason for this inefficiency comes from the way constraints

are used, only to reduce the search space after discovering a failure.

The inefficiency of generate and test and standard backtracking must be contrasted

with the results of search procedures based on consistency techniques. Consistency

techniques are based on the idea of a priori pruning, that is, using the constraints to

reduce the search space before discovering a failure. They originated from Waltz's

filtering algorithm (Waltz 1972). The pruning in consistency techniques is achieved

by spending more time at each node of the search tree removing combinations with

values that cannot appear in a solution. Thus the procedures are oriented toward the

prevention of failures and enable both an early detection of failures and a reduction of

the backtracking and the constraint checks. Both experiments and theoretical studies

have proved the values of a priori pruning. In most cases, a substantial improvement

in efficiency over standard backtracking is considered a fundamental primitive of

reasoning for solving Constraint Satisfaction Problems (CSPs).

16

1.3.3 Societal notions and computational agency based on consistency

The implementation of an intelligent simulation system can, perhaps, benefit from

developments in distributed problem solving. A simulation system can be construed

to involve interaction between a number of autonomous programs - or agents in DAI

and a society of agents having the societal attributes of communication, co-operation,

and advocacy.

Broadly speaking a simulation can be viewed as an interaction between agents that

can help with the input data, agents that are knowledgeable about the simulation

model and its implementation, and agents that can help in the interpretation of the

output data. The input agents can help in selecting and accessing autonomous data

sets and it is possible to benefit from developments in distributed data base systems -

a collection of data sets that can be accessed through fuzzy queries together with

facilities to transform data and filter `irregularities'.

Many of the extant simulation systems, ranging from CSIM (continuous simulation

modelling) to NASA's SIGMA, to varying degrees, help the user in getting data from

external sources, contain help files related to simulation engines and attempt to

interpret the output. However, in all these tasks a pro-active user is a must and such a

user is generally very experienced.

In order to propose an agent-based intelligent simulation system, it is perhaps useful

to briefly describe what we regard to be some salient features of a typically distributed

artificially intelligent system, particularly multi-agent systems. We would like to

argue that parallel developments in AI, especially constraint-based problem solving

theories and methods, can be used to introduce certain societal features within a

society of autonomous programs at a greater level of abstraction. Such an abstraction

can be used to articulate how the agents communicate, negotiate, and so on.

The point here is that much of the DAI literature discusses the notion of a society of

agents, involving the unarticulated assumptions about the rights of individual agents

17

and duties of these agents to others often expressed in notions like communication,

co-operation, negotiation, and so on. Bond and Gasser (1988), and Wooldridge (1995)

discuss various interactions. We present a constraint-based multi-agent framework in

which these notions can be put in operation.

1.3.4 The transportation-domain' problem revisited

The dominant metaphor in DAI, or, more specifically in distributed problem solving,

is that of agents organised in a network: each node represents an agent and the links

represent conduits for communication between agents. These nodes are generally

expected to be `sophisticated systems' in their own right in that they are expected to

represent a complex real-world entity.

The extent to which multi-agents "can modify... [their] own behaviours as

circumstances change and plan [their] ... own communication and co-operation

strategies with other nodes" (Durfee, ' Lesser, and Corkhill 1992) varies from one

multi-agent system to the other as reported in the literature. For example, Fischer and

Kuhn (1993) note that "a central problem in the study of autonomous co-operating is

that of ... [establishing] mechanisms for controlling the interaction between different

parts ... [or agents] of the system". These authors note that in an implicit sense multi-

agent co-operation, in a problem-solving context, has been simulated by using

methods based in dynamics programming and operations research - usually through

the computation of the so-called cost functions. Within the scope of DAI, the authors

describe three models of how a society of agents can be organised and deployed for

simulating complex problems in vehicle scheduling in response to customer demands.

For Fischer and Kuhn, a society of agents, represented by A= {al ... a�} is capable of

executing a set of tasks T= It, ... t}. A problem can be solved by A by decomposing

the problem in subproblems that can be tackled perhaps by the execution of one or

more tasks defined in T. These authors deal with the problem of organising the rota

for a number of trucks, indeed trucking companies, that may carry goods across

Germany.

This is a classical logistic problem, that of optimising the means against a range of
ends. The authors have used the extended contract net model for organising agents in

18

order to manage a society dominated by a broker working together with trucking

companies, trucks, and drivers. The contract net model is used when a dominant agent
broadcasts a problem and seeks `contracts' for the solution of the problem from a

society. Fischer and Kuhn (1993) have a `manager' agent, the so-called broker agent,

that liases with the customers and seeks their orders. These orders are relayed to a

number of `worker' agents, the trucking companies, who, in turn, send back `costed'

bids for the tasks. This cost is calculated by relaying a message to the subordinate

drivers, subordinate to the companies, who after checking the availability of their

trucks respond to the trucking companies. In effect, a highly regulated and ordered

society of agents with agents at successive levels of hierarchy having less and less

autonomy: this situation is more like a military organisation than a society of truckers

involved in fierce competition.

The extended contract net approach to the transportation domain problem was

operationalised through the use of an object-oriented concurrent language, Oz, a
language developed by the German Institute of Artificial Intelligence (DFKI). Using a
hierarchical decomposition model, the inter-agent communication is essentially the

cost transmitted from the nodes in the agent hierarchy to the apex of the tree. Table 3

summarises the simulation of Fischer and Kuhn (1993) indicating the roles of the

agents, the tasks they are supposed to execute and how these tasks have been

implemented as encapsulated behaviour through the use of the method construct.

Table 3: The agents, roles, tasks, and methods used in the transportation
simulation (Note that rem stands for remove, and finit for initiation)

Agent(s) Role(s) Task Method
Broker Master Deliver tasks to Init, Add(companies),

companies rem(companies),
Select minimum priced add(Driver),
driver rem(Driver)

Companies Slave/Master Deliver tasks to drivers Announce, addcity, finit
Select minimum priced
drivers

Drivers Slave/Master Computes the cost for Announce,
tasks init(Window),
Plan, control of driver init(create the truck)
agents

Trucks Slave Init drive, move, route

19

The limitations of Fischer and Kuhn's (1993) simulation are as follows:

a. The contract net approach involves a highly regulated and ordered society of

agents that does not reflect reality. It is difficult to accommodate various

preferences of agents.
b. Communication between agents tends to be message passing. That has limitations

in passing partial information between agents.

c. Co-operation/co-ordination between agents is via contract net. That does not

allow horizontal co-operation between trucks.

d. Social laws are not addressed. Common laws within multi-agent settings for

solving problems are not addressed. This would remove the necessity of
hardcoding laws to different agents within the application.

e. Task decomposition and allocation is via contract net. The Manager always

chooses the cheapest offer in selecting the agents. The approach is very

hierarchical.

f. Negotiation is addressed via contract net. Within the simulation, negotiation is

not really discussed in the sense that the manager always selects the cheaper cost.

There are no negotiations between the agents at the same levels.

g. Various constraints that are applicable such as precedence, resource, temporal are

not addressed.
h. Learning and evolving of driver agents is not addressed.

1.3.5 Task decomposition and task allocation in less centralised models

Fischer and Kuhn (1993) have discussed the rather restricted communication available

to them even in an extended contract model. The authors have argued for two `liberal'

regimes regarding the operation of the society of agents and discussed the

decentralised task model and the completely decentralised task model for task

decomposition and task allocation. In these two models, the role of the manager agent
is successively reduced such that in the completely decentralised task model the

manager is actually surplus to requirements.

Fischer and Kuhn have actually extended the contract net proposal in order to
demonstrate how co-operation can be effected amongst agents on the one hand, and in

20

order to demonstrate the practical relevance of an agent-oriented paradigm for solving

real-world problems (cf. the transportation domain problem) on the other. The

extended contract net protocol extends the number of speech acts that were available

to the manager from two, i. e. reject and grant, to four, temporal reject, temporal grant,

definitive reject, definitive grant (1993: 36). By this extension of the speech acts, the

authors will deal with much more realistic problems in the domain: namely, the

unbooked leg co-operation and the coupling of long-distance transportation and local

distribution (1993: 91). This allows the authors to argue that this distributed task

decomposition and task allocation is possible by allowing agents at the same level to

communicate among themselves before they finally report to the manager just above

themselves. Hence, orders from customers become more complex and include some

notion of time: expected time of departure, expected date of arrival, duration of the

journey and so on.

1.4 Methodology

The aim of the thesis is to discuss some of the crucial issues in simulation and

modelling of large-scale systems. It is intended to show that modelling such systems

requires a considerable amount of knowledge from diverse sources and that such

knowledge can be better managed if there are pro-active data and knowledge sources

working in conjunction with conventional simulation and modelling systems. This

brings us to the emergent notion of agency and the societal issues connected with the

discussion of how groups of people, or, more accurately, computer programs

mimicking people, work together to achieve a common set of goals.

The aim of the work is to propose a framework to discuss various behavioural aspects

of agents and the interactions between agents. The interactions include co-operation,

negotiation, task allocation, and social laws.

Our experience in the field of constraint-based systems suggests that it is important to

investigate the promise of a constraint-based computing paradigm for simulating the
behaviour of agents that do, and are expected to, work together (Selvaratnam 1993,
Selvaratnam & Ahmad 1995).

21

Our approach is to create a society of agents. Within such a society, the rights of

individual agents and duties of these agents to others are often expressed in notions

like communication, co-operation, negotiation, autonomy, and so on. Our approach is

to use constraint-based theories and methods to introduce an abstraction that can be

used to articulate how the agents communicate, co-operate, negotiate, and how the

social laws are to be introduced. We present a CANET (Constraint-based multi-

Agent NETwork) framework in which these notions can be put into operation.

Within the proposed approach, agents communicate between each other. Agents are

autonomous entities, with awareness of others. Agents or users send messages to

each other to constrain behaviour. Each agent's behaviour may be constrained, and

the interaction between agents may also be constrained.

Co-operation is treated as constraint passing, whereas negotiation is treated as

constraint relaxation. Social laws are treated as hard constraints that cannot be

relaxed. Task allocation is treated as constraint satisfaction.

A transportation scenario is simulated to demonstrate the hypothesis that the

behaviour of an agent and the interaction between agents may be related to constraint-

based techniques. In particular, constraint communication between agents is

demonstrated. We will make a comparison with Fischer and Kuhn (1993).

A constraint-based multi-agent approach for complex applications is proposed.

Within such an approach, the behaviour of an agent and the interactions between

agents are related to constraint-based interactions. Within the framework, constraint

satisfaction is an underlying mechanism compared to the unification mechanism used

in Prolog language. The feature of consistency is exploited for agency.

The proposed approach is natural in the sense that it addresses constraints at various
levels. Modelling and simulation of complex systems can be interpreted as the
interaction between agents and constraints. A wide range of applications can benefit

from the method.

22

Other researchers put more emphasis on discussing various interactions provided by a

survey. However, no results are achieved in unifying various interaction approaches.
This thesis tries to find a constraint abstraction for agent interactions. A critical

review of the existing agent-based systems, notions of an agent, and constraint-based

systems is presented.

1.5 Contributions

1.5.1 Inside the agent community

As far as theory is concerned, this research shows that the behaviour of an agent and

the interaction between agents can be related to constraint-based techniques. Our

contribution to the field of agents is that constraints and agents are synthesised

through our system, CANET. Our hypothesis is that the behaviour of an agent and

the interactions between agents may be related to constraint-based mechanisms. In

addition, various existing interaction notions are unified within such an approach.

Thus a distinct interpretation for such notions is provided. Agents work under

constraints of duties and rights. As far as the practical framework is concerned,

agents are concurrent objects working under constraint logic. That facilitates the

existing architecture such as contract net to be extended so that agents interact under

constraint logic. The approach allows the agents to communicate by constraint

passing compared to message passing in object-oriented language.

It is hoped that this research will contribute towards representing agent behaviour and

interaction via constraint logic. As far as the end-user is concerned, this allows the

complexity of designing interactions to be radically simplified, their development

period sharply reduced and ease potential future modification.

1.5.2 Outside the agent community

Outside the agent-based community, the contribution of the research is to provide a
CANET approach for modelling and simulation of complex systems.

Within the constraint-based community, the research contributes to making constraint
logic a programming language not only for scheduling type applications, but also

applications where agents are applied. Within the constraint-based community, the

23

emphasis is on variables, domain values, and constraints, and the concept of an agent
is not explored. By synthesising the field of agents, constraint logic can be applied

within DAI that will be discussed in chapter 3.

1.6 Outline of the thesis

Chapter 2 reviews existing agent-based systems. We critically analyse the definition

of an agent, and we argue for a need of an abstraction. The notion allows various

definitions to be related. From the evolution of agent-based systems, how a

constraints-based agent system plays a role is addressed. Various agent architectures

are discussed. We conclude by drawing the conclusions of previous reviews and

motivating the research. This allows the role of constraints in such architectures in

subsequent chapters to be investigated.

Chapter 3 presents the CANET (Constraint-based multi-Agent NETwork) approach

that is a theoretical foundation of the proposed research. Discussion on the evolution

of constraint-based systems will position our research in the work. Various notions of

constraint-based systems are addressed. This will be applied in chapter 4 when

discussing the synthesis of constraints and agents with the aim of addressing

constraint-based applications to the proposed methods.

Chapter 4 presents the design and implementation of a CANET approach, and

demonstrates the feasibility of the approach on several examples. A transportation

scenario is simulated to demonstrate the CANET concepts concerning co-operation,

and task allocations, and so on.

Finally, chapter 5 draws together the strands of research presented in this thesis and

highlights some areas for further investigation. A brief comment on this research is

also given.

1.7 Delimitations of scope and key assumptions

This thesis tries to address how various modules co-operate, negotiate and so on from

a constraint-based point of view. How agents learn, and how agents evolve are not

addressed. Further, there is potential scope to carry out research on areas such as

24

merging of agents, cloning of agents, and learning. There is also scope to develop an

agent-constraint toolkit for building complex applications. The key assumption of the

research is that "everything is connected".

25

2. Literature review - Agent-based systems

The aim of this chapter is to build a theoretical foundation on which the research is

based by reviewing the field of agents to identify research issues that are controversial

and have not been adequately answered by previous researchers. It shows the link

between research problems and the wider body of knowledge. That is, the literature

review includes the immediate disciplines of the research problem. The literature

review is focused in the sense that another related discipline, constraint satisfaction, is

addressed in the next chapter.

The main goals of this chapter are to overview the rapidly evolving area of agents.

This is achieved by discussing the basic concepts of multi-agent systems, by critically

reviewing the definition of an agent, by researching into the evolution of agent-based

systems, and by listing the agent architectures. Agent-based approaches for

applications are also listed.

2.1 Motivation

Agent technology has undoubtedly made a large impact on computing during the last

few years (Nwana 1996). Agent software is a rapidly developing area of research.

The word agent is as currently in vogue in the popular computing press as it is within

artificial intelligence (AI) and computer science communities. Agent technology

provides an exciting new computing and problem-solving paradigm.

There is a wide range of application domains that are making use of agent-based

systems. Agent applications are being developed for fields such as manufacturing,

entertainment, electronic commerce, user assistance, service and business

management, information retrieval research, energy systems, and autonomous space

probes.

2.2 Evolution of agent-based systems

The quest to design intelligent control in artificial systems dates back a long time.

Even before electronic computers had been invented, the engineer James Watt (1736-

1839) popularised the use of mechanical feedback control as a way of automatically

26

regulating the velocity of rotation in steam engines, thereby controlling their energy

intake. Concepts such as stability in dynamical system, control of systems are still an

area for research by using agent-based techniques. Another field that precedes

artificial intelligence is cybernetics, the aim of which is to unify mathematically

disparate studies of control and communication in animals and machines.

At the early stages of agent development, due to centralised approaches, a single

agent tended to perform very complex tasks. However, as the idea of decentralisation

became popular, there were developments in distributed systems with multiple agents.

Currently, even though various interactions are discussed, they are mostly hard-coded.

There is a relative neglect of developing a framework in which various interactions

can be simulated. In chapter 3, we will review the field of constraints, and propose a

CANET approach for complex applications. Table 4 summarises the evolution of

agent-based systems.

27

Table 4: Evolution of agent-based systems

System/Field Name/ Examples Aim/Characteristics
Mechanical feedback control James Watt (1800) To refine actions and to produce stability in dynamical

systems
Cybernetics Norbert Weiner (1940-50s) To unify mathematically disparate studies of control and

Ross Ashby communication in animals and machines
Grey Walter

AI John von Neumann (1970s) To build systems that perform some rational operations
Alan Turing Machine intelligence, theory of computability
John McCarthy Applications: Game playing, diagnosis, planning and
Marvin Minsky natural language understanding

Robotics (1980s) To build intelligent system coupling of computer programs
Shakey project Charles Rossen, Nils Nillson to television cameras and mechanical robot arms.

Cart Project John McCarthy, Les Earnet, Application: Mobile robots
Hans Moravec

Distributed AI Concurrency and distribution
Multi-agent systems Co-ordination of intelligent behaviour among a collection

of autonomous agents
Basic architectures
actor-based Hewitt (1977)
blackboard Fennel and Lesser (1977)

contract net Smith (1977)
Deliberate e. g. IRMA, AOP, GRATE Symbolic manipulation
Non-deliberate e. g. PENGI, Agent Network Reactive behaviour

architecture
Layered/hybrid e. g. INTERRAP, Too Integration of deliberate and non-deliberate architecture

TouringMachines with several hierarchical functional modules

General application: Most are prototypes, there are very
few applications, e. g. transportation domain, electricity
transportation management, telecommunications and so
on.

2.3 Terminology of an agent-based system

In this section, the terminology of an agent-based system is reviewed. The emphasis is

placed on the definition of an agent. Firstly, we will briefly look at the parent field of

agent-based systems.

Researchers in DAI are concerned with understanding and modelling action and
knowledge in collaborative enterprises. People usually distinguish two main areas of

research in DAI (Bond and Gasser 1988): distributed problem solving and multi-agent

systems.

28

Distributed problem solving (DPS) considers how the task of solving a particular

problem can be divided among a number of modules (or "nodes") that co-operate in

dividing and sharing knowledge about the problem and about its evolving solution.

Multi-agent systems are an outgrowth of the Distributed Artificial Intelligence

community. Durfee et al. (1989) define a multi-agent system as "a loosely-coupled

network of problem solvers that work together to solve problems that are beyond their

individual capabilities".

Research in multi-agent systems is mainly concerned with co-ordinating intelligent

behaviour among these agents, how they co-ordinate their knowledge, skills and plans

jointly to take action or to solve problems.

These problem solvers, which are essentially autonomous, distributed and maybe

heterogeneous in nature, are called agents and usually have a single locus of control

and/or intention.

An agent is a computer system situated in some environment, and which is capable of

autonomous action in this environment in order to meet its design objectives. The key

abstraction used is that of an agent. For example, considering a transportation

scenario, agents would be a broker agent, or company agent, or driver agent, or truck

agent.

In the recent past the term agent has been used unsparingly to refer to any software

system which has attributes of intelligence, autonomy, perception, or acts on behalf

of a user. There is no standard definition of an agent on which consensus exists, and

researchers over time have proposed various definitions of the term (and are still

doing so).

The reason why it is so difficult to define precisely what agents are is that, within the

software fraternity, the word is really an umbrella term for a heterogeneous body of

research and development. As Nwana (1996: 6), while having to define the term

agent, says:

29

"When we really have to, we define an agent as referring to a component of

software and/or hardware which is capable of acting exactingly in order to

accomplish tasks on behalf of its user. Given a choice, we would rather say

it is an umbrella term, meta term or class, which covers a range of other

more specific agent types, and then go on to list and define what these other

agent types are. This way, we reduce the chance of getting into the usual

prolonged philosophical and sterile arguments which usually precede the

former definition, when any old software is conceivably recastable as

agent-based software".

Agent software is a rapidly developing area of research. The word is overused in the

literature. In this section, the specific criteria of an agent will be addressed. There is

a necessity of classifying and combining various approaches that exist at the present

moment. Recent discussions by various authors vindicate this. There are a few

reasons why it is so difficult to define precisely what agents are. Firstly, agent

research does not use the term in the same way as other terms might be applied, for

example, the term agent is used widely in everyday parlance as in travel agents, estate

agents and so on.

Secondly, even within the software fraternity, the word agent is an umbrella term for a

heterogeneous body of research and development. The response of some agent

researchers to such phenomena is to introduce new terms such as knobots, softbots,

taskbots and so on. They may have some reasons to invent synonyms. Firstly, agents

may come in many physical guises. Secondly, agents can play many roles.

Furthermore, due to the multiplicity of roles agents can play, there is a plethora of

adjectives which precede the word agent, such as search agents, report agents,

presentation agents and so on.

The Reader's Digest Oxford Wordfinder (1993) defines an agent as "a person who

acts for another in business, politics, and etc. [L agentia f. L agere do]". One may

deduce from this definition that agents do things and act. However, the action-based

analysis is not sufficient for the notion of agency. There is a necessity to consider

other properties for an agent. The notion of an agent is interpreted in a variety of

ways. Researchers in distinct fields tend to put forward their individual notion of an

30

agent. There is a need to explore these notions to find out some general properties.

These definitions vary from `weak' to `stronger' categories.

Wooldridge et al. (1994) distinguish two usages of the term `agent'. Firstly, they

discuss an agent as a hardware or software system with properties: autonomy, social

ability, reactivity and pro-activity. Secondly, they argue that the agent has a stronger

and more specific meaning. In other words, in addition to the properties discussed, a

computer system is either conceptualised or implemented using concepts that are

more usually applied to humans.

According to Jennings (1995), the term agent (and hence agent-based computing,

agent-based system, multi-agent system) is being used within information technology

to describe a broad range of computational entities. He distinguishes three classes of

agents. Firstly, there are "gophers" agents, which can execute straightforward tasks

based on pre-specified rules and assumptions. Secondly, there are "service-

performing" agents, which execute a well-defined high-level task at the request of a

user. Finally, there are "predictive/pro-active" agents, that volunteer information or

services to a user, without being asked, whenever it is deemed to be appropriate. He

advocates properties such as autonomy, social ability, reactivity and pro-activity.

Such notions are explained below:

Autonomy: agents should be able to perform the majority of their problem solving

tasks without the direct intervention of humans or other agents, and they should have

a degree of control over their actions and their own internal state.

Social ability: agents should be able to interact, when they deem appropriate, with

other artificial agents and humans in order to complete their problem solving and to

help others with their activities. This requires that agents have, as a minimum, a

means by which they can communicate their requirements to others and an internal

mechanism for deciding when social interactions are appropriate.

Reactivity: agents should be able to respond to the changes in the environment.

31

Pro-activity: agents should not simply act in response to their environment, they

should be able to exhibit goal-directed behaviour.

Table 5: Definitions of an agent

Name Definition
Steiner, Mahling & Agent as a mouth-head-body (Mouth: communicator; Head: reasons about functions of the body
Haugeneder (1990) and exerts agent control; Body: describes the application-oriented processing facilities and

knowledge of the agent).
Brustolini (1991) Autonomous agents are systems capable of autonomous, purposeful action in the real world.
Pan & Tenenbaum (1992) Complex processes such as tasks in cognitive terms (i. e. what to look for? What to do? And who to

tell?), and are entrusted to an intelligent agent for execution. Agents interact with each other via a
message bus or through a shared distributed knowledge base.

Ferguson (1992) Any goal-directed computational process capable of robust and flexible interaction within its
environment.

Shoham (1993) An agent is described in terms of beliefs, goals and commitments.
Muller & Fischei (1993) An agent is described as a knowledge-based system composed of a knowledge base and a control

unit.
Nadoli & Beigel (1993) An agent is described in terms of a set of rules governing the behaviour of a set of objects. A local

`blackboard' performs the reasoning of the agent. Each blackboard contains the facts known to an
agent.

Smith, Cypher & Spohrer An agent is defined as a persistent software entity dedicated to a specific purpose. `Persistent'
(1994). distinguishes agents from subroutines; agents have their own ideas about how to accomplish tasks,
(KidSim agent) their own agendas. `Special purpose' distinguishes them from entire multifunction applications;

agents are typically much smaller.
Wooldridge & Jennings In a general sense, an autonomous self-contained, reactive and pro-active system.
(1994) Properties of an agent are autonomy, social ability, reactivity and pro-activity. However,

specifically, an agent is a computer system that is either conceptualised or implemented in terms of
concepts applied to humans (belief, desire, and intention). Other properties of an agent are
mobility, security and emotion.

Russell & Norvig (1995). An agent is everything that can be viewed as perceiving its environment through sensors and acting
AIMA a ent upon that environment through effectors.

Maes (1995) Autonomous agents are computational systems that inhabit some complex dynamic environment,
and by doing so realise a set of goals or tasks for which they are designed.

Coen (1994) Software agents are programs that engage in dialogues [and] negotiate and co-ordinate transfer of
SodaBot a ent information.

Minsky (1994) From the dictionary: "A person who acts on behalf of another person, business, government etc. /A
person or thing that acts or has the powers to act/... "
They all suggest the agent be seen as having some specialised purpose.
Agency: A business or other organisation providing a specific service. The term agency is used to
suggest the image of an office or an organisation that is composed of several interacting agents.

Jennings et al. (1995) Within their ARCHON architecture, individual problem solving entities are called agents; these
agents can control their own problem solving and interact with other community members. The
interactions typically involve agents co-operating and communicating with one another in order to
enhance their individual problem solving and to better solve the overall application program. Each
agent consists of an ARCHON layer (AL) and an application problem (known as an Intelligent
Systems or IS).

Nwana (1996) Presents a complementary view of agenthood to Jennings et al (1995), underpinned by the attributes
of autonomy and co-operative ability, but also including learning ability, i. e. the ability to improve

_performance
over time. Nwana 1998 discusses Zeus toolkit.

Tambe (1997) Teamwork in multi-agent is emphasised.
Muscettola et al. (1998) A remote agent architecture is proposed. The components of the architecture include temporal

planner/scheduler (PS) , with an associate mission manager (MM), reactive executive (EXEC), and
a model-based mode identification and reconfiguration system MIR

.

In summary, there are various definitions for the notion of agent. However, among

most researchers, there is consent that the agent should be defined as an autonomous,

reactive, pro-active, and reactive system. The above discussion is summarised in

Table 5.

32

There is a need to explore agency. Currently, interactions tend to be applications

specific, and operational in an ad-hoc manner. In general, there is no consideration to

constraints, and irregularities. This thesis tries to address that research gap.

2.4 DA/ and classification models

2.4.1 Agent classification models

In Table 5, we summarise various definitions of an agent. Analysing the definition of

an agent, we have identified various properties and their meanings that are listed in

Table 6.

Table 6: Agent properties

Property Meaning
Reactive Responds in a timely fashion to changes in the environment.
sensin and reacting)

Autonomous Exercises control over its own actions.
Goal-oriented does not simply act in response to the environment.
(pro-active)
Temporally continuous is a continually running process, not "one shot" computations that

terminate.

Communicative Communicates with other agents, perhaps including people.
(socially able)
Learning Changes its behaviour based on its previous experiences.
(adaptive)
Mobile Able to transport itself from one machine to another. They can

carry data along with intelligent instructions, which can be executed
remotely

Flexible Actions are not scripted.
Character Believable "personality" and emotional state.
Personisability The point of an agent is to enable people to do some task better.

Since people don't do all the same tasks, and even those who share
the same task do it in different ways, agent must be educable in the
task and how to do it.

Risk and trust The idea of an agent is intimately tied up with the notion of
delegation. In this situation, one has to balance the risk that the
agent will do something wrong with the trust that it will do right.

Graceful degradation Bound up in the notions of risk, trust, and domain, agents work best
when they exhibit graceful degradation in cases of communications
mismatch, or a domain mismatch.

Researchers tend to create new agents by composition of various agent properties.

For example, an agent may be called a collaborative agent if this agent emphasises

33

autonomy and co-operation. Having said this, for example, Jennings. (1995) argues

that the collaborative agent may have to negotiate to reach agreements. The definition

of an agent seems to be developed according to the term (e. g. collaborative agent),

and to the area of research and development (e. g. taskbot agent). Table 7 depicts the

agents.

Table 7: agent definition by composition

Agent Composition
Smart Co-operation, learnin , and autonomy
Collaborative Co-operation, and autonomy
Interface Autonomy, and learn
Sodabot Co-ordination, and negotiation
Hybrid Reactive, pro-active, co-operation 771

Within agent architectures, various subtle notions need to be accommodated. For

example, an agent may be autonomous, and co-operative. In another words, if an

agent is able to carry out a specific task, that agent is autonomous. If that is not the

case, the agent needs to co-operate with another agent to achieve goals. Other

tensions include negotiation and compliance, static and dynamic, temporally

continuous and one-shot, and tasks to be achieved and constraints. To address the

subtle nature of the properties, researchers tend to develop ad-hoc models based

mainly on rule-based hard-coded representation.

Various agent properties can be categorised into three parts: agent-centred, agent-

environment centred, and agent-agent centred. Table 8 depicts our categorisation.

Table 8: Agent properties are classified into three: agent, agent-environment,
and agent-agent centred

Agent Agent-Environment Agent-Agent
Autonom Reactive Social abilities
Flexible Team work
Personisability Co-operation
Mobile or static Communicative
Pro-active (planning)
Learning
Veracit benevolence, rationality
Emotion
Belief, desire, and intention

34

Among most researchers, there is consent that an agent should be defined as an

autonomous, reactive, pro-active, and social system (Wooldridge and Jennings, 1994).

From Table 8, the interpretation is as follows: researchers seems to be picking up or

abstracting autonomy, and pro-active from the agent-centred part, reactive from

agent-environment, and social abilities from agent-agent group to discuss the notion

of an agent.

However, we believe that reactive, and social ability can all be abstracted further in

the sense that reactive and social ability are part of agent-environment and agent-

agent interaction categories respectively, and these simply describe how an agent

behaves externally - i. e., external aspects of an agent.

The notion of autonomy of an agent is about having a degree of control of its actions

and their internal state, and the notion of planning is about introducing actions to

obtain a goal, which can be viewed as internal aspects of an agent. In chapter 3, we

will discuss how the concept of a constraint can be used to discuss the reactivity, pro-

activity, and social abilities of an agent.

In this section, the different types of agents are listed that can be identified by

combining some of the attributes described above:

Autonomous agents: Agents that inhabit some complex, dynamic environments,

sense and act autonomously in this environment and by doing so realise a set of goals

or tasks.

Entertainment agents: Interactive, simulated worlds providing entertainment to a

user. These agents are for entertainment purposes (e. g. games, film/video

production), rather than strictly utilitarian ones.

Information agents: Agents that have access to many potential information sources

and are able to collate and manipulate information obtained from these sources to

answer queries posed by users and/or agents. Some people refer to these as Internet

agents as such agents may roam about the Internet in order to collect information.

35

Intelligent agents: Agents that carry out some of the operations on behalf of a user or

another program with some degree of independence.

Interface agents: Pattie Maes, a key researcher in this type of agents, states that the

key metaphor underlying interface agents is that of a personal assistant who is

collaborating with the user in the same environment (Maes 1994). Interface agents

learn typically to better assist in four different ways:

" By observing and imitating the user;

" Through receiving positive and negative feedback from the user;

" By receiving explicit instructions from the user; and

" By asking other agents for advice.

Collaborative agents: These agents emphasise autonomy and co-operation in order to

perform tasks for their owners. Their key attributes include autonomy, social ability,

responsiveness, and pro-activeness. In order to have a co-ordinate set-up of

collaborative agents they may have to negotiate to reach mutually acceptable

agreements (Jennings 1995, Nwana 1996).

Mobile agents: Mobile agents are computational software processes capable of

roaming wide-area networks, such as the World Wide Web (WWW), interacting with

foreign hosts, gathering information on behalf of its owner and coming back after

having performed the duties set by its user (Nwana 1996). The attribute of mobility

has introduced the concept of remote programming (White 1994) where agents

interact as peers and each agent can act as both a client and server. Some of the most

important issues to be dealt with while implementing mobile agents are that of

security, secrecy, transport mechanism, and authentication. The system has to be

protected against such hazards as viruses and endless loops that consume all the CPU

cycles. Some notable mobile agent implementation platforms are Agent Tcl from

Dartmouth University (Agent Tcl 1995), Telescript (Telescript 1996), Odyssey

(Odyssey 1997) from General Magic Inc., IBM Aglets Workbench (IBMAglets

1996), Voyager (Voyager 1997) from Objectspace Inc., and Concordia from

Mitsubishi Electric (Concordia 1997).

36

2.4.2 Agent architectures

Muller et al. (1993) have provided several reasons for considering agent architectures

for applications. Firstly, the architecture provides a valuable general guideline for the

methodology of the design and implementation of an application. Secondly, the

modules of the agent architecture precisely structure the classes of operational

knowledge. Thirdly, agent architecture provides a basis for the investigation of

special strategies and extensions of the modules; finally, predefined mechanisms such

as negotiation protocols (e. g. the contract net) are directly applicable.

Agent architectures may be classified into three categories: deliberative, reactive, and

hybrid.

2.4.2.1 Deliberative amts

A deliberate architecture is an architecture that relies on explicit, internally held

symbolic models and symbolic manipulations. The agents in the deliberate

architecture may be seen as deliberate or planning agents. Within the planning

approach, given a goal to an agent, an agent will introduce a series of actions to

achieve a goal.

The success of these architectures depends on two assumptions: Firstly, an agent

should have complete up-to-date knowledge about the state of the world. Secondly,

the effect of agent action is always known in advance, and would always be correct.

The well-known deliberate architecture reported in the literature are IRMA (Bratman

et al. 1988), and GRATE (Jennings 1992).

Z42.2 Reactive agents

Reactive agents represent a special category of agents which do not process the

internal, symbolic model of their environments; instead they act/respond in a

stimulus-response manner to the present state of the environment in which they are

embedded. Figure 1 shows the behaviour of reactive agents.

37

z
-- - ------------------------- -

º' Explore

º Wander
Avoid Obstacles

Figure 1: Reactive architecture: Methodology

Table 9 depicts various reactive architectures.
Table 9: Reactive architectures

System Application
Pengi A video game
Are and Chapman (1987)

Wavish and Graham (1995) CD-i computer game characters
Digital video and 3-D graphics-based animations

Ferber (1996) Simulate ant societies
Simulated a limited ecosystem composed of Biotapes, shoals of fish and
fisherman

The main criticisms of reactive agents are as follows:

" The scope of applicability is currently limited to mainly games and simulations

" How are such systems extended, scaled up or debugged'?

" What happens if the `environment' is changed?

" Not obvious how to design such systems so that the intended behaviour emerges.

Because of their lack of explicit goals and goal-handling capabilities, the designers of

reactive systems need to pre-compile or hard-wire the action selections; while a

deliberative agent's approach leaves much to the agent, the reactive agent's approach

leaves much to the designers.

2.4.2.3 Hybrid agents

Since each of the above mentioned approaches has its own strengths and limitations, it

often becomes necessary to maximise the strengths and minimise the limitations of

the most relevant technique for a particular purpose. The aim is to adopt it hybrid

38

approach which brings together some of the strengths of both deliberative and reactive

paradigms.

A constitution of a hybrid agent combines two or more agent philosophies within a

single agent. These philosophies may include a mobile philosophy, an interface

agent, etc. One interesting implementation of such a hybrid approach is INTERRAP

Agent Architecture (Figure 2) developed by the DFKI, German Research Centre for

Artificial Intelligence.

Agent KB

Social
Model
Mental

World

-- - --ý

Perception Communication

Cooperative
Planning Laycr

Local
Planning Laycr

Behaviour- based
Layer

Action World Interface/Body

v

Figure 2: INTERRAP architecture

The main criticisms of hybrid agents are:

" Hybridism usually translates to ad hoc or unprincipled designs;

" Many hybrid architectures tend to be very application specific;

" Theory, which underpins hybrid systems, is not usually specified.

Communication enables the agents in a multi-agent system to exchange information,

on the basis of which they co-ordinate their actions and co-operate with each other.

The main questions that arise are which communication protocols and mechanisms

are conductive to enhance collaboration between communicating agents. Within a

multi-agent system, several ways have been proposed for agents to exchange

information with each other. Agents can directly exchange messages, or they can

organise themselves into a federated system and communicate through special

39

Agent Control Unit

facilitator agents (Generserth & Ketchpel 1994), or they can broadcast the messages.

Another popular approach used to enable agents to intercommunicate is through a

shared blackboard on which information can be posted and retrieved (Chaib-draa et

al. 1996).

Directed communication: Directed communication involves establishing direct

physical links with other agents using a protocol such as TCP/IP which promises safe

arrival of message packets by implementing end-to-end acknowledgements.

Federated systems (Generserth & Ketchpel 1994): When the number of agents in a

system becomes very large the cost and processing involved in directed

communication is prohibitive. A popular alternative to directed communication that

eliminates these difficulties is to organise the set of agents into a federated system.

Figure 3 illustrates the structure of such a federated system. Agents interact via a

facilitator.

Figure 3: Federated system

Broadcast communication: In scenarios where a message has to be communicated to

all the agents in the environment, or the sender agent does not know who the recipient

will be, then it can physically broadcast the message to all the agents in the system.

Alternatively, it can maintain individual communication links with all the agents in

the system and send each one of them a directed message. Two main popular

approaches in broadcast communication are the contract net and the specification-

sharing approach. Contract net approach is elaborated in Chapter 4. In the

40

specification sharing approach, agents broadcast their capabilities and needs and other

agents use this information to co-ordinate their needs and actions.

Blackboard systems: In AI, the blackboard is an often-used model of shared memory

(Chaib-draa & Moulin 1987). It is a store on which agents write messages, post

partial results, and obtain information. It is usually partitioned into several levels of

abstraction appropriate for the problem at hand, and agents working at a particular

level of abstraction have access to the corresponding blackboard level along with the

adjacent levels.

2.4.3 Agent communication languages

For interoperability, agents should be able to communicate with agents supplied by

different vendors or implementors. The obvious solution is a lingua franca, whereby

all the agents who implement the same lingua franca can communicate.

An Agent Communication Language (ACL) provides agents with a means of

exchanging information and knowledge. ACLs handle propositions, rules, and

actions. An ACL message describes a desired state in a declarative language, rather

than a procedure or method.

At the technical level, when using an ACL, agents transport messages over the

network using a lower-level protocol - for example, SMTP, TCP/IP, IIOP or HTTP.

The ACL defines the type of messages that agents can exchange.

2.4.3.1 KQML

The Knowledge Query and Manipulation Language (KQML) (Finin et al. 1994) was
defined under the DARPA-sponsored Knowledge Sharing Effort. KQML assumes a

layered architecture.

KQML is a high-level, message-oriented communication language and protocol for

information exchange independent of content syntax and applicable ontology. Thus

KQML is independent of the transport mechanism (TCP/IP, SMTP, HOP, or another),

41

independent of the content language (KIF, SQL, STEP, Prolog, or another), and

independent of the ontology assumed by the content.

Conceptually, one can identify three layers in a KQML message: content,

communication, and message. The content layer bears the actual content of the

message in the program's representation language. The communication layer encodes

a set of features to the message that describe the lower-level communication

parameters, such as the identity of the recipient and sender, and a unique identifier

associated with the communication. The message layer, which encodes a message

that one application wants to transmit to another, is the core of KQML.

2.4.3.2 Arcol and The Foundation for Intelligent Physical Agents FIPA)

The Foundation for Intelligent Physical Agents is a nonprofit association whose

purpose is to promote the success of emerging agent-based applications, services, and

equipment.

FIPA's agent communication language (like KQML) is based on speech act theory:

messages are actions or communicative acts, as they are intended to perform some

action by virtue of being sent.

Arcol is another ACL based on speech acts (Breiter and Sadek, 1996). Arcol was the

basis for the first version of the proposed FIPA standard, and many of its components

survive in the second version as well. Agents conforming to the FIPA specification

can deal explicitly with actions. They make requests, and they can nest the speech

acts. The FIPA specification has a formal semantics.

2433 Comparison

KQML suffers from as yet poorly defined semantics. As a result, of the many

implementations of KQML, each seems unique. This makes communication difficult,

and the KQML agent might not be understood. Security has not been a major issue in

the KQML work.

42

The FIPA specification, by contrast, attempts to formalise the semantics and provide a

security model. However, in view of its recency, it has not been widely accepted or

adopted.

2.4.4 Overview of commercial and research products, applications, benefits,
and weaknesses

2.4.4.1 Agent-based commercial products

Various agent-based commercial products are presented in Table 10. The products

presented vary from development environment to multi-agent protocols. Many of

them are implemented on object-oriented languages such as Java, and C++.

Table 10: Agent-based commercial products

Product Description Application Language Company
AgentBuilder Integrated Agent General Java Reticular

and Agency applications Systems, Inc.
Development
Environment

AgenTalk Multi-agent General LISP NTT/Ishida
coordination application
Protocols

Agent Building Agent General C++, Java IBM
environment Development application

Environment

Agent Agent General Gensym

Development Development application
Environment Environment
ADE

AgentX Agent General Java International
Development application Knowledge
Environment Systems

IGEN tm Cognitive Agent Intelligent C/C++ CHI Systems
Toolkit applications

Intelligent Agent Agent library General Java Bits & Pixels

Libra applications
JACK Intelligent Agent Distributed JACK Agent Agent Oriented
Agents Development applications Language Software Pty.

Environment Ltd.

JAAI Agent architecture General Java Intelligent
application Reasoning

Systems
Kafka Agent library Distributed Java Fujitsu

programming

Versatile Agent Building Web sites and Java Kinetoscope
Intelligent Agent Blocks intranets

VIA
Voyager Agent-Enhanced Distributed Java Object Space

ORB applications
Zeus Agent architecture General Java BT

application

43

2.4.4.2 Research products

The concept of an agent is being researched by many academic institutions. Many

systems have been developed. The trend in agent-based products is to use an agent

communication language such as KQML. In general, the object-oriented language

Java is used for research in many academic institutions. However how to address

constraints is not addressed. This thesis addresses such limitations. Table 11 lists

various agent-based research products.

Table 11: Agent-based research products

Systems Description Concepts Language Research
Organisation

Bond Distributed Agent Framework Provides a Java Purdue University
Object System message-oriented

environment
Uses the KQML
for object
communication

Cable System Provides ADL Agent Definition Logica
Architecture (Agent Definition Language, C++ Corporation

Language)

JAFMAS Multiagent Uses KQML Java University of
Framework Analysis system Cincinnati

coherency

JATLite Java packages for Provides a basic Java Stanford
Multiagents infrastructure in University

which agents
interact

Knowbot System Mobile agents Research Python CNRI

Software infrastructure for
mobile agents

LALO Programming Framework for LALO GRIM
Environment developing mult-

a ent systems.

244 4_ A_gentapp1ications, strengths, and weaknesses

There are wide ranges of application domain that benefit from the use of agent-based

systems. Agent applications are developed for fields as varied as manufacturing,

entertainment and electronic commerce. This section describes these application

types.

44

User assistant applications: These systems are those that work with, and in the

interests of, an end-user in order to enhance their productivity and to ease the use of

complex computer-based systems. More commonly, they communicate with users to

help with managing diaries and emails, memory assistance, etc. (Mitchell et al. 1994).

They may communicate with other agents (e. g. media agents) for information

gathering. They are different from standard user interfaces, in that they are

empowered to act at least semi-autonomously, and are not merely tools that the user

uses and controls. Some common user applications are:

" User profile learning systems (Caglayan et al. 1996);

" Multimodal interface systems; and

" Personal Digital Assistant or Personal Intelligent Communicator applications (e. g.

digital telephone secretary).

Information retrieval applications: These systems involve all the services needed to

help users easily and quickly find the information they request (Huhns et al. 1994,

Sheth et al. 1993). This can be achieved, for example, by a society of agents. They

include:

" Directory services (yellow and white pages);

" Date base inquiry;

" Information brokerage; and

" Media indexing.

Entertainment applications: These are systems, which involve:

" Real-time and non-real-time (store and forward) user avatars for messaging, low-

bit-rate communication, and shared virtual environments;

" Games (autonomous interaction between game characters and with environment

and multi-player games);

" Gaming and avatar applications deployed in theme parks, arcades, kiosks, WWW,

and high-end game machines (Nwana 1993); and

" Film/Video production (i) Camera agents (film/video cameras with automatic

motion, focus, reactions, etc.), (ii) 3D graphical agents for storyboard design, (iii) 3D

graphical agents and avatars in computer animated feature films, cartoons and

advertisements.

45

Service management applications: These are systems that involve configuration and
delivery of user requested services at the right time and cost, while observing required
security and privacy issues. Some common service management applications are:

" Multimedia services;

" Buying/selling services (e. g. information, material, goods) (Chavez, A& Maes, P

1996);

" TMN/Intelligent Network Management Services; and

" Trip planning and guidance services (e. g. intermodal route planning, hotel and

parking lot reservations, individual traffic guidance, tourism).

Business management applications: These systems deal with the management of
business tasks and resources in the provision of services and carrying out of business

operations (O'Brien & Wiegand 1996). They include:

" Financial services;

" Electronic commerce (White 1994);

" Workflow management (Levitt et al. 1994);

" Office automation;

" Computer Supportive Co-operative Work; and

" Telecommuting (Appleby & Steward 1994).

Manufacturing management applications: These systems involve physically

embodied agents designed to carry out and deal with the management of tasks and

processes in relatively structured industrial environments. These processes may
involve the control of industrial robots and machines via software interfaces. Some

common manufacturing applications areas are:

" Industrial robotics (Brooks 1986);

" Factory automation (Baker 1996);

" Virtual factory management; and

" Load balancing.

46

Service robotics applications: These systems involve physically embodied agents
designed to carry out tasks and processes in relatively unstructured office and

domestic environments (e. g. office mail delivery, house cleaning etc.).

Co-operative task management applications: These systems involve the collection

of robotics and software agents that are being co-ordinated to achieve higher level

tasks.

Research applications: These systems involve using agent technology to further

research in other (IT) areas such as:

" Vision processing;

" Learning and adaptive systems (Hermans & Schlimmer 1993);

" Speech processing;

" Distributed knowledge-based systems; and

" Human-computer interface.

In summary, various applications are being considered for agent-based application.

The proposed approach that will be elaborated in Chapter 4 is relevant for such

applications. The advantages of multi-agent systems are as follows:

Fault-Tolerance (Hatvany 1984): Agents are an inherently distributed mechanism

and thus a system made of autonomous agents will not collapse when one or more of

its components fail as there will not be any single point of failure.

Modular Software/Scaleable architecture (Parunak 1996): Agents are powerful

entities because of the factorisation of the problem-solving they provide. Each agent

can be identified as an entity (e. g. a machine, a tool, or a part) and thus help in

incremental growth and flexible expansion. The advantage of scalability is provided

as each agent can join a system, start working with other agents, or just leave a system

once it has finished a plan it was engaged in without effecting the operation of the

system.

47

Self-configuration systems (Parunak 1996): A population of agents can reconfigure

itself as it runs. This is an important advantage for systems that must respond to a

wide range of different conditions. This is because, as each agent is close to the point

of contact with the real world, the system's computational state tracks the state of the

world closely, without need for a centralised database. As the overall system

behaviour emerges from local decisions, the system readjusts itself automatically to

the environment, or the noise, or the removal of other agents. Thus a fully functional

self-configuring system can be effectively implemented by merely networking agent

resources.

Reduced software costs: As the software becomes more modular, the development

time and the complexity is reduced.

Faster problem solving: By exploiting parallelism in the sense that different agents

work autonomously to achieve a common vision, problems are solved quicker.

Decreased communication: By transmitting only high level partial solutions to other

agents, communication is decreased.

Flexible systems: Flexibility is provided by having agents with different abilities

dynamically team up to solve current problems.

This review has acknowledged disagreements between researchers on the definition of

an agent, and on the interaction of agents without developing a hypothesis. We have

established that agents and agent interactions were an interesting part of the parent

field DAI to research, and we have summarised in tables comparisons between

compared the current definition of an agent, and agent interactions.

In the preceding section, we have analysed the definition of an agent, agent

communication languages, and interaction strategies. It is clear that there are

discrepancies in the definition of an agent. There are few agent communication

languages such as KQML and we have discussed their limitations. The existing agent

architectures are quite rigid in the sense that the behaviour of an agent, and the

48

interaction between agents, tend to be hard coded. Shoham's AOP has its limitations

as the approach is not discussed within multi-agent settings.

Particular concepts and the hypothesised directions of relationships between agent

behaviour and interactions will be summarised in a detailed analytical model which

grew out of the earlier classification model to structure the literature review.

An emphasis is put on constraint-based systems that is discussed in the next chapter; it

is believed that constraint-based systems are relevant to the discussion of behavioural

and interaction aspects of agents.

2.5 Conclusion

In this chapter, the definition of an agent was reviewed. Based on the literature

review, we have unearthed areas which require researching. With the idea of

diversification of agents in the literature, we suggested that there is a need to address

interaction strategies. We have asked the question: How do agents interact with the

environment, with a user, and between each other with consideration to constraints?

Agent architectures have been presented. Agents are seen to be autonomous, reactive,

pro-active social systems.

We have consolidated the following testable hypothesis that "the behaviour of an

agent, and the interaction between agents can be related to constraint-based

techniques" for the research questions. We investigate further constraint-based

techniques in the next chapter, and we propose a CANET methodology for complex

applications.

49

3. Proposed modification to existing systems - Constraint
logic

"Constraint (n.) The state of being checked, restricted, or compiled to avoid or

perform some action ". (Webster's Ninth New Collegiate Dictionary).

Based on the literature review in chapter 2, and the research problem outlined in

chapter 1.2, the suitability of constraints for agent interactions is now investigated. In

this chapter, an overview of a constraint-based system is provided. Basic concepts of

constraint-based techniques are given. The aim is to synthesise these techniques with

that of agents in the next chapter. The discussion on evolution of an agent-based

system allows our work to be located in the research map.

We propose a CANET methodology for complex applications towards the end of this

chapter. Within the CANET methodology, the behaviour of an agent, and the

interaction between agents can be related to constraint technology. We will describe

many issues concerning multi-agent systems (i. e. co-ordination of actions, task

allocation, and co-operation) from a constraint-based view. We also compare related

methodologies.

3,1 Motivation

Constraints arise in most areas of human endeavour. Constraints formalise the

dependencies in physical worlds and their mathematical abstractions transparently,

naturally, and implicitly.

A constraint is simply a logical relation among several unknowns, each taking a value

in a given domain. The constraint thus restricts the possible values that variables can

take; it represents partial information about the variables of interest.

Constraints can also be heterogeneous, so they can bind unknowns from different

domains, for example the length (number) with the word (string). The important

feature of constraints is their declarative manner, i. e. they specify what relationship

must hold without specifying a computational procedure to enforce the relationship.

50

Constraints are used to guide reasoning as a key part of everyday common sense. For

example, a constraint one can use to plan time is as follows: "I can be there from five

to six o'clock for a project meeting". Generally, one does not deal with just one

constraint, but a collection of constraints that are rarely independent.

Constraint programming is the study of computational systems based on constraints.

The idea of constraint programming is to solve problems by stating constraints
(requirements) about the problem area and, consequently, finding solutions that

satisfy all constraints.

Many problems can be viewed naturally as constraint-satisfaction problems (CSPs)

(Freuder and Mackworth 1994, Tsang 1993). In such problems, we seek to find

values for problem variables that satisfy or optimise restrictions on value

combinations. Applications are found in many fields of AI, including planning,

design, diagnosis, temporal reasoning, vision, and language.

3.2 Terminology of constraint-based systems

A constraint-based system is a paradigm for formulating knowledge as a set of

constraints without specifying the method by which these constraints are to be

satisfied. A variety of techniques have been developed for finding partial or complete

solutions for different kinds of constraint expressions. Applications of constraint-

based systems include design, diagnosis, truth maintenance, scheduling, logic

programming, and user interface.

A constraint network consists of a finite set of variables X= {X1,
,..,

Xn}, each

associated with a domain of discrete values, {D1, ..., D�} and a set of constraints,

{C1,..., C1}. Each of the constraints is expressed as a relation, defined on some subset

of variables, whose tuples are all the simultaneous value assignments to the members

of this variable subset that, as far as this constraint alone is concerned, are legal.

Constraint Satisfaction Problems have been a subject of research in Artificial

Intelligence for many years. A Constraint Satisfaction Problem (CSP) is defined as:

51

0a set of variables X' {x1, ... , x�},

0 for each variable x;, a finite set D; of possible values (its domain),

"a set of constraints restricting the values that the variables can simultaneously

take.

A solution to a CSP is an assignment of a value from its domain to every variable, in

such a way that all constraints are satisfied at once. One may want to find:

" just one solution, with no preferences as to which one,

" all solutions,

" an optimal, or at least a good solution, given some objective function in terms

of some or all the variables.

A constraint can be a relation between variables. Examples include x<y +3, f(x, y),

and so on. Constraint systems are obtained by sharing variables among constraints.

An example is xc {1, ..., 10}, ys {1,..., 10} and x=y+1.

When a set of constraints is used to characterise the solution of a given problem, that

problem is set to be overconstrained when there is no solution that obeys the set of

constraints. Because constraints are defined as relationships or connections between

variables, a constraint satisfaction problem is often viewed as a graph or constraint

network.

Constraints are multi-directional. Consider the constraints: X+Y=5; and X=2.

Constraint reasoning method solves a value for Y. The operation differs from

traditional languages in the sense that within the traditional language, the left-hand

side variable of the equation is always evaluated, but within the constraint-based

system, any constraints can be solved.

The technique of extending or communicating constraints so that they define further

relationships between variables is constraint propagation. Table 12 shows the effect

of constraint propagation.

52

The results of successive constraints show the effect of the imposition of these

constraints on the system X, Y, and Z:

Table 12: The table shows the effect of constraint propagation on three variables
X, Y, Z within a set of constraints, indicated by the attachment of subscripts,
max and min, that range between 1 to 100. Adding new constraints to the system
causes the effects on values of the system shown below.

Constraint propagation x Y z
Xmin Xmax Ymin Ymax Zmin Zmax

Initial constraints 1 100 1 100 1 100
Adding constraint #1: 2*X +Y =< Z 1 49 1 98 3 100
Adding constraint #2: Z< 5 1 1 1 2 3 4
Adding constraint #3: X \= Y 1 2 q

Two branches of Constraint Programming (CP), namely constraint satisfaction and

constraint solving, share the same terminology but the origins and application areas

are different. Constraint satisfaction deals with problems defined over finite domains

and, currently, probably more than 95% of all industrial constraint applications use
finite domains. Constraint solving shares the basis of CP, i. e., describing the problem

as a set of constraints, and solving these constraints. But, within the constraint

solving, the constraints are defined over infinite or more complex domains. Instead of

combinatorial methods for constraint satisfaction, the constraint solving algorithms

are based on mathematical techniques such as automatic differentiation, Taylor series,

or Newton method.

1Domain of
Variables

Repeat

Constraints as
filters

Reduced domains of
variables

Figure 4: Constraint solving

A basic constraint takes the form x=n, x=y or xeD, where x and y are variables, 11 is

a non-negative integer and D is a finite domain.

53

Propagation of constraints is depicted in figure 4. Constraints can be viewed as filters

of the domain of variables. The reduced domain can then be passed through the

constraints in a repetitive manner.

Propagation constraints are commonly called constraint agents. The behaviour of a

constraint agent is to propagate information to the underlying store. In case the

underlying store is a constraint store, the information propagated is expressed as

primitive constraints. Constraint agents can be built by directly defining their waking

behaviour using the notion of a `guard'. The term `actor' is used within the Oz

community to discuss the propagation constraints.

A new class of constraints is called reified constraints. Reified constraints make it

possible to express constraints involving logical connectives such as disjunction,

implication, and negation. Reified constraints also make it possible to solve

overconstrained problems, for which only some of the stated constraints can be

satisfied.

The reification of a constraint C with respect to a variable x is the constraint:

(C H x=1) AxE 0#1 where it is assumed that x does not occur freely in C.

3.3 Evolution of constraint-based systems

Some of the earliest ideas leading to constraint programming may be found in the

Artificial Intelligence (AI) area of constraint satisfaction, dating back to the Sixties

and Seventies. The pioneering works on networks of constraints were motivated. by

problems arising in the field of picture processing (Montanari 1974). In these works,

constraints were explicitly represented as binary compatibility matrices and the goal

was to develop efficient polynomial algorithms that could discover incompatibilities

by looking at just a few constraints.

Waltz (1975) dealt with the scene labelling problem. The goal is to recognise the

objects in a 3D scene by interpreting lines in the 2D drawings. The types such as

54

convex (+), concave (), and occluding edges (<) are used for labelling. The main

algorithms developed were related to achieving some form of consistency.

Another application for constraints is interactive graphics where Ivan Sutherland's

Sketchpad (Sutherland 1963), developed in the early 1960s was the pioneering

system. ThingLab (Borning 1981) were interactive graphics applications that allowed

the user to draw and manipulate constrained geometric figures on the computer's

display. Table 13 summarises the discussion on the evolution of constraint-based

systems.

Table 13: Evolution of constraint-based systems

System/Field Researchers Aim/Characteristics

`network of constraints' Montanari (1974) Constraints were explicitly represented as binary

Scene labelling Waltz (1975) compatibility matrices; the goal was to develop
efficient polynomial algorithms for discovering
incompatibilities by examining constraints

Interactive graphics Sutherland (1963) Constraint as a declarative relation
Circuit modelling and diagnosis Borning (1981)

e. g. Sketchpad
Thin Lab
CONSTRAINT LOGIC- PROGRAMMING Algorithm = Logic + Control

CLP, CLP® Jaffar et al. (1987,1992) Logic programming as a kind of constraint
Prolog III Colmeraur (1990) programming
CHIP
ECLIPSE
Concurrent constraint programming Saraswat (1993) Saraswat (1992,93, and 95) and Gupta (1997)

Oz Smolka (1995) discusses abduction, concurrent logic, default CC,
AKL

Hermenengildo (1994) Timed CC for Concurrent constraint languages

CIAO

Constraint programming derives from logic programming, operational research, and

artificial intelligence. Logic programming offers the general non-deterministic host

language which accommodates dedicated constraint solvers from Operational

Research (OR) and Al such as linear programming or constraint satisfaction

techniques.

There are two main directions of approach to uncovering the mathematical content of

logic - model theory and proof theory (c. f. Figure 5). Model theory examines the

relationships between sentences of logic once associated with external domains, such

55

as truth-values. The vocabulary of elementary model theory employs such terms as

true, false, interpretation, satisfaction, model, implication, and semantic consequence.

Proof theory examines the relationships between sentences in terms of their

derivability from other sentences using rules, which operate only upon the structural

content of sentences. The vocabulary of elementary proof theory uses terms such as

axiom, inference, rule, theorem, proof, consistency, and syntactic consequence. Both

approaches are of value in understanding logic programming.

Logic programming is a computational formalism, which combines these two central

principles:

it uses logic to express knowledge.
It uses inference to manipulate knowledge.

The logic programming formalism adds a particular sort of control strategy in the

pursuit of efficient implementation to the kernel system (Figure 6)

clausal form logic + resolution

What does a logic program look like? - Simply a set of clauses describing relations,

as does the following example:

likes(indran, Anyone) if reads(Anyone, this
-

thesis)
reads(Anyone, this_thesis) if sensible(Anyone)
sensible(you)

56

Figure 5: The two views of logic

Figure 6: The essence of logic programming

Logic programming has the unique property that its semantics (operational and

declarative) are both simple and elegant and coincide in a natural way. These

semantics, however, have their limitations.

Firstly, the objects manipulated by a logic program are uninterpreted structures - the

set of all possible terms that can be formed from the functions and constants in a

given program. Equality only holds between those objects which are syntactically

identical. Every semantic object has to be explicitly coded into a term; this enforces

reasoning at a primitive level. Constraints on the other hand are used to implicitly

describe the relationship between such semantic objects. These objects often range

over such rich computation domains as integers, or reals.

Secondly, logic programming stems from its uniform but simple computation rule, a

depth first search procedure, resulting in a generate-and-test procedure with its well-

known performance problems for large-scale applications.

Constraint manipulation and propagation were studied in the Artificial Intelligence

community in the early 1970s and 1980s (Montanari 1974, Steele 1980, Mackworth

1986) to make search procedures more intelligent.

Constraint logic programming (CLP) is an attempt to overcome the limitations of

logic programming by enhancing it with constraint solving mechanisms. Strangely,

both of these limitations of logic programming can be lifted using "constraints".

However, each limitation is treated by a quite different notion of constraint. Hence

CLP has two complementary lines of descent:

57

First it descended from work that aimed at introducing richer data structures to a logic

programming system that allowed semantic objects, e. g. arithmetic expressions, to be

expressed and manipulated directly.

Secondly, CLP has been strongly influenced by the work on consistency techniques.

With the objective of improving the search behaviour of a logic programming system,

Gallaire (1985) advocated the use of these techniques in logic programming.

"Constraint and test" replaced the performance problems of the "generate and test"

method.

From a theoretical point of view the extension of logic programming to constraint

logic programming has been very useful. That, in turn, inspired development of

concurrent constraint languages (Saraswat 1993, Smolka 1995).

Van Hentenryck et al. (1996) discussed promising directions in constraint

programming. They are listed below:

More realistic constraint systems and languages: There is a necessity to develop

more automatic and systematic ways to acquire and model domain-specific and

problem-specific knowledge, developing a richer paradigm to cope with the properties

and uncertainties of real-world information.

Towards constraint-based distributed systems: Another challenge for constraint

programming systems is related to the role of such systems in network-wide

programming. Our research can be categorised within this direction in the sense that

we have explored how agents and constraints can be synthesised.

Towards faster, more efficient systems: While the performance and computing

resource economy of current CP systems has proved to be adequate in significant

industrial applications, competing very favourably with other techniques and

approaches, it appears that there still remain many avenues for improvement, which

would make the technology even more competitive.

58

Constraint databases: Many challenges in constraint databases are yet to be

addressed. Specific directions of work include constraint modelling, canonical forms

and algebrae; data models and query languages.

User interfaces: In user interface applications, there is a constant need for constraint

satisfaction algorithms that can handle a wider range of constraints that arise in such

applications, and algorithms and data structures with improved time and space

efficiency.

3.4 Justification for constraint-based systems, constraint-based
applications, and methodology

3.4.1 Justification for constraint-based systems

Constraints and agents have a potential synergy. On the one hand, agent behaviour,

for example, can be modelled as constraint satisfaction. Constraint computation

provides a general problem-solving framework. On the other hand, agents can be

used to accomplish constraint satisfaction to solve distributed scheduling problems

where agents are self-directed problem-solving entities.

Software agents can benefit by using constraint computation to improve the efficiency

of individual agent problem solving (Tambe 1996). They may assist in knowledge

acquisition (Freuder and Wallace 1997); or model the difficult issues of negotiation,

collaboration, and competition among agents with differing interests (Freuder and

Eaton 1997; Liu and Sycara 1994).

Constraint-based reasoning systems can be enhanced by using software agents to

improve performance by combining the expertise of multiple, heterogeneous problem

solvers (Petrie, Jeon, and Custosky 1997; Anderoli at al. 1997); improve solution

quality when the different interest of multiple agents is necessary (Freuder and Eaton

1997), and improve the performance of constraint-satisfaction methods by distributing

the problem over multiple agents (Petrie, Jean, Custosky 1997).

59

Restricts the values
Guides the search

Can be related to other fields

Specifies the relations
between entities

Checks the consi

Figure 7: The relevance of constraints for applications

Figure 7 depicts the relevance of constraints for applications.

3.4.2 Constraint-based applications

Various applications using constraints for modelling are discussed below:

Constraints as relations: The simplest formal model of a constraint is a relation.

Circuit verification: The idea is that complex systems can be broken down and can
be modelled in quite different ways -- into functional components, physical

components, causal sequences, etc. If the different models can be expressed in a

common, constraint-based formalism, then one can learn much from the interaction of

these different models. For the circuit verification, the different models - the

behavioural model and the functional model - should be equivalent.

Real-time control systems: Constraint programming is now being exploited for

building control software for eletro-mechanical systems with a finite number of
inputs, outputs, and internal states. Each component within a complex system is only

connected to a small part of the overall state of the system, and its behaviour can be

60

Can be a number, function. etc.

captured quite simply, but when the system is considered as a whole the number of

global states becomes very large.

Constrained objects: A typical constraint applicable to an object is to constrain a

property of the object. For example, a particular parking bay will not admit vehicles

of more than a certain dimension.

Constraint programming has been successfully applied to many different problem

areas as diverse as DNA structure analysis, time tabling for hospitals or industry

scheduling. CP proves itself to be well adapted to solving real-life problems because

many application domains evoke constraint description naturally.

Assignment problems were a type of industrial application that was solved using

constraint tools. Examples include stand allocation for airports, where aircraft must

be parked on the available stand during the stay at airports (Dincmas and Simonis

1991).

Personnel assignment problems are problems where work rules and regulations

impose difficult constraints. Examples include the Gynnaste system (Chan et al.

1998), developed for the production of rosters for nurses in hospitals, for crew

assignments to flights, or goods assignment in railway companies (Focacci et al.

1997).

Constraint-based software is used for well-activity scheduling (Johansen and Hasle,

1997), forest treatment scheduling (Adhikary et al, 1997), production scheduling in

the plastics industry (InSol), or for planning production of military and business jets

(Bellone et al, 1992).

Within the network management and configuration area, problems include planning

the capability of the telecommunication networks in buildings or electric power

network reconfiguration maintenance scheduling without disrupting customer services

(Creemers et a1.1995).

61

Recent applications include:

0 Computer graphics (expressing geometric coherence in the case of scene

analysis, drawing programs, user interfaces);

" Natural language processing (construction of efficient parsers);

" Database systems (to ensure and/or restore consistency of the data);

" Molecular biology (DNA sequencing, hypothetical reasoning);

" Business applications (option trading);

" Electrical engineering (to locate faults); and

" Circuit design (to compute layouts).

3.4.3 A constraint store and constraint types

The traditional model of a computer store admits only two possible states for a

variable: assigned or unassigned. Constraint programming uses an abstraction of this

model in the sense that a so-called constraint store can hold partial information about

a variable, expressed as constraints on the variable. Within such a model, an

unassigned variable can be seen as an unconstrained variable whereas an assigned

variable can be seen as maximally constrained in the sense that non-further non-

redundant constraints can be imposed on the variable, without introducing an

inconsistency.

Definition: A constraint store is a storage model, which admits primitive constraints

of a specific class. Each new primitive constraint that is added to the store is

automatically checked for consistency with the currently stored constraints.

The constraint store contains a constraint, and a named abstraction. Primitive

constraints are the constraints that can be kept in the constraint store. Within the

constraint store, constraints have the form variable = value. Constraints are formulae

of first-order predicate logic with equality.

The constraint store contains a conjunction of basic constraints up to logical

equivalence. An example for such a constraint is:

62

XEO#5AY=8AZe13#23.

The storage model applied by logic programming has a weakness that can be shown

by the following example. The equation x-3=y+4 is not applicable because logic

programming does not yield any meaning with - or + in such an equation.

Linear equations and inequations are examples of primitive constraints that are stored

in the constraint store. Further constraint stores can be built for different classes of

primitive constraints, by designing constraint solvers specifically for those classes-of

constraints. It is also possible to apply different constraint stores for different

problem solving.

The constraint on the constraint store is always satisfiable. It is said that a constraint

store entails a constraint Y if the implication 0-Y is valid. The constraint store is

consistent with a constraint Y if 0 and Y are satisfiable, where 0 is the constraint

stored on the constraint store. Elaboration of a constraint 0 checks whether 0 is

consistent with the constraint store.

A few constraints propagated to store by agents are as follows:

is {0,1,2}, x6 {2,3} Agent zena

js {2,3,4}, yE {0,1,2} Agent wendy

i+j <4, x+y=3 Agentceline

The constraint store hosts mainly basic constraints such as iE {0,1,2}, xE {2,3}, x=

y, and so on. Constraint propagators realise non-basic constraints such as x>y, 2*x

y=z. Propagators amplify the constraint store. This is elaborated by the following

figure 8:

2'x=y

ys {1,..., 10}

*X=Y

xc {1,.., s}
y E{1,..., 10}

Figure 8: Effects of propagators on the constraint store

63

The notion storage model is discussed instead of the data model, because the facility

of the constraint is independent of the choice of data model - object-oriented,

temporal etc.

The reasons for considering the concurrent constraint approach are as follows:

" Simple, powerful;

" Store-as-computation by von Neumann is replaced by store-as-valuation;

" Instead of reading and writing the values of variables, processes may now ask
(check if a constraint is entailed by the store) and tell (augment the store with

a new constraint); and

"A system of partial information.

In this section, various constraint domains are discussed.

Van Hentenryck et al. (1996) discusses a relatively small number of constraint

systems that have been used as a basis for several concrete implementations. The four

most important domains are Boolean constraints, finite domains, real intervals, and

linear constraints; other examples include lists and finite sets.

Boolean constraints are either treated by a specialised constraint solver, as in CHIP

or Prolog III, or seen as a specialised case of finite domain constraints. In the latter, a

Boolean constraint is considered as an integer between 0 (false) and 1 (true).

Finite domain constraints are constraints on integer valued variables. These

constraints are useful in many applications. Combining propagation techniques with

backtracking search usually solves them. Each variable is associated with a finite set

of possible values that are domain variables. Inconsistent values are removed from

the domain variable during propagation, and then the search tries to assign a value to

each variable.

Real interval constraints are the analogue of finite domains when reals are

considered instead of integers. As it is impossible to explicitly represent the set of

64

reals that a variable can take, the domain of a real variable is an interval whose

bounds are floating point numbers.

Linear constraints are constraints posted on real variables, which have a special

form: they only involve weighted sums of variables (no product or more complex

expressions). For such constraints, very efficient constraint solvers have been

implemented using the Simplex algorithm as a starting point. Some linear constraint

solvers use infinite precision (rational numbers), some others use floating point

computations.

Global constraints: The removal of inconsistent values can be tricky for more

complex constraints. An important line of work aims to define a good propagation

algorithm for more complex constraints. This is sometimes referred to as global

constraints. In this context, scheduling, all-different (a set of variables takes on values

that are all different), cardinality constraints (the number of constraints within a set

that must be satisfied is required to be within given lower and upper bounds), and

spatial constraints have been considered in detail in the literature.

User-defined constraints: It is found that from the application of CP tools in

practice, domain specific constraints are often needed. In other words, the user of

these systems often needs to extend the constraint system with some constraints that

are specific to the application in hand. Several approaches have been made for

making it possible for the user to add domain specific constraints to the system and to

tailor the underlying constraint solver to these specific constraints.

The constraints systems that are discussed have been integrated into different

programming languages, ranging from subsets of first order logic to imperative

languages such as C++, or even specialised languages. One of the most popular

approaches is to use Horn clauses as a basis (as in Prolog), and then extend this with

one or more constraint systems, in addition to unification over Herbrand terms. This

constraint logic programming approach has led to many important tools that are in the

following Table 14:

65

Table 14: Constraint programming tools

Tools Constraint systems
CLP © linear constraints
Prolog III Booleans, linear constraints, and lists
Oz Finite domains
CHIP Booleans, linear constraints, finite domains
Cl fd finite domains, Booleans

ECL'PSe finite domains. linear constraints

3.5 Towards a Constraint-based multi-Agent (CANET) approach

The aim of this section is to propose a framework called CANET (Constraint-haled

Multi-agent NETwork) to discuss various interactions. The architecture is based on a

higher level assumption that "everything is connected", and on two founding

premises: first, constraints are an ideal system for representing the many regularities

in agent activities; and second, constraints that guide searches, can he used to exploit

these regularities, and can focus the knowledge, resources, authority, and control

toward useful behaviour, planning, and interaction with other agents.

The proposed approach is a synthesis of constraints and agents for complex

applications. Figure 9 illustrates this. The behaviour of an agent and the interactions

are related to constraint-based mechanisms. Behaviour and interactions include

reactive, planning, co-operation, negotiation, task allocation, and social laws.

(onstraini
ý

Agent

Constraint-agent

Figure 9: Synthesis of constraints and agents

Within the proposed approach, agents interact via a constraint. Figure lt) depicts this.

The constraint store is elaborated in the previous chapter. Agents are able to release

various constraints to the constraint store. Various expressions are elaborated in that

manner. Constraint propagation allows various expressions to he processed.

constraint

p

66

Figure 10: Agents interact via a constraint store

The proposed architecture can be seen as a loosely connected architecture in the sense

that it allows a local constraint system for each agent. Figure 11 demonstrates this.

Moreover, there is also a shared constraint store for all agents. The architecture

enables specialised techniques to be associated with each agent to improve the

coherence of the system.

Agent gent

local

constraint
\

local
raint cons

tiýstem system

shared
constraint
system

(2Aýcn
nbp

local local

constraint
system

constraint
system

Figure 11: Outline of architecture for application

67

Communication in the architecture is asynchronous and can take place locally or

between agents, or between an agent and the common store. It involves passing

constraints, actions, partial plans and goals. Any number of agents can concurrently

interact with each other. Furthermore, due to the propagation of constraint systems, a

large quantity of computation can be expressed merely by passing constraints.

The proposed constraint-based multi-agent architecture subsumes an actor-based

paradigm. It replaces the message passing mechanism of an actor-based paradigm by

a constraint passing mechanism. The basic idea is that constraints are not value

assignments like the traditional von Neumann computing, rather they are spaces of

partial information. Such spaces can be reduced with more constraints.

This can be compared to a blackboard approach in that the set of agents co-operates

by sharing the common store -a common blackboard. However, unlike a blackboard

system, it is intended to eliminate the centralised controller by using a constraint-

based approach in the sense that the relation between entities may be loosened.

The approach can also be compared with the contract net approach in the sense that

the system contains a number of autonomous agents, which communicate through the

contract net protocol to perform co-operative tasks. As there is a knowledge

overhead, the proposed approach may consider the constraint-based approach in

allocating tasks, consideration of time and so on.

This system, based on constraint satisfaction, is efficient and concurrency may

increase the speed of computation. Since the system is loosely coupled, autonomy of

agents is achieved. As the system is distributed, it is much easier to develop and

manage various agents. This system is natural as some problems are better described

as collections of separate agents. The system deals with resource allocations in that

each agent has its own resource and there are also shared resources.

68

3.5.1 Proposed CANET agent

Within the proposed approach, CANET agents are seen as a knowledge-based system

with constraints. The behavioural and interaction capabilities are discussed in terms

of constraints. Capabilities such as co-operation, negotiation, task allocation, social

laws are treated in such a manner.

Constraints can be used for many purposes for CANET agents, the most significant of

which are their uses as guides, describing the structure of agent duties, and focusing

its efforts appropriately with regard to the structure. We now investigate the

structure, attributes, and types of constraints within the CANET framework.

Constraints can guide agent duties in three ways. First, a constraint may restrict the

agent by eliminating one or more implausible alternatives. Second, a constraint can

compel the agent towards a duty by support to alternatives that obey the constraint,

and finally, a constraint may have a number of relaxation associated with it, when a

constraint cannot be obeyed.

Constraints can serve as inhibitors of duty for CANET agents: constraints can inhibit

the agent from working with certain agents, performing certain behaviour. Constraints

may control the amount of effort spent on a duty. For example, the agent may restrict

the amount of time spent on the duty. Constraints can also be used to modify an

agent's routine based on current conditions within the environment.

Constraints can be used to represent the agent's expectations of the future that can be

represented as restrictions on a future world. Constraints can be used to compel the

agent to perform a certain duty. Constraints can represent the interactions between

duties or agents. Constraints can also be used to limit the recollection of agents and

the amount of information examined during the course of a duty.

Each constraint has a set of criteria under which the constraint is applicable. A

constraint may only be applicable in the presence of a certain agent, or when some

69

events occur. A constraint may be applied to a collection of agents. A constraint may
have a specific piece of knowledge on which it is explicitly dependent. Each

constraint has a specific lifetime during which it is active.

3.5.2 The structure of the proposed CANET agent

Below, an agent model for application is discussed in detail. The notion of the agent

is defined in terms of a knowledge base and a control unit. The main contribution of

the approach is the introduction that the behaviour of an agent and the interaction

between agents may be related to constraint-based mechanisms.

The layers in the proposed model are a negotiation/co-operation layer for multi-agent

interactions and a behaviour/planning layer for the agent to interact with its

environment.

Knowledge abstraction needed for describing the behaviour of agents and interaction

between them are planning, co-operation, negotiation, task allocation, and social laws.

The aim of various components is as follows. There is a co-operation layer that is

responsible for maintaining co-operation and to deal with joint plans in actual

interactions with other agents. Below the co-operation layer, the local planning

component is placed. It deals with the goals that an agent can achieve on its own.

Below this, the reactive layer deals with situations that require an immediate reaction.

Knowledge abstraction reflects the complexity of the real-world application

concerned. Therefore, not all the components need to be involved in real-world

problems. If the real-world problem requires an immediate response, then the

behaviour-based component deals with it (these are implemented as if-then rules).

However, if the problem is complex, the agent may need to shift to the planning

component. The planning component allows the achievement of goals from given

initial states. During the process, the knowledge about action interference and/or

hazards may be taken into consideration.

70

If one single agent cannot solve the problem, the task needs to be allocated to other

agents. Therefore, the agent needs to shift to the co-operation component. For the co-

operation process, agents may have preferences with which agents to co-operate.

In certain scenaria, not all the preferences need to be satisfied. In such situations, the

agent may need to negotiate with other agents. In such situations, we propose two

strategies: a preference for maximal constraints, and the sum of preferences.

Unlike a single agent-based architecture, each agent needs to react additionally to

changes resulting from interactions with other agents as well as to changes induced by

the external world. The external world can be seen as another agent, which can pass

constraints and occurred actions to other agents or to the shared system. The

difference is this agent is not negotiable. Its constraints are regarded as non-relaxable.

Within the CANET approach, belief, desire, goals and so on are treated as constraints.

The intention of an agent is seen as constraint satisfaction. Awareness of other agents

comes from interaction with others. Reactivity of an agent is treated as a constraint

that can itself be a rule. Pro-activity of an agent is treated as a constraint search that

involves satisfying various constraints.

71

Table 15: Synthesis of constraints and agents

Constraints Agents Constraints and Agents
There are precedence/resource Agents can have a unique Each agent is associated with
constraints, which can also be name, attributes, and constraints and the interactions

used in agent interactions. methods. between agents may be related to
constraint-based mechanisms.

Agent <name>
Constraints can be a number (attributes: Constraints can be used in agent
(integer, real)/ list of numbers/ Features: communications, and constraints
text strings/ and so on. methods: <set of behaviours can be used to co-ordinate the

planninglrulesi) activity of various agents.

Properties of an agent : Reactivity (behavioural) is seen as
Autonomy/social a constraint, and pro-activity
abilities/reactivity/pro- (planning) is treated as constraint
activity search.
(Wooldridge et al (1995)

Table 15 depicts the synthesis of constraints and agents for applications. Constraints

include precedence, resource, and so on. Properties of an agent include autonomy,

social ability, reactive, and pro-active.

3.5.3 Proposed interaction between CANET agents

Within the CANET approach, communication between agents is treated as constraint

passing. The contents of the communication can be a number, a list of elements,

various message types, partial information, or even a complex task.

The interaction of agents -a constraining behaviour - may itself be constrained. We

propose a constraint-based view of interaction that includes co-operation, negotiation,

task allocation and so on.

In table 16, characteristics of interaction and their loose definition and constraint-

based view of that interaction are tabulated. These will be elaborated in the next

chapter.

72

Table 16: A constraint-based view of CANET agent interactions

Characteristics Elaboration Mechanism
Communication Dissemination of information among agents Constraint passing
Co-operation Working together to achieve a common goal Constraint passing
Negotiation Reconciling the differences among agents Constraint relaxation
Co-ordination Bringing into a required or proper relation to

ensure effective operation or harmony
Constraint passing/
constraint satisfaction

Social law Agent society adopts a set of laws which specify
how individual should behave

Hard constraints

Task allocation Matching capabilities of agents and tasks Constraint satisfaction

Research is carried out on the synthesis of constraints and agents in one form or

another. These works tend to focus on either co-operation, or social law, and so on.

The proposed method unifies various methods in the sense that the constraint-agent

view is sufficient to treat various interactions. These works enhance our overall

hypothesis that the behaviour of an agent and the interactions between agents may be

related to constraint-based mechanisms.

In the preceding chapter, an overview of an agent is provided. In this chapter,

constraint-based techniques are addressed. Our aim is to synthesise them for

applications. Table 16 summarises a constraint-based view of behaviour and

interaction between agents. This will be elaborated in chapter 4.

3.5.4 Strengths and limitations of the CANET approach

The strength of the CANET approach lies in the fact that it deals with various

constraints. The approach synthesises constraints and agents. The agents interact via

a constraint store. Constraint solving is a better defined search strategy that can be

applied to solve complex problems. In addition, constraint-based techniques can be

applied in a situation where changes can be propagated along the network.

Propagation constraints are commonly called constraint agents. The behaviour of a

constraint agent is to propagate information to the underlying store. In this case, the

underlying store is a constraint; the information propagated is expressed as primitive

constraints.

73

The specific constraints associated with the message are usually derived from the

content of those messages and general principles of agent behaviour. Typical

examples of these principles are veracity (an agent must tell the truth), autonomy (an

agent may not constrain another agent to perform a service unless the other agent has

advised its willingness to accept such a request), and commitment (if an agent

advertises its willingness to perform a service, then it is obliged to perform that

service when asked to do so). All these general principles of agent behaviour are

known as the `mental state of the agent' (Shoham 1993).

Constraint agents in the literature are processes that involve a fixed set of variables.
During their lifetime they alternate between suspended and waking states. They are

woken from suspension when an extra primitive constraint on one or more of their

variables is recorded.

3.6 Related work

There are few works that put emphasis on constraints and agents. For example,

Freuder and Wallace (1997) describe a paradigm for content focused matchmaking

based on a recently proposed model for constraint acquisition-and-satisfaction.

Matchmaking agents are conceived as constraint-based solvers that interact with

others, providing potential solutions based on partial knowledge. Such a constraint

acquisition-and-satisfaction approach can also be incorporated into the CANET

approach.

Carlson et al. (1997) describe how global constraints and local agents can be

combined to control the overall behaviours of smart matter in a simple and robust

manner. Within the CANET approach, we discuss global constraints as social laws

for a society of agents.

Paredis (1994) introduced CCS, a co-evolutionary approach to constraint satisfaction.

Two types of objects - constraints and solutions - interact in a manner modelled after

predator and prey relations in nature.

74

Anderson (1995) examines the nature of everyday activities and develops a

computational architecture for an agent able to participate in such activities. He

presents a theory of improvisation to address everyday activities. He demonstrates

architecture embodying the improvisational approach based on the use of constraint-
directed reasoning.

Languenou et al. (1998) present a virtual cameraman which provides the user with

camera movements satisfying user defined constraints specified in the image space

and/or constraints on the objects of the scene.

3.7 Conclusion

In this chapter, the CANET architecture for complex application has been proposed.
Within this approach, each agent has a local constraint system, and agents interact via

a constraint store. We have proposed the structure of an agent, and agent interaction

on a constraint-based view. In the next chapter, we will discuss how the CANET

architecture can be implemented, and how CANET can be applied to logistics

applications.

75

4. System Design/ Implementation of constraint-based multi-
agent system, and applications

4.1 Motivation

The main aim of this chapter is twofold. First, we will discuss how the CANET

approach can be implemented. Agents are implemented as concurrent objects, and

multi-agents are implemented as concurrent objects under constraints.

Second, the proposed approach is applied to a transportation scenario. Our strategy is

as follows: firstly, we want to move away from the contract net approach due to its

limitations. However, we also extend the contract net approach to pass constraints
between each other. Secondly, we create a transportation scenario in which various

societal notions are related to constraint-based techniques.

4.2 Implementation of CANET

4.2.1 Objects to concurrent objects

The world in which we live is concurrent in the sense that there are multiple active

entities; distributed, meaning that there is a distance between entities that yields a

propagation delay in communication between them; and open, meaning that the

entities and their environments are always changing. Computation can be considered

as a simulation of part of the real or an imaginary world.

To solve a simple, small problem, sequential computing is usually sufficient.

However, when the problem becomes larger and more realistic, it is much easier to

model it as concurrent, distributed, or open computing. For example, if a system has

multiple users at a time such as in banking or airline reservation systems, one would

model the problem in the form of concurrent or distributed computing.

The notion of concurrent objects is an extremely valuable development. A concurrent

object contains a virtual processor. Here one can eliminate the notion of processes,

which is necessary in concurrent programming using sequential objects.

76

Programmers don't have to describe execution control. Concurrent objects are

executed in the same way as in time-sharing systems.

For complex applications, we need a higher level module than a concurrent object for

constructing larger systems.

4.2.2 Agent as 'concurrent objects' under constraints

An agent is composed of concurrent objects, in the same way as a person is composed

of cells living concurrently. An agent is the unit of individual software that interfaces

with humans, other agents, and the real world. Each agent has its own goal, and

reacts to its environment. The collections of agents form a society. Agent behaviour

and agent interaction are seen as constraints. The exchange of information is sent by

constraint passing. The knowledge layers are reflected by the Oz objects.

4.2.3 Multi-agents as concurrent objects, agent behaviours, agents interaction
as Constraint Satisfaction

Our approach is that a multi-agent system consists of a collection of agents, and can

be implemented as concurrent objects. The interaction between agents and the

behaviour of an agent are related to constraint-based techniques.

Objects are the primary concurrent structuring concept of Oz. They combine data

encapsulation through procedural abstraction with state and mutual exclusion.

Objects can be seen as service providing agents. The agent layer is a hierarchy of Oz

classes.

Consider an example of how to represent a Truck agent in Oz. The truck agent has

attributes such as step of movement, and state. The truck has a unique identification

that is represented as a feature in Oz. The Truck agent might have different

behavioural aspects such as reverse, move, and so on.

77

The representation of a class agent is as follows:

class Truck attr step: 3 state: off feat id

meth reverse
Step<-1*step

end.

The user can then create various instances of driver agents with specific id's.

Different agents can be represented in the above manner. The knowledge layers are

also implemented in the same manner.

The interactions between agents are represented as constraints. Suppose in a situation

where two goals of a truck agent (speedl, speed2) are the same. That is simply

represented as speedl= speed2.

4.3.4 Suitability of Oz language (now called Mozart system) for CANET
applications

The Mozart system provides state-of-art support in two areas: open distributed

programming, and constraint-based inference. Mozart implements Oz, a concurrent

object-oriented language with dataflow synchronisation.

4.3.4.1 About Oz

Oz is a concurrent object-oriented language. It is based on a new computation model
for higher order concurrent constraint programming (CCP) that provides a uniform
foundation for functional programming, constraint, and logic programming, and

concurrent objects with multiple inheritance. From functional languages, Oz inherits

full compositionality, and from logic languages, logic variables and constraints.

Oz supports a number of search strategies, and Oz is a good platform for adding new
kinds of search strategies. Searching in Oz is encapsulated and programmable, so it is

easy to program, e. g., one solution, best solution, all solutions, and branch and bound

strategies.

78

DFKI Oz is an interactive implementation of Oz featuring a programming interface

based on GNU Emacs, a concurrent browser, an object-oriented interface to Tcl/Tk,

with powerful interoperability features, an incremental compiler, and support for

stand-alone applications. Performance is competitive with commercial Prolog and

Lisp systems. Oz is designed as a successor to languages such as Lisp, Prolog, and
Smalltalk, which fail to support applications that require concurrency, reactivity, and

real-time control.

43.4.3 Why Oz?

To implement the CANET approach, we have chosen the Oz language. We will

explore various features of Oz in this section.

Oz is based on logic variables and fair concurrent control. Variables can be used

before they are assigned values, and multiple computations are advanced fairly. If a

computation requires the value of a not yet assigned variable, the computation

suspends automatically.

Oz can compute with variables whose values are only partially specified. Information

about the values of variables can be specified by means of constraints.

Oz comes with powerful predefined search abstractions, including depth-first one

solution, demand driven multiple solution, all solutions, and best solution (branch and

bound search).
x 11

Oz comes with powerful constraints for variables constrained to finite sets of non-

negative integers (so-called finite domain variables), including addition,

multiplication, and comparisons.

Objects are the primary concurrent structuring concept of Oz. They combine data

encapsulation through procedural abstraction with state and mutual exclusion. The

services of an agent are provided through methods and can be requested by sending

messages to the object. Objects are created as an instance of classes. Classes define

79

methods, attributes, and features. The definition of a class may involve inheritance of
the classes.

Oz is a higher-order language. Functions, procedures, objects, classes, methods, and

modules are created dynamically and are designated by first-class values, which may
be passed as arguments.

Oz is well suited for reactive programming with soft real-time requirements. Timers

and access to real-time are available. Control with time-outs is easily expressible.

A CANET agent is implemented as concurrent objects, and the behaviour and

interaction of an agent are implemented as constraints in Oz.

4342 Strengths and limitations of Oz/Mozart

The Mozart programming system is a general-purpose development platform

designed to support concurrency, distribution, resource-aware computation, and

symbolic computation and inferencing. Mozart implements Oz, providing the

abilities of constraint, logic languages. Current research in Mozart includes high-

level abstractions for fault tolerance, security, and implementations for devices with

restricted resources. The high level representation of Oz enables clean prototyping

because it frees the developer from low-level details.

Mozart/Oz system is an excellent tool for research and development of agent-based

systems due to the reasons discussed in the preceding section. However, we explore

below the limitations of the Oz language.

The Mozart system does not address issues like database connectivity, or web

enablement for industrial applications in its current form. Due to the difficulty in

implementing persistent objects, recovery from failures is currently not possible.

Oz does not provide a debugger that makes it difficult to trace during the

development. Oz is provided with an Emacs interface that has difficulties in moving
files.

80

Oz also does not provide a real-interval constraint system, but allows one to
implement interval constraints over real numbers.

4.3 Towards a constraint network formulation

4.3.1 Logistics scenario

In the last section, the CANET architecture for complex applications was proposed.

The CANET approach is based on the idea of the synthesis of constraints and agents

for complex applications.

The aim of this section is to demonstrate the relevance of the CANET approach, the

agent model and the interactions discussed in the previous section to a logistics

management problem. This would enable us to make a limited comparison with that

of Fischer and Kuhn (1993).

4.3.2 Logistics problem

Rittmann (1991) states that more than one third of the trucks in the streets of Europe

are driving without goods, since they are on the way to pick up goods or on their way

back home. This shows that the actual planning in the transportation domain is far

from satisfactory. Due to the distribution of knowledge, resources, authority, and

control, due to the complexity of worldwide technology, and due to environmental

and economical reasons, there is a, necessity for an agent framework for such

applications. Within such applications, various knowledge sources need to interact.

Interaction concepts such as co-operation, negotiation, task allocation, social laws and

so on are introduced. This interaction tends to reflect the agent's social abilities.

There are constraints such as precedence, resources, and so on, to consider.

In chapter 1, we discussed briefly the ̀ transportation problem', and discussed Fischer

and Kuhn's (1993) approach. We have argued that the contract net approach is a
highly regulated and ordered society of agents at successive levels of hierarchy having

less and less autonomy: this is more like a rigid structure with only a consideration to

cost rather than a society of companies involved in fierce competition. The

81

simulation does not address issues like preferences of drivers, specialisation of
drivers, and various conflicts, dynamic environments in which an agent may not

possess knowledge about other agents, and may have changeable goals, and be subject

to interruption from external events. We have also argued that within the completely

decentralised model, the manager is actually surplus to requirements.

4.3.3 The relevance of constraints, agents for logistics applications

Al/DAI approaches appear well suited to tackle such a scenario. First, there is the

complexity of the scheduling problem. Second, common-sense knowledge (e. g.,

topological, temporal, and expert knowledge) is necessary to tackle such problems.

Third, local knowledge about the capabilities of a Transportation Company as well as
knowledge about competitive companies massively influences the solutions.

4.4 CANET experiments

In this section, experiments have been carried out to satisfy our hypothesis that the

behaviour of an agent and the interaction between agents can be related to constraint-

based mechanisms. In Chapter 1, we have listed the limitations of Fischer and Kuhn's

(1993) approach. We will address most of the limitations within this section.

The scope of this scenario is extended to Fischer and Kuhn's (1993) in the following

manner. We simulate interaction between the similar agents (i. e. drivers), simulate

preferences, and external (dynamic) interaction.

Within the scenario, trucks move from one city to another to deliver goods. The

agents within such application have various reactive, reasoning, and social abilities.

The main objective of the experiment is to simulate the interaction between agents.

The agents that participate in the scenario are the broker, transportation companies,

driver, and truck agents. Constraint interactions are addressed. In particular,

constraint communication between agents is explored.

82

4.4.1 Constraint-based contract net, communication as constraint passing

Smith (1977) introduced the contract net approach. In a contract net, a certain task

may be given to a society of agents. A special agent, the manager, receives that task

and possibly divides it into subtasks. The manager then broadcasts to all eligible

agents. These eligible agents calculate the cost of performing the task and report to

the manager. The manager selects the best one and a deal is struck between them.

Communication between agents within the contract net is via message passing.

Within this section, an extended constraint-based contract net approach is firstly

presented for a transportation application. The approach differs from Fischer and

Kuhn in the sense that the communication variable is not just treated as variable but as

a constraint. That has interesting effects. For example, within the transportation

simulation, companies and drivers are able to communicate not just numbers, but a

constraint. Examples of communication include: Xcost = 105.5; Ycost=104; Zcost

='message'; Icost=[23 34 56]; and Jcost= {Min 23 34}, where Xcost, Ycost, Zcost,

Icost, and Jcost are the communication constraints.

The main objective of this experiment is to simulate constraint communication

between agents.

4.4.2 Social laws as hard constraints, co-operation, co-ordination as
constraint passing

The aim of the experiments is to explore horizontal interaction, social laws, co-

operation, and co-ordination. Unlike the contract net approach that was developed at

DFKI, there were no horizontal interactions between agents.

Within the following scenario, there are three trucks Ti, T2, and T3. The truck agents
move from one location to another. The aim is to co-ordinate/co-operate their

movements based on their individual speed, and their relative speeds. It is interesting

to note the idea of co-operation discussed in multi-agent systems, and co-ordination

discussed within Distributed Problem Solving (DPS), both constraints within the
CANET approach. By adding the constraints in a sequential manner, appropriate

83

behaviour is obtained. Within this scenario, external users can set the constraints. The

behaviours of agents are as follows: setSpeed, communication, and travel.

Adding the following three constraints allows the agents Ti, T2, and T3 to expect a

speed value X, Y, and Z to be provided:

{T1 setSpeed(X)}; {T2 setSpeed(Y)}; {T3 setSpeed(Z)}

Possible options are as follows:

X= 30; Y= 40; Z=50.

Adding the above constraints allows the truck to move in an autonomous manner.

In the following instructions, we demonstrate that it is possible to communicate

constraints:

{T3 communication(stop)l; {T2 communication (reverse)} ; {T1 communication (IMin 50 49

{T1 setSpeed(N1+N2)} N1=23 N2=34

In the following scenario, the agent's goals are co-ordinated/co-operated by

constraints:

Let the goals of Ti, T2, and T3 be X, Y, and Z respectively. The relationship

between goals are listed below:

(Ti setSpeed(X)}, {T2 setSpeed(Y)}(T3 setSpeed(Z)}; X= Y+Z; X=2*Y; X>: 45

We intend to remove the number of interactions such as co-operation by negotiation,

or by other means, by giving consideration to social laws. A law may be seen as a

rule of conduct put down by a controlling authority to a society of agents. Our

research interest lies in that of constraints to describe the phenomena. Social laws may

be addressed in very complex applications such as in a logistic management scenario.

84

We consider an example in which two Trucks agents may be present. Let them be Ti

and T2 and let us say that their movements may need to be co-ordinated:

{Ti speed (S1)}

{T2 speed (S2)}

The effect of the constraints is seen on the movements of trucks. Within the

experiment carried out, it is possible to select the trucks to double or halve their

speed, set different speeds to different trucks, give different speed limits on different

days and so on. It is possible to specify some incomplete information to the speeds

and so on. If the speed of T1 is twice of that of T2, then such constraint is described

below:

Si = 2*S2;

A user or a central authority can introduce social laws such as by adding a constraint

that SPEEDLIMIT <= 50, and assigning various goals of an agent such as S1 = S2

SPEEDLIMIT. Due to the propagation of constraints, the range of speed is forced to

less than 50. From a constraint-based point of view, social laws are implemented hard

constraints that cannot be relaxed.

Using trucks as agents, we have shown that it is possible to co-ordinate agents at the

same level, which demonstrates that agents at the same level may be co-ordinated by

a constraint based approach. The aim of this experiment is to achieve co-ordination

between agents at the same level, for example, in an existing framework such as a

contract net for horizontal co-operation.

The advantage is that one could simply accommodate horizontal co-operation

between agents. This has far reaching implications. Unlike the approach implemented

by Fisher and Kuhn for a transportation domain, one could consider not only

interaction between agents at different hierarchy levels but also between agents at the

same level.

85

4.4.3 Task allocations as constraint satisfaction

Consider the transportation domain that was discussed extensively by Fischer and

Kuhn (1993), stated as a contract net problem. We treat the problem as a problem

involving a group of agents organised through the extended contract net. Task

allocation between agents may be seen as matching capabilities of agents and tasks.

There are a number of trucks (T1, T2,..., T�), and a number of drivers (D1, D2, ..., Dm)

that can carry a range of goods, including animals and so on. These trucks belong to

different companies (Ama, Cala, Ola, etc.) and the drivers that drive the trucks have

also indicated a preference over when they would prefer to drive, morning or

afternoon etc. `Animals' can only be transported during the day, and `oil' can only be

shipped during the night, due to safety issues.

', -We intend to discuss the problem in terms of preferences rather than a centralised

mechanism. To demonstrate the approach, we started by listing the preferences of

agents in terms of constraints. For examples, certain trucks for certain goods, certain

drivers for certain goods, certain products at certain times and so on.

The overall aim is to consider all the constraints and allow a search strategy to satisfy

these. The result of the task allocation process is computed through a constraint

network. The aim of the experiment is to satisfy all constraints. This is achieved by

means of a constraint search mechanism.

The proposed approach is quite flexible in the sense that most constraints can be dealt

with. There is no fixed organisational structure required such as hierarchical or

decentralised. Due to the use of constraints, correctness is guaranteed theoretically.

There are trucks ranging from 1 to 5, where 1 is the first, and 5 is the last truck in the

order. There are 25 different properties, and each of these properties must hold for

exactly one truck. The aim is to assign values such that all constraints are satisfied.

Drivers = [D1, D2, D3, D4, and D5]

Company Names = [BAMA, CALA, OLA, AMA, PALA]

Time = [Morning, Evening, EarlyMorning, Afternoon, Night]

86

Goods = [Biological, Chemical, Oil, Animal]

Trucks = [Ti, T2, T3, T4, T5]

These and other constraints were coded as Oz instructions (see Table 17); these

constraints are important preliminaries for task allocation. A front end was written in

Oz, which allowed a user to describe his or her `transportation' requirements, and the

program computed the deployment of trucks. Drivers are scheduled according to

what time of day each of the trucks leave: in effect our constraint-based program

allocated tasks.

Table 17: Constraints and instructions in the task allocation process

Constraints Oz instructions
Certain goods can be carried at certain time Oil = Night
Oil may be transported at night, and biological Biological = Evening
may transported in evening
The preference and dislikes of agents Driver2 \= Night
Driver 2 does not want to work at night
possible conflict Truck2 \= Oil
Truck 2 should not be loaded with oil
Companies specialising in transporting certain Bama = Biological, Cala = Chemical, Ama =
goods Animals, Ola = Oil, Miscellaneous = Pala

Drivers specialist in driving with goods/ Dl = Oil, D2 = Ama

companies

Restrictions on the transit times of certain Or Morning = Animal [] EarlyMorning = Animal
products

Truck ordering Animal = Biological +1
The truck ordering can be in terms of goods they Chemical = Animal +1
carry Oil = Chemical +1

Physical = Oil +1
Options OR D5 = Ama -1 [] D5 = Ama +1
Driver 5 specifies a preference in a truck based

on truck orderirr

Figure 12 illustrates the results of the task allocation scenario.

87

Browser Buffer Navigate View

t. irne_n1 lrt: 4
trucks{

driver-1: 4
driver-2: 2
driver-3.5
driver-4: 3
driver-5: 1

goods-animal: 2

goods-biological: 1

goods-chemical: 3

goods-oil: 4

goods-physical: 5

name_ama: 2

name_bama: 1
name_cala: 3

name_ola: 4
name_pala: 5
time-afternoon: 5
time_earlymorning: 3
time-evening: 1
t1me_rýi_I nlrr_' 2

Figure 12: Result of task allocation simulation

The result of the simulation through a constraint network is depicted in the following
Table 18.

Table 18: The results of the task allocation

Truck f Driver # Goods om an Company- Time
1
2

5
2

Biological
Animal

Bama
Ama

I. '
Murrain

3 4 Chemical Cala Earl Murrain
4 1 Oil Ola Night
5 3 Miscellaneous Pala Afternoon

4.4.4 Constraints network and task scheduling

We have thus far argued about constraints that were descriptive in nature and static in

the way we specified these constraints. These included the preferences of a driver, the

kinds of goods that can be carried on some trucks (and not others) and at certain

specific times only. In a real world scenario such static descriptions have to he

augmented with considerations on how long it takes an agent to match the task to he

executed, as the agents may not have enough time to execute the task or may not he in

the right place to do so. Such problems, related as they are directly or indirectly to

88

reasoning about space and time, have to be solved by the so-called broker agents in a
contract net protocol society of agents. The use of the constraints network approach to

the problems of the availability of agents at the right time and in the right place can be

discussed much more transparently than, say, in a discussion of a contract net.

The following example is presented to illustrate how a group of agents may be

assigned a series of tasks, some of which may require the execution of certain pre-

requisites, where some or all of the tasks have to be executed within a time limit.

Consider three agents (dl, d2, ... d3) who amongst themselves have to perform

various tasks ({x1, ... } {yl,.. }...), each task taking a fixed amount of time to execute.

Furthermore, although there is no restriction on which of the tasks x, y, or z, has to be

executed first, the only constraint is that tasks are to be executed such that x1 is

executed before x2, and that x2 is executed before the x3 (similar arguments hold for

y and z). The following is the description of the duration of each task together with

the agent involved in the execution of the task.

Table 19: Distribution of tasks for three agents and the allowed time duration.
Recall that in addition to the time constraint, there are precedence constraints
such that xl should be executed before x2, and x2 should be executed before x3.

Agent Tasks Duration Predecessor
x1 3 x2, x3

dl x3 2 none
yl 3 y2, y3
Z2 2 z3

d2 x2 2 x3
y2 2 y3

d3 y3 5 none
Z1 3 z2, z3

L- I z3 4 none

The model introduces for each task a variable which stands for the start time of the

task. The end time of each task is its start time and duration. For the time origin, 0 is

assumed. The obvious upper bound is the sum of the duration of all tasks.

From the predecessor relation, it is possible to obtain precedence constraints. That

can be generalised as: Start. Pred + Dur. Pred =<: Start. Task

89

The problem specification which is a direct implementation of Table 19 is given
below to deliver goods:

Goods = goods(tasks: [xl(dur: 3 res: d1)

x3(dur: 2 res: dl)

yl(dur: 3 res: dl)

z2 (dur: 2 res: dl)

x2 (dur: 2 res: d2)

y2 (dur: 2 res: d2)

y3 (dur: 5 res: d2)

zl (dur: 3 res: d3)

z3 (dur: 4 res: d3)])

The scheduling program uses a procedure to compute duration and start records from

the specification satisfying all precedence constraints, and assigning start times. The

results of the scheduling between agents are shown in Fig 13.

dl

Agents d2

d3

35689 10 11 12 14
Time point

Figure 13: Task scheduling with consideration to time constraints

90

4.4.5 Negotiation as constraint relaxation for conflict resolution

We now consider an overconstrained problem for which it is impossible to satisfy all

constraints. The problem specification will distinguish between primary and

secondary constraints, and the goal is to find a solution that satisfies all primary

constraints and as many secondary constraints as possible.

4.4.5.1 A preference for maximal constraints

The following example is presented to demonstrate the approach of maximal

constraints satisfied. Consider five drivers C1, C2, C3, C4, and C5, which amongst

them have to co-operate to achieve tasks. Due to the nature of the business, each of

them is assigned to work with two drivers. However, drivers are allowed to specify as

many preferences of partners as possible. In this example, six preferences are given:

Preferences = [C1#C2, C3#C4, C4#C5, C5#C1, C2#C3, C1#C3]

Drivers = [Cl C2 C3 C4 C5]

Where C1#C2, C2#C3 states that Cl prefers to co-operate with C2 whereas C2

prefers to co-operate to C3.

The model has a variable Cp for every person, where p stands for the order p takes in

the drivers' alignment. Since there are exactly 5 persons, we have Cp s 1#5 for every

person p. We have Cp <> Cq for every p, q are different drivers. The model has a

variable Si c 0#1 for each of the 6 preferences, where Si =1 if and only if the ith

preference is satisfied. To express the constraint, we constrain the control variable S

of a preference "driver p wants to co-operate with driver q" by means of the reified

constraint:

(lCp-Cql =1 <-> S=1) A S£ 0#1

Finally, there is a variable Satisfaction = Si +... +S6 denoting the number of satisfied

preferences. We need to find a solution that maximises the value of satisfaction.

91

The result of the simulation is shown in Table 20. The best result is the satisfaction of
5 preferences, and the constraint C1#C3 (Cl wants to co-operate with C3) was not

satisfied.

Table 20: The result includes the number of preferences satisfied, the agents who
co-operate, and the constraints not satisfied

Preferences satisfied Agents to co-operate Constraints not satisfied
5 C1C2C3C4C5 C1#C3

Means
Cl with C2, C5
C2 with Cl, C3
C3 with C2, C4
C4 with C3, C5
C5 with C4, Cl

4 Cl C2 C3 C4 CS C5#Cl, C2#C3
Cl C3 C2 C4 C5 Cl#C2, C3#C4
C3 Cl C2 C5 C4 C2#C3 C5#Cl

4A. 5.2 The sum of preferences of agent

Unlike the previous approach, which is restrictive, we are assigning preferences for

agents or for constraints. The approach is preferences-based in the sense that either

the preferences of agents are all treated equally or agents themselves may be assigned

some preferences values and the maximum preferences can be preferred and so on.

The following example is presented to demonstrate the approach of the sum of

preferences of agents. Consider five drivers C1, C2, C3, C4, and CS who amongst

them have to co-operate to achieve tasks. As mentioned above, due to the nature of

the business, each of them is forced to work with two drivers. In this example, six

preferences are given:

Preferences = [C1#C2 C3#C4 C4#C5 C5#C1 C2#C3 C1#C3]

Drivers = [Cl C2 C3 C4 CS]

Attribute = [5 43 21]

Where C1#C2, C2#C3... states that Cl prefers to co-operate with C2 whereas C2

prefers to co-operate with C3.

92

However, unlike the previous strategy, the agents themselves are given certain

priority values that will be taken into consideration. The attributes of agent

preferences are listed in Table 21. There is a constraint that the maximum sum of

agent attributes should not be greater than 14.

The approach is similar to the previous approach but instead of calculating the

maximal satisfaction, we need to consider the sum of preferences of agents.

Table 21: The agent preference

Agent Preference attribute
Cl 5
C2 4
C3 3
C4 2
C5 1

The result of the simulation is shown in Table 22, where the first column describes the

number of preferences satisfied. The second column depicts the total preferences of

values assigned to agents. In the last column, the constraint satisfied with agent

preferences is listed.

Table 22: Conflict resolution using sum of preferences

Preferences satisfied Sum of agents Agents to co-operate Constraints and agent
preferences pre

5 15 C2 Cl CS C4 C3 C1#C2(5), C3#C4(3),
C4#C5(2), CS#C1(1),
C2#C3 4

4 15 C2 Cl C3 C4 C5 C1#C2(5), C1#C3(5),
C3#C4 3 C4#C5 2

12,1 15

4.5 Analysis of results

We have implemented CANET architecture to create a society of agents in Oz

language for a logistics application. We have implemented agents as concurrent

objects, and the multi-agent systems as concurrent objects under constraints. We have

carried out experiments to satisfy the approach using constraint-based methods to

93

ým

introduce an abstraction that can be used to articulate how the agents communicate,

co-operate, negotiate, and how social laws are to be introduced.

First, we have extended the contract net approach in which communication between

agents is implemented as constraint passing. That differs from the traditional message

passing of Fischer and Kuhn (1993) for the logistics application. Constraint

communication allows the agents to communicate partial information, numbers,

messages, range of values, and so on.

Second, we have simulated the agency within the logistics scenario in which co-

operation/co-ordination is treated as constraint passing. Negotiation is treated as

constraint relaxation. Social laws are treated as constraints. Task allocation between

agents is seen as constraint satisfaction. Task scheduling is also addressed with

consideration to time.

Based on the simulation, Tables 23 and 24 depict the behavioural and reasoning

capabilities of an agent for the transportation scenario.

Table 23: The behaviour capabilities of agents

Agents Reasoning
Broker agent AddCo getCos, remCo, addDriver, remDriver, addHazard,

remHazard, getTrucks, addTruck, remTruck, addMap,
announce, and so on.

Trans ortation companies finit, announce, addCity
Driver agent finit announce

. Trucks agent
Track a ent

finit move, toggle, route, change,...
AddHazard, remHazard

Mediator agent finit, potentialHazard

(Note that rem stands for `remove', and finit for `initiation')

94

Table 24: Agent reasoning

Agents Reasoning
Broker agent Decision making about contracts
Trans ortation companies Select the minimum priced drivers
Driver agent Plan to achieve goals
Trucks agent No reasoning
Mediator agent Decision making about path interferences via constraint

reasoning

Table 25 illustrates the agents, role, tasks, and methods used in the transportation
domain.

Table 25: The agents, role, tasks, methods used in the transportation domain

Agent(s) Task Method
Brokers Deliver tasks to in, add(companies),

companies rem(companies), get(companies),
Select minimum add(driver), rem(driver).
priced company

Companies Deliver tasks to announce, addcity, finit
drivers
Select minimum

riced drivers

Drivers Compute the cost for announce, init(Window), init(create
tasks. Plan, control of the truck, controller)
driver agents

Trucks init, drive move, route

95

Idgm

5. Conclusions and future directions

5.1 Introduction

We have set out the research problem in section 1.2. Chapter 2's literature review on
intelligent agents starts putting the pieces together towards understanding the current

state of the art, but shows that some research has to be done to discuss agent

interaction. Then chapters 3 and 4 describe the path to achieve the objectives. In this

chapter, we summarise the end of chapter 2 and explain our perspective.

This thesis has been concerned with the problem of tools for modelling and

simulation, and of the constraints at various levels of application. As described in

chapter 1, the requirement for tools is important, since not only does the interaction

between entities depend on various constraints but input-compute-output of `safe'

simulation has to be achieved. The approach presented in this thesis for investigating

the behaviour and interactions of agents has been to use a combination of agent-based

systems with constraint-based techniques to provide new insights to the modelling

and simulation. The aim of this work has been to use improved understanding of

agent behaviours and interactions to provide either a new technique for simulating

interactions or to improve upon methods of interaction.

5.2 Conclusions about research questions or hypothesis

In this section, we discuss findings for each research question summarised from

chapter 4 and explained within the context of this and prior research examined in

chapter 2; for example, with which of the researchers discussed in chapter 2 does this

research agree or disagree, and why? Disagreement suggests that the research is

making a contribution to knowledge.

5.2.1 Comparisons of CANET with Fischer and Kuhn (1993)

In section 1.3.4, we have discussed Fischer and Kuhn's approach for a transportation

application, and have identified various limitations. Now we will evaluate the

CANET approach for such scenarios.

96

The contract net approach is a highly regulated and ordered society of agents that does

not `reflect reality. It is difficult to accommodate various preferences of agents.

Within CANET, the structure is based on relations. Unlike the contract net approach

in which the manager has too much responsibility, the CANET approach puts

emphasis on satisfaction of constraints of agents.

Communication between agents tends to be message passing within the contract net

approach. That has limitations in passing partial information between agents. The

CANET approach, on the other hand, allows the agents to communicate partial

information in an incremental manner.

Co-operation/co-ordination between agents is via contract net with Fischer and Kuhn

(1993). That does not allow horizontal co-operation between trucks. We have

simulated a truck scenario, in which we have demonstrated that agents can be able to

co-operate by specifying constraints on goals.

Social laws are not addressed within Fischer and Kuhn's approach. Common laws

within multi-agent settings for solving problems are not addressed. That would

remove the necessity of hardcoding laws to different agents within the application.

We have simulated a scenario in which we have introduced social laws as constraints.

Task decomposition and allocation is also via contract net within Fischer and Kuhn's

approach. The manager always chooses the cheapest offer in selecting the agents.

The approach is very hierarchical. We have demonstrated task decomposition and

allocation as a constraint satisfaction problem.

Negotiation is addressed via contract net within Fischer and Kuhn's approach. Within

the simulation, negotiation is not really discussed in the sense that the manager always

selects the cheaper cost. There are no negotiations between the agents at the same

levels. We have demonstrated negotiation as constraint relaxation based on either

preference for maximal constraints, or sum of preference of agents.

Various constraints that are applicable such as precedence, resource, and temporal are

not addressed by Fischer and Kuhn. We have shown that task scheduling can be

97

carried out by giving considerations to constraints such as precedence, resource, and

temporal.

Learning and evolving of driver agents are not addressed. We have not carried out

experiments to explore learning, or the evolution of agents. However, we believe that

the constraint-based techniques can be used for learning and evolution.

The CANET approach is much easier to program for applications in the sense that the

agency is programmed simply as constraints. There are no hard coded approaches to

program various interactions. The CANET scripts are faster than Prolog's depth-first

search mechanism, and an efficient constraint search approach is used for planning,

and task allocation. The CANET approach provides an easier way to represent

knowledge as constraints, and the programs are, in general, very short.

We have demonstrated that the existing agent framework, such as a contract net, can

benefit from constraint passing in the sense that a traditional message passing

mechanism is replaced by constraint passing. The findings in section 4 confirm this.

The benefits of constraint-based approaches include no centralised control;

knowledge is easy to express, and correctness is guaranteed theoretically.

Table 26: Comparisons between the CANET approach and Fischer and Kuhn
(1993).

Properties Fischer and Kuhn's (1993) CANET approach
Communication Message passing Constraint passing
Co-o eration Co-ordination Contract Net Constraint propagation
Negotiation Contract Net Constraint relaxation
Task allocation Contract Net Constraint Satisfaction Problem
Social laws None Hard constraints

Table 26 shows the comparison between the proposed approach and Fisher and Kuhn

(1993).

98

5.2.2 CANET'Society of agents'

The CANET `Society of agents' are based on the assumption that is "Everything is

connected". The CANET agents are not organised in a hierarchical structure as in

contract net but based on relations to achieve a decentralised framework. Agents

communicate between each other not just via messages but also by constraints. That

allows the agent to communicate partial information in an incremental manner. The

behaviour of an agent may be constrained. The planning capability of an agent is seen

as constraint search. Co-operation is seen as constraint passing. Negotiation is

treated as constraint relaxation. External users may introduce certain social laws that

cannot be relaxed. Belief, knowledge, desire, and the goal of an agent are all treated

as constraints.

CANET agents are seen as fully committed to tasks. CANET agents are receptive to

external stimuli for unexpected scenarios, can plan to works complex goals, co-

operate and negotiate between each other, follow social laws. CANET agents may be

extended to include emotion (Bates 1990), learning, and evolution. Concerning

learning, the connection between neurons can be interpreted as constraints.

Concerning evolution, there are technologies such as Simulated annealing, and

Genetic algorithms within which cost function can be interpreted as constraints.

Concerning emotion, various states such as `happy' can be defined and treated as

constraints.

To address the limitations of deliberate and non-deliberate architectures discussed in

chapter 2, we have proposed the CANET approach that combines both reactive and

planning layers. The CANET approach may be seen as a hybrid approach.

However, the main criticisms of hybrid agents are that hybridism translates to ad hoc

or unprincipled designs; hybrid architectures tend to be application specific; and

theory that underpins hybrid system is not usually specified. The CANET approach is

achieved by using constraint logic as a underlying theory for agent behaviours, and

agent interactions.

99

In the DAI literature, various interactions are discussed such as co-operation,

negotiation, task allocation, and so on. Traditional research tends to focus on either

co-operation, or social law, and so on. Our view is that most of the interactions can

be related to constraint-based mechanisms, and an agent performs various interactions

at various circumstances. This facilitates in dealing with various interactions in the

sense that a constraint-agent approach may be seen as an umbrella term, and is

sufficient to simulate various interactions. The approach can be seen as unifying

various existing interaction strategies. The unification in addition allows one to

explore new areas such as self-organisation within an agent-constraint research map.

5.3 Conclusions about the research problem

In this section, the implications of our research towards further understanding of the

research problem are explored. This section examines qualitative research that was

not considered in the literature reviewed in chapter 2. The contribution of the

research to the body of knowledge is clearly expressed. In this section, we include a

summary listing of the contributions of the research together with justification. The

contribution to parent disciplines, and other disciplines is outlined in the following

section.

Our findings illustrate that the behaviour of an agent and the interactions between

agents can be related to constraint-based mechanisms.

A summary list of the contributions of the research is as follows: First, we have

provided a CANET (Constraint-based multi-Agent NETwork) approach for complex

applications. Second, we have presented various societal notions, and proposed a

constraint-based view of interactions. Third, we have extended the contract net

approach by incorporating constraint passing within the framework. Fourth, we have

presented in chapter 4a series of experimental results to demonstrate the behaviour of

an agent, and interactions can be related to constraint-based techniques for

applications.

100

5.4 Implications for the theory

In this section, the full picture of the research findings within the body of knowledge

is discussed. Theoretical implication of the research in its immediate field and wider

body of knowledge is discussed.

Based on the theory, the model discussed in chapter 2, which is contract net, needs to

be modified to be classified as a constraint-based contract net. Similarly, we argue

various existing approaches can be converted to constraint-based ones.

The CANET methodology for analysing complex applications is very appealing. The

approach is easy and can be applied widely. This CANET visualisation of modelling

and simulation is appealing and the representation and reasoning of an agent and

agent interactions are very efficient. The CANET approach allows one to simulate a

society of agents.

A transportation scenario was simulated. Within the scenario, various agents such as

broker, transportation companies, drivers, and trucks and so on, interact with each

other by means of communication, co-operation, task allocation, and so on to deliver

goods from one location to another. These interactions are based on constraint-based

techniques. The advantage of this approach is that within this application, behaviours

of an agent, such as scheduling, are related to constraint-based techniques.

Within the scenario, constraint communication was explored. This allows the agents

to communicate not only just numbers but lists of numbers, partial information,

programs, and so on. This agent interaction through a constraint store is also very

appealing. The intention of an agent is seen as propagating constraints to the store.

Constraints are also used to co-ordinate the activities of various agents. This allows

one to consider various constraints such as days, speed, and actions, planning and so

on to achieve common goals. This approach is relevant to real-time applications.

Agents in addition are required to express their preferences, dislikes and so on. The

approach models real-world situations with consideration to hazards and so on.

101

Constraint co-operation was explored. The idea was that the interactions between

various constraints filter out the solution. This can be applied in situations where

agents or experts interact between each other their knowledge, resources, authority,

and control.

5.5 Implications for further research

Notions such as learning, and emotion can be implemented in the CANET approach

in the sense that those concepts can be related to constraint-based techniques.

We started the thesis by talking about the simulation of complex physical systems.

We have highlighted the aspects of agency that might be simulated using a

constraints-based approach. Such an approach is of considerable use at two levels.

First, a model itself is an implicit statement of how parts of a physical system work

coherently with each other to manifest the phenomena they do. Therefore, the rules

for selecting the input of such a model may be expressed, for example, as plans, as

frames and so on.

Similarly, a constraint network can be used for a knowledge base that helps in the

interpretation of the output of the simulation: a constraint network can not only be

used for maintaining truth during the reasoning process but can also be used to guide

a novice user. Roughly similar arguments can be applied to the discussion about the

limits and scope of a given simulation model and how such things can be articulated

using constraints.

Second, components of a large simulation model can be regarded as expressions of

constraints within the real world. Again such constraints are implicitly described such

as the interaction of a number of data sets, simulation engines and so forth. A

constraints based approach can help in the articulation of the underlying dynamics of

the model through the explication of the constraints that exist between large

components of a given system.

As discussed in chapter 1.2, further research can be carried out to remove the

limitations. Merge and de-merge of agents from the field of business can be explored.

102

This allows agents to merge and de-merge with the situations. An experiment was

also carried out to see how the abilities of a society might be enhanced. A simulation

of a society of trucks showed this. The method is appealing in that it can include new

behaviours for agents to existing systems. This will continue as a research area for

the evolution of an agent. Further, finite domain constraint examples are provided.

There is a potential to incorporate research progress in the field of constraint

satisfaction and DA!.

The proposed approach has implications in the parent field of DAI. Knowledge

representation and reasoning in machines, theories of actions, search, planning, and

pattern recognition can be evaluated to a constraint-agent framework.

There are other implications in related fields:

0 Mathematics (differential equations, operational research problems can be

treated as a Constraint Satisfaction Problems, and agents can be used to co-

ordinate the computation of different topics);

" Physics (the conception of action, concept of constraint, distributed systems

such as multi-particle motion, gases, liquids, and magnetism);

" Philosophy (agency in philosophy of mind, functioning of the universe);

" Sociology (social interactions such as co-operation, negotiation);

" Economics (group behaviour);

" Psychology (emotion, cognition, social structures, and processes).

A concrete example of where we wish to use an agent-based simulation that is based

on constraints network is described.

The current research is part of the Safe-DIS project. The objective of the Safe-DIS

project is to emphasise the role of Information Systems in making safety-related

information available to design engineers in a timely and efficient manner.

103

The Safe-DIS workbench serves as a research development environment and as a

prototype of the final system. The tool allows access to one of the major simulation

networks in drainage, HYDROWORKS produced by Wallingford Software, and it

supplements textual knowledge by providing access to problem-specific engineering

knowledge within the corpus of texts that is relevant to the discipline.

The animation mechanisms have been developed under the Safe-DIS workbench (see

Figure 14); the latest version of which is the front-end to a machine-assisted

modelling facility, text analysis and management tools, with World Wide Web

connections to various water and safety related resources, and termbanks.

This research into agents may be applicable to Safe-DIS in the light of the many

diverse information sources which need to be managed during design, e. g. texts, rule-

bases, modelling tools, etc. The agents are useful in analysing the inputs from diverse

sources, in interpreting results, in helping the model building process, and so on.

Agents may be used in monitoring the values of parameters such as Tank level, which

then inform other agents, and/or trigger some actions. The potential candidate agents

are input analysis agents, result interpretation agents, model building agents, model

verification agents, textual agents and knowledge assistants.

104

Figure 14: Safe-DIS workbench

REFERENCES

Abelson, Harold., Sussman, Gerald, Jay & Sussman, Julie (1985). "Structure and
Interpretation of Computer Programs". Cambridge, MA: The MIT Press.

Adhikary, J., Hasle, G& Misund, G (1997). " Constraint Technology Applied to
Forest Treatment Scheduling". In Proc. of Practical Application of Constraint
Technology, (PACT97).

Agent Tcl, Transportable Agent System. http: //www. cs. dartmouth. edu/ agenttcl. html,
Computer Science Sept., Dartmouth University 1995.

Agre, P& Chapman, D (1987). "PENGI: An Implementation of a Theory of
Activity". In Proceedings of the 6th National Conference on Artificial Intelligence,
AAAI-87, Seattle, WA. pp. 268-272.

Agre, E, Philip (1995). "Computational Research on Interaction and Agency". In
Artificial Intelligence, 72 (1-2).

Ahmad, Khurshid (1995). "A Knowledge-based Approach to the Safe Design of
Distributed Networks". In (Eds.) Felix Redmill & Tom Anderson. Achievement and
Assurance of Safety (Proceedings of the Safety-critical Systems Symposium, Brighton
1995). London: Springer-Verlag Ltd. pp. 290-301.

Ahmad, Khurshid., Collingham, Steve., Salway, Andrew & Indrakumar, Selvaratnam
(1995). "SAFE-DIS Briefing". Issue No. 3, Internal report.

Allen, James, F (1982). "Planning Using a Temporal World Model". In International
Joint Conferences on Artificial Intelligence, IJCAI-83. pp. 741-747.

Allen, James, F (1984). "Towards a General Theory of Action and Time". Artificial
Intelligence, vol. 23(2). pp. 123-154.

Allen, James, F& Kooman (1983). "Planning Using a Temporal Possible World
Model". In International Joint Conference on Artificial Intelligence, IJCAI-83.

Allen, James, F& Perrault, C, R (1980). "Analysing Intention in Utterance". In
Artificial Intelligence. Vol. 15. pp. 143-178.

Anderoli, J-M., and Pareshi, R.; and Schlichter, J, H. (1995). "Constraint agents for
the information age". In J. Universal Computer Science 1(12): 762-789. Anderoli, J-
M et al (1997).

Anderoli, J-M et al. (1997). "Constraints and Agents for a Decentralised Network
Infrastructure". In AAAI-97 Workshop on Constraints and Agents, July 1997,
Providence, Rhode Island.

Anderson, John, Eric (1995). "Constraint-directed Improvisation for Everyday
Activities", A. D. thesis, Department of Computer Science, University of Manitoba.

105

Anke, Kay., Staudte, Rainer & Dilger, Werner (1997). "Producing and Improving
Time Tables by Means of Constraint and Multi-agent Systems". In AAAI-97
Workshop on Constraints andAgents, July 1997, Providence, Rhode Island.

Aparicio, G (1996). "IBM Intelligent Agents ". In FIPA Opening Forum Proceedings,
Yorktown, New York, 1996.

Appelt, D, E (1985). "Planning English Sentence", Cambridge University Press, New
York.

Appleby, S& Steward, S (1994). "Mobile Software Agents for Control in
Telecommunications Networks". In BT Technological Journal 12 (2), pp. 104-113,
April 1994.

Armstrong, Aaron & Durfee, Edmund (1997). "Dynamic prioritisation of complex
agents in distributed constraint satisfaction problems". In IJCAI-97 (Fifteenth
International Joint Conference on Artificial Intelligence), 1997.

Atkinson, Will & Cunningham, Jim (1990). "Proving Properties of a Safety Critical
System". In Research Report Doc. 90/28.

Avouris, N, M (1992). "User Interface Design for DAI applications: An Overview".
In (Eds.) Avouris, N, M& Gasser, L. Distributed Artificial Intelligence: Theory and
Praxis. pp. 141-161.

Axling, Tomas., Fahlen, Lenat & Haridi, Seif (1995). "Virtual Reality Programming
in Oz". In Proceedings of WOz'95, International Workshop on Oz Programming
Nov. 29 - Dec. 2), Martigny, Switzerland. pp. 17-24.

Baker, A, D (1996). "Metaphor or Reality: A case study where agents bid with actual
costs to schedule a factory". In (Eds.) Schott H., Market-based Control, Clearwater
World Scientific, pp. 184-223,1996.

Bamberger, K, Stefan (1997). "Co-operating diagnostic expert systems to solve
complex diagnosis tasks". In (Eds.) Ras, W, Zbigniew., and Skowron, Andrzej,
Foundations of Intelligent Systems, ISMIS'97, Lecture Notes in Artificial Intelligence.

Barbuceanu, Mihai (1997). "Co-ordinating agents by role based social constraints and
conversation plans". In AAAI-97 (Fourteenth National Conference on Artificial
Intelligence), IAAI-97, Providence, Rhode Island.

Barney, Pell., Douglas, E, Bernard & Steven, A, Chien (1996). "A Remote Agent
Prototype for Spacecraft Autonomy". In Proceedings of the SPIE Conference on
Optical Science engineering, and Instrumentation, 1996.

Barney, Pell., Douglas, E, Bernard & Steven, A, Chien (1997). " An Autonomous
Spacecraft Agent Prototype". In Proceedings of the First International Conference

on Autonomous Agents, Marina del Rey, CA 1997.

106

Bates, J (1994). `The Role of Emotion in Believable Agents". In Communications of
the ACM. Vol. 37(7). pp. 122-125.

Baujard, 0., Pesty, S& Garbay, C (1994). "MAPS: A Language for Multi-agent
Systems Design". In Expert Systems. Vol. 11(2).

Bellone, J., Chamard, A& Pradeless, C(1992). " PLANE :- An Evolutive Planning
System for Aircraft Production". In Proc. of Practical Application of Prolog
PAP92).

Bird, S, S (1993). "Towards a Taxonomy of Multi-agent Systems". In International
Journal of Man Machine Studies. Vol. 36. pp. 689-704.

Bond, Allen, H& Gasser, Les (1988). "An Analysis of Problems and Research in
DAP". In (Eds.) Readings in Distributed Artificial Intelligence. Los Angles: Morgan
Kaufmann.

Borning, Alan (1981). "The Programming Language Aspects of a ThingLab, a
Constraint-Oriented Simulation Laboratory", TOPLAS 3 (4), pp. 353-387,1981.

Borning, Alan., Freeman-Benson, Bjorn & Wilson, Molly (1992). "Constraint
Hierarchies, Lisp and Symbolic Computation". In An International Journal, 5,223-
270,1992.

Borning, Alan., Lin, Richard & Marriot, Kim (1997). "Constraints for the web". In
Electronic proceedings, November 8- 14,1997, Crowne Plaza Hotel, Seattle, USA.

Bradshaw, M, Jeffrey (1997). "An introduction in software agents". In (Eds.)
Bradshaw, M, Jeffrey in Software Agents, The MIT Press, 1997.

Bratman, M, E., Israel, D, J& Pollack, M, E (1988). "Plans and Resource-bounded
Practical Reasoning". In Computational Intelligence. Vol. (4). pp. 349-355.

Breitner, P. & Sadek, M. D (1996). "A rational agent as a kernel of a cooperative
dialogue system: Implementating a logical theory of interaction". In ECAI-96
Worshop on Agent Theories, Architectures, and languages. Springer-Verlag,
Heidelberg, Germany.

Brooks, Rodney, A (1986). "A Robust Layered Control System for a Mobile Robot".
In IEEE Journal of Robotics and Automation. Vol. RA -2(1), pp. 14-23,1986.

Brooks, Rodney, A (1991). "Intelligence without Representation". In Artificial
Intelligence, Vol. (47). pp. 139-159.

Brustolini, Jose, C (1991). "Autonomous Agents: Characterisation and
Requirements". In Carnegie Mellon Technical Report CMU-CS-91-204, Pittsburgh:
Carnegie Mellon University, 1991.

107

Caglayan, A., Snorrason, M., Jacoby, J., Mazzu, J. & Jones, R., (1996). "Lessons
from Open Sesame! A user interface learning agent". In Proceedings the First
International conference on the Practical Application of Intelligent Agents and Multi-
agent technology (PAAM 1996), London 22-24 April, pp. 61-74,1996.

Cammarata, S., McArthur, D& Steeb, R (1983). "Strategies of Co-operation in
Distributed Problem Solving". In Proc. International Joint Conference on AI, pp767-
770.

Chaib-draa., & Moulin, P (1987). "Architecture for Distributed Artificial Intelligent
Systems", IEEE Proceedings, Montreal, pp. 191-198,1991.

Chaib-draa, B., Moulin, B., Mandiau, R& Millot, P. (1996). "Chapter 1- Trends in
DAI", Foundations of Distributed Artificial Intelligence. In (Eds.) G. M. P. O'Hare and
N. R. Jennings John Wiley & Sons Inc, pp. 3-55,1996.

Chan, P., Heus, K& Weil, G (1998). " Nurse Scheduling with Global Constrainsta in
CHIP: GYMNASTE". In Proc of Practical Application of Constraint Technology
(PACT98), London, UK.

Chavez, A& Maes, P (1996). "Kasbah: An agent marketplace for buying and selling
goods". In Proceedings the First International conference on the Practical
Applications of Intelligent Agents and Multi-agent Technology (PAAM 96), London,
22-24 April, pp. 75-90,1996.

Chu, D (1993). "I. C. Prolog II: A Language for Implementing Multi-agent System".
In S. M. Deen, editor, Proceedings of the 1992 Workshop on Co-operating
Knowledge-based Systems (CKBS- 92). pp. 61-74. DAKE Centre, University of
Keele, UK, 1993.

Chess, David., Grosof, Benjamin., Harrison, Colin., Levine, David., Parris, Colin &
Tsudik, Gene (1995). "Itinerant Agents for Mobile Computing". In Technical Report
RC 2001, IBM T. J. Watson Research Center.

Coen, Nichael, D (1994). "Sodabot: A Software Agent Environment and Construction
System". In (Eds.) Yannis Labrou and Tim Finn, Proceedings of the CIKM Workshop
on Intelligent Information Agents, Third International Conference on Information and
Knowledge Management (CIKM 1994), Gaithetsburg, Maryland.

Cohen, R, Philip & Levesque, J, Hector (1997). "Communicative actions for artificial
agents". In (Eds.) Bradshaw, M, Jeffrey, Software Agents, The MIT press, 1997.

Collinot, Anne & Hayes-Roth, Barbara (1991). "Real-time performance on intelligent

autonomous agents". In (Eds.) Werner, Eric, and Demezeau, Yves in Decentralised
A13,1991.

Collis, Jaron.., Ndumu, Divine., Nwana, Hyancinth & Lee, Lyndon (1998). "The Zeus
Agent Building Tool-Kit". In BT Technology Journal 16(3), July 1998, p. 60-68.

108

Collis, Jaron & Lee, Lyndon (1998). "Building electronic marketplaces with the Zeus
agent tool-kit". In Proceedings of the Agent Mediated Electronic Trading (AMET)
Workshop, May 1998, p17-32.

Crabtree, Barry & Rhodes, Brad (1998). "Wearable computing and the remembrance
agent". In BT Technology Journal 16(3), July 1998, p118-124.

Creemers, T., Giralt, L. R., Riera, J., Ferrarons, C., Rocca, J& Corbella, X (1995).
"Constraint-Based Maintenance Scheduling on a Electric Power-Distribution
Network". In Proc. of Practical Application of Prolog (PAP95), Paris, France.

Cucchiara, R., Lamma, E., Mello, P& Milano, M (1997). "An interactive constraint-
based system for selective attention in visual system". In (Eds.) Breka, Gerhard.,
Habel, Christopher, and Nebel, Bernhard in KI 97: Advances in Artificial Intelligence,
21 S` Annual German Conference on Artificial Intelligence, Freiburg, Germany, 1997.

Dechter, Rina (1992). "Constraint Networks". In the Encyclopaedia of Artificial
Intelligence, second edition, Wiley & Sons, pp. 276-285.

Decker, Keith (1996). "TAEMS: A framework for environment centred analysis and
design of co-ordination mechanisms". In foundations of Distributed Artificial
Intelligence, Edited by G. M. P. O' Hare and Jennings, N, R, 1996, John Wiley & Sons,
Inc.

Decker, Keith., Sycara, Katia & Williamson, Mike (1997). "Middle-agents for the
Internet, IJCAI-97". In Fifteenth International Joint Conference on Artificial
Intelligence, 1997.

Dincbas, M& Simonis, H (1991). " APACHE -A Constraint Based, Automated
Stand Allocation Systems". In Proc. of Advanced Software Technology in Air
transport (ASTAIR91), London, UK.

Douglas, E, Bernard (1998). " Design of the Spacecraft Autonomy". In Proceedings
of IEEE Aerospace Conference, Snomass, CO, 1998.

Douglas, E, Bernard & Barney, Pell (1997). " Designed for Autonomy: Remote Agent
for the New Millenium Program". In Preceedings of the Fourth International
Symposium on Artificial Intelligence, Robotics, and Automation for Space (I-SAIRAS),
1997.

Durfee, Edmund, H (1992). "What Your Computer Really Needs to Know, You
Learned in Kindergarten". In Proceedings of the National Conference on Artificial
Intelligence. AAAI-92.

Durfee, E. H., Lesser, V, R& Corkill, D (1987). "Coherent Co-operation among
Communicating Problem Solvers". In IEEE Transactions on Computers C-36(11),
pp. 1275-1291,1987.

109

Durfee, Edmund H., Lesser, Victor R& Corhill, Daniel D. (1992). "Distributed
Problem Solving". In (Eds.) Stuart C. Shapiro The Encyclopaedia of Artificial
Intelligence (Part 1: A-C). New York: John-Wiley Interscience. pp 379-388.

Durfee, E. H& Montgomery, T, A., (1989). "MICE: A Flexible Testbed for
Intelligent Co-ordinatrion Experiments". In Proceedings of the 1989 Distributed
Artificial Intelligence Workshop, pp. 25-40,1989.

Eaton, Peggy., Freuder, Eugene & Wallace, Richard (1997). "Constraint-based
agents: Assistance, co-operation, compromise". In Internal report, Constraint
computation centre, University of New Hampshire.

Edmonds, Ernest, A., Candy, Linda., Joseph, Rachel & Soufi, Bassel (1994). "Support
for Collaborative Design: Agents and Emergence". In Communications of the ACM.
Vol. 37. pp. 41-47.

Eisinger, N., Elshshiewy, N& Pareshi, R (1991). "Distributed Artificial Intelligence -
An Overview". In Technical Report ECRC- 91.

Epharti, Eithan & Rosenchein, Jeffrey, S (1991). "The Clarke Tax as a Consensus
Mechanism among Automated Agents". In Proceedings of the National Conference

on Artificial Intelligence, AAAI- 91.

Epharti, Eithan & Rosenchein, Jeffrey, S (1992). "Constrained Intelligent Action:
Planning under the Influence of a Master Agent", In Proceedings of the national
Conference on Artificial Intelligence. AAAI-92.

Esquirol, Patrick., Fargier, Helene., Lopez, Pierre & Schieux, Thomas (1996).
"Constraint Programming". In Belgian Journal of Operational Research, Statistics,

and Computer Science, 1996.

Fennel, R, D& Lesser, V, R (1977). "Parallelism in Artificial Intelligence Problem
Solving :A Case Study of Hearsay II". In IEEE Transactions on Computers. Vol.
26(2).

Ferber, Jacques (1996). " Reactive Distributed Artificial Intelligence: Principles and
Applications". In (Eds.) O'Hare, G. M. P. & Jennings, N. R, Foundations of Distributed
Artificial Intelligence, John Wiley & Sons, 1996.

Ferber, Jacques & Drogoul, Alexis (1992). "Using Reactive Multi-Agent Systems in
Simulation and Problem Solving". In (Eds.) Avouris, N, M& Gasser, L. Distributed
Artificial Intelligence: Theory and Praxis, 1992.

Feigenbaum, E, A., McCorduck, P& Nii, H. P (1988). "The Rise of the Expert
Company", Times Books.

Ferguson, I, A (1992). "TouringMachines : An Architecture for Dynamic, Rational,

Mobile Agents", Ph. D. Thesis, Clare Hall, University of Cambridge, UK.

110
A

Finin, T& Fritzon, R (1994). "KQML -A Language and Protocol for Knowledge and
Information Exchange". In Proceedings of the 13th International Distributed
Artificial Intelligence Workshop, Seattle, WA. pp. 127-136.

Finnin, Tim., Labrou, Yannis & Mayfield, James (1997). "KQML as an agent
communication language". In (Eds.) Bradshaw, M, Jeffrey in Software Agents, The
MIT press, 1997.

Fikes, R, E& Nilsson, N (1971). "STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving". In Artificial Intelligence. Vol. 5(2).

Fischer, Klaus & Kuhn, Norbert (1993). "A DAI Approach to Modelling the
Transportation Domain". In Research Report RR-93-25.

Fischer, Michael (1994). "Representing and Executing Agent-Based Systems". In
(Eds.) Wooldridge & Jennings. ECAI 94 (European Conference on Artificial
Intelligence). Berlin: Springer-Verlag Ltd. pp. 307-323.

Fischer, Michael (1994). "A Survey of Concurrent METATEM - The language and its
applications". In (Eds.) Gabbay et al., Temporal Logic - Proceedings of the First
International Conference (LNAI Volume 827), pp. 480-505, Springer-Verlag.

Focacci, F., Lamma, E., Mello, P& Milano, M (1997). " Constraint Logic
Programming for the Crew Rostering Problem". In Proc. of Practical Application of
Constraint Technology (PRACT97), London, UK.

Fox, S, Mark (1994). ISIS: "A retrospective". In (Eds.) Morgan, B, Michael in
Intelligent Scheduling, Morgan Kaufman Publishers, Inc, pp. 3-29,1994.

Franklin, Stan & Graesser, Art (1996). "Is it an agent, or just a program?: A
Taxonomy for autonomous agents". In Proceedings of the Third International
Workshop on Agent theories, Architectures, and Languages, Springer-verlag.

Freeman-Benson, Bjorn, N (1993). " Converting an existing user interface to use
constraints". In Proceeding of UIST 93, Atlanta, Georgia, November 1993.

Freuder, E. C& Mackworth, A. K. (Eds.) (1994). "Constraint based reasoning".
Cambridge, MA: MIT Press.

Freuder, Eugene, & Eaton, Peggy, S (1997). "Compromise Strategies for Constraints
Agents". In AAAI-97 Workshop on Constraints and Agents, July 1997, Providence,
Rhode Island.

Freuder, Eugene & Wallace, Richard, J. (1997). "Suggestion strategies for constraint-
based matchmaker agents". In AAAI-97 Workshop on Constraints and Agents, July
1997, Providence, Rhode Island.

Fruhwirth, Thom., Harold, Alexander., Kuchenhoff, Volker., Provost, Thierry., Lim,
Pierre., Monfroy, Eric & Wallace, Mark (1992). "Constraint Logic Programming : An
informal introduction". In Internal Report ECRC-92-6i.

111

Gallaire, H (1985). "Logic Programming : Further developments". In IEEE
Symposium on Logic Programming. pp. 88-99, IEEE, Boston, July 1985.

Galliers, J. R. (1988). "A strategic framework for multi-agent cooperative dialogue".
In Proceedings of the Eighth European Conference on Artificial Intelligence (ECAI-
88), pp. 415-420,1988.

Galliers, J. R. (1988). "A Theoretical Framework for Computer Models of
Cooperative Dialogue, Acknowledging Multi-Agent Conflict", PhD thesis, Open
University.

Gallimore, J, R., Jennings, R, N., Lamba, S, H., Mason, L, C& Orenstein, J, B
(1999). "Co-operating Agents for 3D Scientific Data Interpretation". In IEEE Trans.
On Systems, Man and Cybernetics, Part C. 29 (1), p. 110-126.

Gasser, Les (1992). "An Overview of DAP. In (Eds.) Avouris, N, M& Gasser, Les.
Distributed Artificial Intelligence: Theory and Praxis. pp. 10-24.

Gasser, Les & Huhns, Michael, N (1989). Distributed Artificial Intelligence, Volume
II, San Mateo, California: Morgan Kaufmann Publishers, Inc.

Gasser, L., Rosenchein, J, S., & Ephrati, E (1995). "Introduction to Multi-agent
Systems". In Tutorial A Presented at the I" International conference on Multi-agent
Systems, San Franscisco, CA, June 1995.

Geneserth, Michel, R., Ginsburg, Matthew, L& Rosenchein, Jeffrey, S (1988). "Co-
operation without Communication". In Proceedings of the National Conference on
Artificial intelligence, AAAI-86. pp. 561-567.

Genesereth, M, R& Ketckpel, S, P. (1994). "Software Agents", Communications of
the ACM 37(7), pp. 48-53,1994.

Georgeoff, Michael (1983). "Communication and Interaction in Multi-agent
Planning". In Proceedings of the National Conference on Artificial Intelligence.
AAAI-83. pp. 125-129.

Georgeoff, Michael (1988). "A Theory of Action for Multi-agent Planning". In Bond
and Gasser (1988).

Georgeoff, Michael & Lansky, Amy (1987). "Reactive Reasoning and Planning". In
Proceedings of the National Conference on Artificial Intelligence, AAAI-87.

Ghanea-Hercock, Robert., Collis, Jaron & Ndumu, Divine (1999). "Co-operating
mobile agents for distributed parallel processing". In 3rd Int. Conference on
Autonomous Agents, Seattle, May 1999.

Gray, Robert, S (1995). "Agent Tel: A Transportable Agent System". In Internal
Report, Department of Computer Science, Dartmouth College, Hanover, New
Hampshire.

112

Guha, R, V& Lenat, D, B (1990). "CYC: A Mid Term Report", AI Magazine, pp32-
59,11(3).

f

Gupta, Vineet, Jagadeesam, Radha, and Saraswat, A, Vijay (1996). "Computing with
Continuous Change". In Science of Computer Programming, 1996.

Gupta, Vineet; Jagadeesam, Radha, and Saraswat, A, Vijay (1997). "Probabilistic
Concurrent Constraint Programming". In Proceedings of CONCUR 97, edited by
Mazurkiewicz and Winkowski, Sporinger Verlag 1997.

Gupta, Vineet., Jagadeesam, Radha., Saraswat, A, Vijay, and Bobrow, G, Danny
(1994). "Programming in Hybrid Constraint Languages". In Hybrid Systems
Workshop, Cornell, October 1994. Hybrid Systems II, LNCS 999, Springer Verlag.

Gupta, Vineet., Saraswat, A, Vijay and Struss, Peter (1995). "Modelling a
Photocopier Paper Path". In Proceedings of the Second IJCAI Workshop on
Engineering Problems for Qualitative Reasoning, Montreal, August 1995.

Gupta, Vineet & Struss, Peter (1995). "Modelling a Copier Paper Path :A Case Study
in Modelling Transportation Process". In Proceedings of the Ninth Qualitative
Reasoning Workshop, Amsterdam, May 1995.

Hanschke, Philipp (1993). "A declarative integration of terminological, constraint-
based, data-driven, and goal-directed reasoning", Research report, RR-93-46.

Haridi, S& Janson, S (1990). "Kernel andorra prolog and its computation model". In
Proc. International Conference on Logic Programming, pages 31-46. MIT Press,
1990.

Hatvany, J (1984). "Intelligence and Co-operation in Heterarchical Manufacturing
Systems". In The 16`h CIRP International Seminar on Manufacturing Systems
Proceedings, Tokyo, Japan, pp. 1-4,1984.

Hayes-Roth, F (1980). "Towards a Framework for Distributed AI ". In SIFART
Newsletter pp 51-52.

Henz, Martin & Wurtz, Jorg (1995). "Using Oz for College Timetabling". In
Proceedings of the 1995 International Conference on the Practice and Theory of
Automated Timetabling, Edinburgh, Scotland, 20 August-1 September.

Henz, Martin & Muller, Martin (1994). "Programming in Oz". In DFKI Or
documentation series, German Research Center for Artificial Intelligence.

Henz, Martin., Muller, Martin & Wolf, Markus (1995). "A Shell for Distributed
Multi-User Games". In Proceedings of WOz'95, International Workshop on Oz
Programming (Nov. 29 - Dec. 2), Martigny, Switzerland. pp. 63-64.

113

Henz, Martin., Smolka, Gert & Wuertz, Jorg (1993). "Oz -A Programming
Language for Multi-agent Systems". In International Joint Conference on Artificial
Intelligence, IJCAI-1993, Chambery, France, 28 August -3 September). pp. 404-409.

Henz, Martin., Smolka, Gert & Wuertz, Jorg (1995). "Object-oriented Concurrent
Constraint Programming in Oz". In (Eds.) V. Saraswat & P. van Hentenryck,
Principles and Practice of Constraint Programming, chapter 2, pages 29-48.
Cambridge: MIT press.

Hermenegildo, M and the CLIP group. (1994). "Some Methodical Issues in the
Design of CIAO -A Generic parallel Concurrent Constraint System". In Principles
and Practice of Constraint Programming, LNCS 874, pp. 123-133, Springer-Verlag,
May 1994.

Hermans, L& Sclimmer, J (1993). "A Machine Learning Apprentice for the
Completion of Repetitive Forms". In Proceedings of The 9`h IEEE Conference on
Artificial Intelligence Applications, Orlando, Florida: IEEE Press, pp. 164-170,1993.

Hewitt, C (1977). "Viewing Control Structures as a Pattern of Passing Messages". In
Artificial Intelligence. Vol. 8(3). pp. 323-364.

Huhns, M, N (1988). In (Eds.) Distributed Artificial Intelligence. Vol I. London:
Pitman Publishing.

Huhns, M, N. & Singh, M, P., (1994). "Distributed Artificial Intelligence for
Information Systems". In CKBS-94 Tutorial, University of Keele, UK, June 1994.

IBM Aglets, (1996). "IBM Aglets: Programming Mobile Agents in Java, A White
Paper", http: //www. ibm. co. jk/trllaglets/whitepaper. htm, IBM Tokyo Research
Laboratory, 1996.

Ishida, Toru (1997). "Parallel, distributed and multi-agent production systems". In
Lecture notes in Artificial Intelligence.

Jary, David & Jary, Julia (1991). Collins Dictionary of Sociology, Harper Collins
Publishers.

Jaffar, J& Lassez, J, L. (1987). "Constraint Logic Programming", In Proceedings of
the ACM Symposium on Principles of Programming Languages, ACM, 1987.

Jaffar, J., Michaylov, S., Stukey, P& Yap, R (1992). "The CLP® Language and
System". In ACM Transactions on Programming Languages and Systems, 1992.

Jennings, N, R (1995). "Agent Software". In Proc. UNICOM Seminar on Agent
Software, London, UK, pp. 12-27,1995.

Jennings, N, R (1995). "Co-ordination techniques for Distributed Al". In (Eds.)
G. M. P. O'Hare and N. R. Jennings, Foundations of Distributed Artificial Intelligence,
John Wiley & Sons, pp. 187-210,1995.

114

Jennings, N, R., Corera, J M., Laresgoiti, L., Mamdani, E., Perriollat, F., Skarek, P&
Varga, L(1995). "Using ARCHON to Develop Real-World DAI Applications for
Electricity Transportation and Particle Accelerator Control". In IEEE Expert, Special
Issue on Real World Applications of DAI systems.

Jennings, N, R& Mamdani, E, M (1992). "Using Joint Responsibility to Coordinate
Collaborative Problem Solving in Dynamic Environments". In Proceedings of the
National Conference on Artificial Intelligence. AAAI-92.

Jennings, Nicholas, R., Sycara, Katia & Wooldridge, Michael, (1998). "A Roadmap
of Agent Research and Development". In Autonomous Agents and Multi-agent
Systems, 1, pp. 275-306, Kluwer Academic Publishers, Boston, 1998.

Johansen, B. S & Hasle, G. " Well Activity Scheduling - An application of Constraint
Reasoning". In Proc. of Practical Applications of Constraint Technology (PACT97),
London, UK.

Keller, Richard., Rimon, Michal & Das, Aseem (1994). "A Knowledge-Based
Prototyping Environment for Scientific Modelling Software". In Automated Software
Engineering, Vol. 1 (No. 1, March 1994). pp. 79-128.

Kiss, George (1996). "Agent Dynamics", Foundations of Distributed Artificial
Intelligence. In (Eds.) G. M. P. O. 'Hare and N. R. Jennings, Hohn Wiley & Sons, 1996.

Kraus, Sarit (1997). "Negotiation and co-operation in multi-agent environments". In
Artificial Intelligence 94 (1997), p 79-97, Elsevier B. V.

Kraus, Sarit & Wilkenfield, Jonathan (1991). "The Function of Time in Cooperative
Negotiations". In Proceedings of the National Conference on Artificial Intelligence.
AAAI-91.

Kuchenoff, Volker (1991). "Novel Search Techniques". In ECRC report.

Kuchenhoff, Volker (1993). "Novel Search and Constraints - An Integration". In
Working paper ECRC-CORE-93-9 (European Computer-Industry Research Centre).

Kuipers, Benjamin (1994). "Qualitative reasoning : modelling and simulation with
incomplete knowledge". In Artificial Intelligence, MIT press (1994).

Kumar, Vipin (1992). "Algorithms for Constraint Satisfaction Problems :A Survey".
In AI Magazine 13 (1): 32-44,1992.

Labrou, Yannis & Finnin, Tim. (1997). "Semantics and conversations for an agent
communication language". In IJCAI-97 (Fifteenth International Joint Conference on
Artificial Intelligence), 1997.

Langlotz, C, P et al. (1987). "A Therapy Planning Architecture That Combines
Decision Theory and Artificial Intelligence Techniques". In Computers and
Biomedical Research. Vol. 20. pp. 279-303.

115

Languenou, Eric., Benhamou, Frederic., Goualard, Frederic & Christie, Marc (1998).
"The Virtual Cameraman: an Interval Constraint-based Approach". In Proceedings of
the Workshop "Constraint Techniques for Artistic Applications". August 1998,
Brighton.

Lee, Lyndon., Nwana, Hyancinth., Ndumu, Divine & De Wilde, Philip (1998). "The

stability, scalability, and performance of multi-agent systems". In B7TJ 16(3), July
1998, p94-103.

Lekkas, G& Liedekerke, M, Van (1992). "Prototyping Multi-agent Systems: A Case
Study". In (Eds.) Avoris, N, M& Gasser, Les. Distributed Artificial Intelligence:
Theory and praxis. pp. 129-140.

Lenat, D, B (1975). "BEINGS: Knowledge as Interacting Experts". In Proceedings of
International Joint Conference on Artificial Intelligence. IJCAI-75. Morgan
Kauffmann.

Lenat, D, B., and Feigenbaum, E, A (1991). "On the Thresholds of Knowledge". In
Artificial Intelligence, 47, pp 185-220.

Lesser, Victor R. & Corkill, Daniel G (1983). "Remote Agent: To Boldly Go Where
No AI System Has Gone Before". The Distributed Vehicle Monitoring Testbed: A
Tool for Investigating Distributed Problem Solving Networks. AT Magazine 4(3): 15-
33 (1983)

Levitt, R., Cohen, P., Kunz, J., Nass, C., Christiansen, T& Jin, Y (1994). "The
Virtual Design Team: Simulating How Organisational Structure and communication
Tools affect Team Performance". In (Eds.) Carley, K. & Prietula, M, Computational
Organisation Theory, San Francisco: Lawrence Erlbaum, pp. 67-91,1994.

Lingrad, Andy, R (1992). "A Comparison of Temporal Reasoning Strategies Used in
Planning". In Technical report, AR402, Department of Computing, Imperial College

of Science, Technology and Medicine.

Mackworth, A, K (1986). "Constraint Satisfaction". In Encyclopaedia of Artificial
Intelligence, 1986.

Maes, P (1991). "The Agent Network Architecture (ANA)". In SIGART Bulletin. Vol.
2(4). pp. 115-120.

Maes, P (1994). "Agents that Reduce Work and Information Overload". In
Communications of the ACM 37(7), pp. 31-40,1994.

Maes, P. (1995): "Artificial Life meets Entertainment: Interacting with Lifelike
Autonomous Agents". In Special Issue on New Horizons of Commercial and
Industrial Al, Communications of the ACM, Vol. 38, No. 11,1995.

Malone, T, W (1988). "Modeling Coordination in Organizations and Markets". In
Bond and Gasser (1988).

116

Marriott, Kim & Stuckey, J, Peter (1998). "Programming with constraints", MIT
Press, 1998.

Mauichi, Takeo., Ichikawa. Masaki & Tokoro, Mario (1991). "Modeling agents and
their groups". In (Eds.) Werner, Eric, and Demazeau, Yves, Decentralised A13,1991.

Mayfield, James., Labrou, Yannis & Finnin, Tim (1997). "Evaluation of KQML as an
agent communication language". In (Eds.) Wooldridge, Michael., Muller, P, Jorg, and
Tambe, Milind in Intelligent Agents II, IJCAI'95 Workshop (ATAL), Montreal, 1995.

McAllester, David (1992). "Constraint Satisfaction Search". In Lecture Notes for

6.824, Artificial Intelligence, 1992.

McCarthy, John (1986). "Applications of Circumscription to Formalizing Common-

sense Knowledge". In Artificial Intelligence. Vol. 28, pp. 89-116.

Mc. Cabe, F, G& Clark, K, L (1994). "APRIL - Agent process interaction language".
In Wooldridge & Jennings (1994).

Meutzelfeldt et al. (1986). "ECO- An Intelligent front end for ecological modelling".
In Society for Computer Simulation. Simulation Series 18(1). pp. 67-70.

Minsky, Marvin & Reicken, Doug (1994). "A Conversation with Marvin Minsky

about Agents". In Communications of the ACM. pp. 22-30.

Mitchell, T., Caruana, R., Freitag, D., mcDermott, J. & Zabowski, D. (1994).
"Experience with a Learning Personnel Assistant", Communications of the ACM 37
(7), pp. 81-91,1994.

Montanari, U (1974). "Network of Constraints : Fundamental properties and
applications to picture processing". In Information Science, 7(2): 95-132,1974.

Montanari, U& Rossi (1996). "Constraint solving and programming: What Next? ". In
ACM Computing Surveys 28 A (4), December 1996.

Moore, R (1985). "Semantical Considerations on Non-monotonic Logic". In AI
Journal. Vol. 25. pp. 75-94.

Muller, J, P& Pischel, M (1993). "The agent architecture INTERRAP: concept and
application". In Technical Research Report RR-93-26, German Artificial Centre for
Artificial Intelligence, Saabrucken.

Muller, J, P., Pischel, M& Thiel, Michael (1994). "Modeling a Reactive Behaviours
in Vertically Layered Agent Architectures". In (Eds.) Wooldridge and Jennings.
ECAI-94 (European Conference on Artificial Intelligence). Berlin: Springer-Verlag
Ltd. pp. 261-276.

Muller, Martin., Muller, Tobias & Van Roy, Peter (1995). "Multiparadigm

programming in Oz". In (Eds.) Donald Smith, Olivier, Ridoux, and Peter Van Roy,
"Visions for the Future of logic Programming: Laying the foundations for a Modern

117

Successor of Prolog", A workshop in association with ILPS"95, December 7,
Portland, Oregon.

Muller, Tobias and Wurtz, Jorg (1996). "Interfacing propagators with a concurrent
constraint language". In JICSL Post-conference Workshop and compulog Net Meeting
on Parallelism and Implementation Technology for (Constraint) Logic Programming
Languages, 1996.

Muscettola, Nicola., Nayak, P, Pandurang., Pell, Barney & Williams, Brian (1998).
"Artificial Intelligence" 103 (1-2): 5-48, August 1998.

Musliner, David & Boddy, Mark (1997). "Contract-based distributed scheduling for
distributed processing". In AAAI-97 Workshop on Constraints and Agents, July 1997,
Providence, Rhode Island.

Murthy, Seshahayee et al. (1997). "Agent-based co-operative scheduling", AAAI-97
Workshop on Constraints and Agents, July 1997, Providence, Rhode Island.

Nadoli, Gajanana & Beigel, John, E (1993). "Intelligent manufacturing-simulation
agents (IMSAT)". In ACM Transactions on Modelling and Computer Simulation.
Vol. 3(1). pp. 42-65.

Nayak, P, Pandurang (1999). "Validating the DS1 Remote Agent Experiment". In
Proceedings of the 5th International Symposium on Artificial Intelligence, Robotics

and Automation in Space, iSAIRAS-99.

Neches, R., Fikes, R., Finin, T., Gruber, T., Patil, R., Senator, T& Swartout, T
(1991). "Enabling Technology for Knowledge Sharing". In Al Magazine, pp36-56.

Nareyek, Alexander (1997). "Constraint-based Agents". In AAAI-97 Workshop on
Constraints and Agents, July 1997, Providence, Rhode Island.

Ndumu, Divine., Collis, Jaron, and Nwana, Hyancinth (1998). "Towards desktop

personal agents". In BT Technology Journal 16(3), July 1998, p. 69-78.

Ndumu, Divine & Nwana, Hyancinth (1997). "Research and development challenges
for agent-based systems". In IEE Proceedings on Software Engineering, 1997,
Volume 144, No. 01, January 1997.

Ndumu, Divine., Nwana, Hyancinth., Lee, Lyndon & Collis, Jaron (1999).
"Visualising and debugging distributed multi-agent systems". In 3'd int. Conference

on Autonomous Agents, Seattle, May 1999.

Ndumu, Divine., Nwana, Hyancinth., Lee, Lyndon & Haynes, Hayden (1999).
"Visualisation of distributed multi-agent systems". In Applied Artificial Intelligence
Journal, Vol. 13 (1), 1999, p187-208.

Ndumu, Divine, and Tah, Joseph (1998). "Agents in computer assisted collaborative
design". In Artificial Intelligence in Structural Engineering (LNAI No. 1454), May
1998, p249-270.

118

Nwana, H, S., (1993). "Simulating a Children's Playground in ABLE". In Working
Report, Department of Computer Science, Keele university, UK, 1993.

Nwana, S, Hyacinth (1996). "Software Agents : An Overview". In Knowledge
Engineering Review, Vol. 11, No. 3, pp. 205-244, October-November 1996.

Nwana (1998). "Zeus: A Collaborative Agents Tool Kit". In Abridged version of
Nwana et al. 1997, submitted to Autonomous Agents 1998, Minneapolis/St. Paul,
USA.

Nwana, H, S., Ndumu, D, T., & Lee, L, C (1997). "An Advanced Tool-Kit for
Engineering Distributed Multi-Agent Systems". In Consideration to the AA'98
Conference.

Nwana, Hyancinth & Ndumu, Divine (1999). "A perspective on software agents
research". In Knowledge Engineering Review, 1999.

Nwana, Hyancinth, Ndumu, Divine & Lee, Lyndon (1998). "ZEUS: An advanced
tool-kit for engineering distributed multi-agent systems". In Proceedings of
pAAM'98, London, March 98, p377-392.

Nwana, Hyancinth., Ndumu, Divine., Lee, Lyndon & Collis, Jaron (1999). "ZEUS: A

tool-kit for building distributed multi-agent systems". In Applied Artificial
Intelligence Journal, Vol 13 (1), 1999, p. 187-208.

Nwana, Hyancinth., Rosenchein, Sandholm., Sierra, Maes & Guttman (1998).
"Agent-mediated electronic commerce: issues, challenges, and some viewpoints". In
Proceedings of theAgents'98, Minneapolis, May 1998, p189-196.

O'Brien, P. & Wiegend, M (1996). "Agents of Change in Business Process
Management". In British telecommunications Technology Journal 14(4), pp. 1-24,
Oct 1996.

Obrst, Leo(1997). "Constraints and Agents in MADE-smart". In AAAI-97 Workshop

on Constraints and Agents, July 1997, Providence, Rhode Island.

Odyssey, Odyssey Frequently Asked Questions,
http: //www. genmagic. com/agents/odyssey-faq. html, General Magic Inc., 1997.

Ossowski, Sascha., Garcia-Serrano, Ana & Cuena, Jose (1998). "From theory to
practice in multi-agent system design: The case of structural co-operation". In (Eds.)
Herzog, Otthein, and Gunter, Andreas in KI-98, Advances in Artificial Intelligence.
22"d Annual German Conference on Artificial Intelligence, Bremen, Germany, 1998.

Pan, Jeff, Y-C & Tenenbaum, Jay, M (1992). "Towards an intelligent agent
framework for Enterprise Integration". In Knowledge Representation, KR-92.

119

Pape, Le, Claude (1994). "Scheduling as intelligent control of decision making and
constraint propagation". In (Eds.) Morgan, B, Michael in Intelligent Scheduling,
Morgan Kaufman Publishers, Inc, pp. 67-99,1994.

Paredis, Jan (1994). "Co-evolutionary constraint Satisfaction", In Proceedings of the
Third Conference on Parallel Problem Solving from Nature (PSPN 94), Lecture
Notes in computer Science, vol. 866. In (Eds.) Davidor, Y., Schwefel, H-P., Manner,
R. , Springer Verlag.

Parunak, H. Van Dyke (1996). "Case Grammar: A Linguistic Tool for Engineering
Agent-based Systems", http: //www. iti. org/-van, 1996.

Parunak, H, Van Dyke. (1996). "Applications of Distributed Artificial Intelligence in

Industry". In (Eds.) G, M, P, O'Hare and N. R. Jennings, Foundations of Distributed

Artificial Intelligence, John Wiley & Sons, pp. 139-163,1996.

Parunak, Van et al. (1997). "Distributed component centred design as agent-based
distributed constraint optimisation". In AAAI-97 Workshop on Constraints and
Agents, July 1997, Providence, Rhode Island.

Patridge, D (1987). "The Scope and limitations of Future Generation Expert
Systems". In Future Generations Computer Systems, Vo13.1, ppl-10.

Pell, Barney., Bernard, E, Douglas., Chien, A, Steven., Gat, Erran., Muscettalo,
Nicola., Nayak, P, Pandurak., Wagner, D, Michael & Williams, C, Brian (1998).
Autonomous Robots 5(1), 1998.

Pesant, Gilles (1995). "Une Approache Geometrique aux Contraintes Arithmetiques
Quadratiques en Programmation Logique avec Contraintes", Ph. D. thesis, Department
d'Informatique et de Recherche Operationnelle, Universite de Montreal.

Petrie, Charles., Jeon, Heecheol & Cutkosky, Mark (1997), "Combining Constraint
Propagation and Backtracking for Distributed Engineering". In AAAI 97 Workshop on
Constraint and Agents, 1997.

Platzner, Marco., Rinner, Bernhard & Weiss, Reinhold (1995). "Exploiting

paralleleism in constraint satisfaction for qualitative simulation ". In Journal of
Universal Computer Science, vol. 1, no. 12 (1995). p81-1120.

Plaunt, Christian., Rajan, Kanna., Pell, Barney & Muscettola, Nicola (1998).
"Integrated planning and execution for satellite tele-communications". In AAAJ 1998
Fall Symposium.

Poggi (1994). "DAISY: An Object-oriented System for Distributed Artificial
intelligence. In (Eds.) Wooldridge et al (1994), Intelligent Agents- Proceedings of the
1994 Workshop on Agent Theories, Architectures and Languages.

Pont, M. J & Moreole, E(1996). "Towards a Practical Methodology for Agent
Oriented Softwarte Engineering with C++ and Java". In Technical Report 96-33,
Department of Leicester University, Dec 1996.

120

Poole. D (1988). "A Logical Framework for Default Reasoning". In Al Journal. Vol.
36. pp. 27-47.

Popov, Konstantin (1995). "An Exercise in Concurrent Object-oriented Programming:
the Oz Browser". In Proceedings of WOz'95, International Workshop on Oz
Programming(Nov. 29 - Dec. 2), Martigny, Switzerland. pp. 101-108.

Pountain, Dick (1995). "Constraint Logic Programming". In BYTE Magazine,
McGraw-Hill, Inc, New York, NY.

Power, June (1990). "Towards a Framework for Self-organising Distributed
Systems". In Research Note RN/90/34.

Prigogine, Ilya & Stengers, Isabelle (1985). "Order Out of Chaos", Flamingo.

Reiter, R (1980). "A Logic for Default Reasoning". In Al Journal. Vol. 13. pp. 81-
132.

Rich, Elaine & Knight, Kevin (1991). Artificial Intelligence, McGraw-Hill, 2nd
edition.

Rittmann (1991). "Die Macht der Trucks". In Bild der Wissenschaft, 9, pp. 112-114,
1991.

Rosenchein, J, S& Geneserth, M, R (1992). "Deals among rational Agents". In
International Joint Conference on Artificial intelligence, IJCAI-92. pp. 91-99.

Rosinus, Michael., Muller, Jorg, P& Pischel, Markus (1995). "An Agent
Specification Language". In Proceedings of WOz'95, International Workshop on Oz
programming(Nov. 29 - Dec. 2), Martigny, Switzerland. pp. 35-44.

Roth. Al (1993). "Constraint Programming: A Practical Solution to Complex
Problems". mA! Expert. pp. 36-37.

Round, Alfred (1989). "Knowledge-based Simulation". In (Eds) Avon Barr, Paul, R,
Cohen and Edward A. Feigenbaum, The Handbook of Artificial Intelligence - Vol. IV.
(Chap XXII). Reading, MASS : Addisson Wesley Pub. Co. pp. 416-518.

Russell, Stuart, J., & Norvig, Peter (1995). "Artificial Intelligence: A Modern
Approach", Englewood, Cliffs, NJ: Prentice Hall, 1995.

Sabin, D., Sabin, M& Russell, R (1995). "A Constraint-based Approach to
Diagnosing Software Problems in Computer Networks". In Proceedings of the First
International Conference on Principles and Practice of Constraint Programming,
CP'95, U. Montanari, ed. Springer-Verlag.

Sabin, Mihaela et al. (1997). "Automated construction of constraint-based
diagnosticians". In AAAI-97 Workshop on Constraints and Agents, July 1997,
Providence, Rhode Island..

121

Sandholm, Tuomas & Lesser, Victor (1997). "Issues in automated negotiation and
electronic commerce: extending the contract net framework". In AAAI-97 Workshop

on Constraints andAgents, July 1997, Providence, Rhode Island.

Saraswat, A, Vijay (1992). "Concurrent Constraint Programming: A Brief Survey".
XEROX Parc Report.

Saraswat, A, Vijay (1993), "Concurrent Constraint Programming", MIT Press, 1993.

Saraswat, A, Vijay., Jagadeesam, Tadha, and Gupta, Vineet (1994). "Foundations of
Timed Concurrent Constraint Programming". Proceedings of the Ninth Annual IEEE
Sym on Logic in Computer Science, Paris, July 1994.

Saraswat, A, Vijay; Jagadeesam, Tadha, and Gupta, Vineet (1994). "Programming in

a Timed Concurremt Constraint Languages. Constraint Programming", Edited by
Mayoh, E Tougu, and J Penjam, Springer Verlag, 1994.

Saraswat, A, Vijay., Jagadeesam, Tadha & Gupta, Vineet (1995). "Timed Default
Cocurrent Constraint Programming". In Journal of Symbolic Computation, 1996.
Extended abstract published in Proc of the 22"d An. ACM SIGPLAN SIGACT Sym. on
the Principles of Prog. Lang., San Francisco, Jan 1995.

Saraswat, A, Vijay & Patrick Lincoln (1992). "Higher-order, linear, Concurrent
Constraint Programming". In Technical Report, Xerox PARC, 1992.

Saraswat, A, Vijay., Rinaed, Martin & Panangaden, Prakash (1991). "Semantic
Foundations of Concurrent Constraint Programming". In Proc. Of the 18`h Ann. ACM-
SIGPLAN-SIGACT Sym. On the Principles of Prog. Lang., Orlando, January 1991.

Schmeier, Sven & Schupeta, Achim (1995). "PASHA - Personal Assistant for
Scheduling Appointments". Proceedings of WOz'95, International Workshop on Oz
Programming(Nov. 29 - Dec. 2), Martigny, Switzerland. pp. 59-64.

Schulte, Christian (1994). "Open Programming in DFKI Oz". In DFKI
Documentation Series, German Research Centre for Artificial Intelligence(DFKI),
Saarbrucken, Germany.

Schulte, Christian & Smolka, Gert (1994). "Encapsulated Search for Higher-order
Concurrent Constraint Programming". In (Eds.) M. Brynooghe. Logic Programming,
Proceedings of the 1994 International Symposium. New York: The MIT press.

Schulte, Christian (1995). "An Oz Search Debugger". In Proceedings of WOz'95,
International Workshop on Oz Programming (Nov. 29 - Dec. 2), Martigny,
Switzerland. pp. 109-115.

Schulte, Christian., Smolka, Gert & Wurtz, Jorj (1998). "Finite Domain Constraint
Programming in Oz :A Tutorial". In DFKI OZ Documentation Series, February 12,
1998.

122

Schupeta, Achim (1992). "Main Topics of DAI: A Review". In DFKI German
Research Centre for Artificial Intelligence(DFKI), Saarbrucken, Germany.

Selig, L (1987). "An Expert System Using Numerical Simulation and Optimisation to
Find Particle Beam Line Errors". In Second Workshop on Al and Simulation. AAAI

conference, Seattle.

Seliger, G., Viehweger, B., Wieneke-Toutouai, B& Kommana, S, R. (1987).
"Knowledge-based Simulation of Flexible Manufacturing Systems". In Proceedings
of the Second European Simulation Multiconference, Vienna, Austria pp. 65-68.

Selvaratnam, Indrakumar (1993). "A Constraint-based Approach to Multi-agent
Planning and Scheduling", M. Sc. Dissertation. Dept. of Computer Science,
Imperial College of Science, Technology and Medicine, London, UK.

Selvaratnam, Indrakumar & Ahmad, Khurshid (1995). "Multi-agent Systems in
Modelling and Simulation". In Proceedings of WOz'95, International Workshop on
Oz Programming(Nov. 29 - Dec. 2), Martigny, Switzerland. pp. 1-15.

Selvaratnam, Indrakumar & Ahmad, Khurshid (1998). "Multi-agent Systems in
Modelling and Simulation". In Computing Sciences Report, University of Surrey, CS-
98-02..

Sheth, N. & Maes, P (1993). "Evolving Agents for Personalised Information
Filtering". In Proceedings of the 9`'` Conference on Artificial Intelligence for
Applications, pp. 113-121,1993.

Shevestov, I et al (1997). "Technology of active objects". In AAAI-97 Workshop on
Constraints and Agents, July 1997, Providence, Rhode Island.

Shoham, Yoav (1997). "An overview of agent-oriented programming". In (Eds.)
Bradshaw, M, Jeffrey in Software Agents, The MIT press, 1997.

Shoham, Y (1990). "Agent-oriented Programming". In Technical Report STAN-CS-
1335-90, Computer Science Department, Stanford University, Stanford, CA 94305.

Shoham, Y (1993). "Agent-oriented Programming". In Artificial Intelligence. Vol.
60 (1). pp. 51-92.

Shoham, Y& Tennenholtz, M (1992). "On the synthesis of useful social laws for Al
societies". In Proceedings of the National Conference on Artificial Intelligence.
AAAI-92. pp. 276-281.

Shoham, Yoav and Tennenholtz, Moshe (1997). "On the emergence of social
conventions: modelling, analysis, and simulations". In Artificial Intelligence 94
(1997), p 139-166.

Sloman, Aaron (1996). "What sort of architecture is required for a human-like
agent? ". In Cognitive Modelling Workshop, AAAI-96, Portland, Oregon, Aug. 1996.

123

Smith, D, C., Cypher, A& Spohrer, J., (1994). "KidSim: Programming Agents
Without a Programming Language". In Communications of the ACM, 37 (7), pp. 55-
67,1994.

Smith, Reid, G (1977). "The Contract Net: A Formalism for the Control of
Distributed Problem Solving". In International Joint Conference on Artificial
Intelligence, IJCAI.

Smolka, Gert (1993). "Residuation and
Programming". In (Eds.) F. Benhamou
Programming, MIT press, pp. 405 - 419.

Guarded Rules for Constraint Logic
& A. Colmerauer. Constraint Logic

Smolka, Gert (1995). "The Oz Programming Model", In Jan Van Leeuwan, editor,
Computer Sciences Today, number 1000 in LNCS, pp. 324-343, Springer-Verlag,
Berlin, 1995.

Smolka, Gert & Treinen, Ralf (1995). Editors in DFKI Documentation Series,
German Research Centre for Artificial Intelligence(DFKI), Saarbrucken, Germany.

Soltysiak, Stuart & Crabtree, Barry (1998). "Knowing me, knowing you: Practical
issues in the personalisation of agent technology". In Proceedings of PAAM'98,

London, March 1998, p377-392.

Steele, G. L. (1980). "The Definition and Implementation of a Computer
Programming Language Based on Constraints", PhD thesis, MIT

Steels, L. (1985). "Second Generation Expert Systems". In Future Generation
Computer Systems, Vol. 1,4, pp. 213-221.

Steels, L (1990). "Co-operation between Distributed Agents through Self-

organisation ". In (Eds.) Demazeau, Y& Muller, J, P., Decentralised AI - Proceedings

of the I' MAAMA W., Amsterdam: Elsevier, pp. 175-196,1990.

Steiner, D., Mahling, D& Haugeneder, H (1990). "Human Computer-supported
Cooperative Work". In Proceedings of the 10th International Workshop on
Distributed Artificial Intelligence. MCC Technical Report Nr. ACT-AI-335-90.

Stone, Peter & Veloso, Manuela (1997). "Multi-agent Systems: A Survey from a
Machine Learning Perspective ". In Under Review for Journal Publication, February
1997.

(Sun 1994). "The Java language: A White Paper". In Sun Microsystems White Paper,
Sun Microsystems.

Sutherland, I (1963). "Sketchpad: a Man-Machine Graphical Communication System.
In Proceedings of the IFIP Spring Joint Computer Conference, 1963.

Sycara, K, P (1988). "Resolving Goal Conflicts via Negotiation". In Proceedings of
the 7th National Conference on Artificial Intelligence, St. Paul, Minesota. pp. 245-
250.

124

Sycara, K, P (1989). " Multi-agent Comprise via Negotiation". In (Eds) Gasser and
Huhns. Distributed Artificial intelligence. San Mateo, California: Morgan Kaufmann.
Vol. II. pp. 119-137.

Tambe, M. (1996). "Teamwork in real-world, dynamic environments". In
International conference on multi-agent systems (ICMAS96) .

Tambe, Milind (1997). "Agent architectures for flexible, practical teamwork". In
AAAI-97 (Fourteenth' National Conference on Artificial Intelligence), IAAI-97,
Providence, Rhode Island.

Tambe, Milind (1997). "Implementing Agent Teams in Dynamic Multi-agent
Envirommnts", Extended version of "Teamwork in real-world dynamic

environments". In Proceedings of the International Conference on Multi-agent
Systems, (ICMAS), December 1996.

Telescript, Telescript Technology: The Foundation for the Electronic Marketplace,
http: //www. genmagic. com/TelescriptlR%itepapers/wpl/
whitepaper-l. html, General Magic Inc., 1996.

Thomas, S, R (1993). "PLACA- An Agent Oriented Programming Language", Ph. D.
Thesis, Computer Science Department, Stanford University, Stanford, CA 94305.

Tsang, E (1993). Foundations of constraint satisfaction. London: Academic Press.

Tulloch, Sara (1993). The Reader's Digest Oxford Wordfinder, Ckarendon Press,
Oxford.

Van Hentenryck, Pascal & Saraswat V. A. (1996) "Strategic Directions in Constraint
Programming". In Computing Surveys 28(4): 701-726.

Voyager, Voyager Technical Review,
http: //www. objectspace. com/voyagerlvoyager_white_papers. html, ObjectSpace Inc.,
1997.

Waltz, D. L. (1972). "Generating Semantic Descriptions from Drawings of Scenes
with Shadows", Ph. D. Thesis, Department of Electrical Engineering, Massechusetts
Institute of Technology.

Waltz, D, L (1975). "Understanding Line Drawings of Scenes with Shadows. In P.
Winston, editor, The Psychology of Computer Vision, McGraw-Hill, 1975.

Wavish, P. & Graham, M. (1994), "Roles, Skills and Behaviour". In (Eds.)
Wooldridge, M. & Jennings, N. (1995b), Intelligent Agents, Lecture Notes in
Artificial Intelligence 890, Heidelberg: Springer Verlag, 371-386.

Weerasooriya, D., Rao, A& Ramamohanara, K (1994). "Design of Concurrent
Agent-oriented Language". In (Eds.) Wooldridge & Jennings (1994). Intelligent

125

Agents - Proceedings of the 1994 Workshop of Agent Theories, Architectures and
Languages.

Werner, Eric (1991). "The design of multi-agent systems". In (Eds.) Werner, Eric, and
Demezeau, Yves in Decentralised A13,1991.

Werner, E (1988). "Cooperating Agents: A Unified Theory of Communication and
Social Structure". In Gasser, Les & Huhns, Michael, N (1987).

White, James, E. (1994) "Telescript technology: The Foundation for the Electronic
Marketplace". General Magic White Paper, General Magic, 1994.

Winston, Patrick, Henry (1992). Artificial Intelligence. Addison-Wesley, 3rd edition.

Wooldridge, Michael, J& Jennings, Nicholas, R (1994). "Intelligent Agents-Theories,
Architectures, and Languages: A Survey". In (Eds.) Wooldridge & Jennings. ECAI
94 (European Conference on Artificial Intelligence). Berlin: Springer-Verlag Ltd.
pp. 1-39.

Wooldridge, Michael., & Jennings, Nicholas, R (1995). "Agent Theories,
Architectures, and Languages: a Survey". In (Eds.)Wooldridge and Jennings
Intelligent Agents, Berlin: Springer-Verlag, pp. 1-22.

Wurtz, Jorg (1997). "Oz Scheduler: A Workbench for Scheduling Problems". In
Proceedings of the 6`h IEEE International Conference on Tools with Artificial
Intelligence, Nov 16-19,1996, IEEE Computer Society Press.

Yang, Q (1992). "A Theory of Conflict Resolution in Planning". In Artificial
Intelligence. Vol. 58.

Yonezeva (1990). (Eds.) ABCL - "An Object-oriented Concurrent System". The
MIT Press.

Yumi, Iwasaki., Farquhar, Adam., Bobrow, G, Daniel & Saraswat, A, Vijay (1995).
"Modeling Time in a Hybrid Systems: How Fast is Instaneous? ". Inp The
Proceedings of IJCAI 1995, Montreal, August 1995.

126

Figures and tables

Figure 1: Reactive architecture: Methodology ...
38

Fi crnre 2: INTF. RRAP architecture ...
39

Figure 3: Federated system ...
40

Figure 4: Constraint solving ...
53

Figure 5: The two views of logic
..

56

Figure 6: The essence of logic programming ...
57

Figure 7: The relevance of constraints for applications ..
60

Figure 8: Effects of propagators on the constraint store ...
63

Figure 9: Synthesis of constraints and agents ...
66

Figure 10: Agents interact via a constraint store ..
67

Figure 11: Outline of architecture for application ..
67

Figure 12: Result of task allocation simulation ..
88

Figure 13: Task scheduling with consideration to time constraints ..
90

Figure 14: Safe-DIS workbench ...
104

Table 1: Knowledge-based simulation system ..
9

Table 2: OOP versus AOP ..
14

Table 3: The agents, roles, tasks, and methods used in the transportation simulation (Note that rem
stands for remove, and finit for initiation)

...
19

.. Table 4: Evolution of agent-based systems 28
Table 5: Definitions of an agent ...

32
Table 6: Agent properties ...

33
Table 7: agent definition by composition ...

34
Table 8: Agent properties are classified into three: agent, agent-environment, and agent-agent centred

Table 9: Reactive architectures .. 38
Table 10: Agent-based commercial products ... 43
Table 11: Agent-based research products ... 44
Table 12: The table shows the effect of constraint propagation on three variables X, Y, Z within a set of

constraints, indicated by the attachment of subscripts, max and min, that range between 1 to 100.
Adding new constraints to the system causes the effects on values of the system shown below... 53

Table 13: Evolution of constraint-based systems ... 55
Table 14: Constraint programming tools .. 66
Table 15: Synthesis of constraints and agents .. 72
Table 16: A constraint-based view of CANET agent interactions

... 73
Table 17: Constraints and instructions in the task allocation process .. 87
Table 18: The results of the task allocation .. 88
Table 19: Distribution of tasks for three agents and the allowed time duration. Recall that in addition to

the time constraint, there are precedence constraints such that xl should be executed before x2,
and x2 should be executed before x3 .. 89

Table 20: The result includes the number of preferences satisfied, the agents who co-operate, and the
constraints not satisfied .. 92

Table 21: The agent preference .. 93
Table 22: Conflict resolution using sum of preferences ... 93
Table 23: The behaviour capabilities of agents .. 94
Table 24: Agent reasoning ...

95
Table 25: The agents, role, tasks, methods used in the transportation domain 95
Table 26: Comparisons between the CANET approach and Fischer and Kuhn (1993) 98

127

