
978-1-4244-1653-0/08/$25.00 ©2008 IEEE ISWPC 2008

(Protected Routing)

(Protected Communication)

Personal Node
Foreign Node
Direct Connection
Inter-Cluster Tunnels

Personal Network

 Cluster of
Personal Nodes

CPFP: An Efficient Key Management Scheme for
Large Scale Personal Networks

Shahab Mirzadeh, Rahim Tafazolli
Centre for Communication Systems Research (CCSR)

University of Surrey
Guildford, UK

{S.Mirzadeh, R.Tafazolli}@surrey.ac.uk

Frederik Armknecht
Chair for System Security
Ruhr-University Bochum

Bochum, Germany
frederik.armknecht@trust.rub.de

 Jordi Jaen Pallares
FOKUS Fraunhofer-Institute

Berlin, Germany
jordi.jaen.pallares@fokus.fraunhofer.de

Hossam Afifi
Institut National des Télécommunications (INT)

Evry cedex, France
hossam.afifi@int-evry.fr

Abstract— This paper provides an efficient key management
scheme for large scale personal networks (PN) and introduces the
Certified PN Formation Protocol (CPFP) based on a personal
public key infrastructure (personal PKI) concept and Elliptic
Curve Cryptography (ECC) techniques.

Keywords—certified PN formation protocol (CPFP), key
management, personal networks (PN)

I. INTRODUCTION
The concept of Personal Networks (PNs) was introduced

and studied during the IST-MAGNET project [1]. Fig. 1
depicts its communication architecture which consists on the
one hand of a dynamic collection of personal nodes and devices
around a user (Private Personal Area Network or P-PAN) and
on the other hand of remote personal nodes and devices in
different clusters (home cluster, office cluster, car cluster…)
that are connected to each other through an infrastructure or ad
hoc networks.

Security and privacy are one of the major concerns in the
development and acceptance of PN technologies. For this
purpose, well-established cryptography to protect the integrity
and confidentiality of the data should be used as much as
possible. Symmetric key algorithms like the 128-bit Advanced
Encryption Standard (AES) are expected to provide strong
protection beyond the year 2031 [3]. However, the use of AES
requires the establishment of shared keying material in
advance.

With lack of permanent access to a common trusted third
party in PN environments and also user unwillingness to
delegate her trust to a centralized entity outside her personal
territory, classical network security mechanisms based on the
conventional public key infrastructure (PKI) and certificate
authorities (CA) cannot be directly applied to the PN. In
MAGNET phase 1, a key agreement protocol based on an
authenticated Diffie-Hellman (DH) protocol, named PN
Formation Protocol (PFP), was developed, which fulfills the
security needs of small networks [4]. In this paper, we

introduce a new key agreement protocol based on a personal
public key infrastructure (Personal PKI) [5] and Elliptic Curve
Cryptography (ECC), which is scalable to larger PNs and
provides an enhanced level of authentication and non-
repudiation with ease of key revocation and key update.

II. CERTIFIED PN FORMATION PROTOCOL (CPFP)
CPFP is based on a personal public key infrastructure

(Personal PKI) in which instead of global certificates issued by
a trusted third party, the local certificates issued by the PN
certificate authority (PNCA) will be applied. CPFP has two
different stages. In the first stage, all PN devices get
imprinted with the PNCA i.e., establish the PNCA signature
public key as the PN root key and get a certificate on their own
long term Diffie-Hellman public key. In the second stage, PN
nodes use their certificates to authenticate each other and
establish pairwise keys based on the Elliptic Curve Menezes-
Qu-Vanstone (ECMQV) [6] protocol.

The ECMQV is the elliptic curve variant of MQV [7] key
establishment protocol which is incorporated in the public key
standard IEEE P1363 and is based on two sets (public and

Figure 1. PN Communication Architecture [2]

744
Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 09:34:38 UTC from IEEE Xplore. Restrictions apply.

Accept/Reject

PNCA
T: ECDSA Signature Public Key
t: ECDSA Signature Private Key

(T=tG)

Device A
WA: Long Term ECDH Public Key
wA: Long Term ECDH Private Key

(WA=wAG)

T
WA

HASH(T||WA)

Accept/Reject

b) Imprinting over Public PAC

Insecure
Wireless
Channel

Public
PAC

PNCA
T: ECDSA Signature Public Key
t: ECDSA Signature Private Key

(T=tG)

Device A
WA: Long Term ECDH Public Key
wA: Long Term ECDH Private Key

(WA=wAG)

T
WA

K, MAC(K,T||WA) K, MAC(K,T||WA)

Accept/Reject Accept/Reject

Insecure
Wireless
Channel

Private
PAC

a) Imprinting over private PAC

private) of long term (static) and ephemeral (dynamic) Elliptic
Curve Diffie-Hellman (ECDH) keys. As a prerequisite in
ECMQV, peers should a priori possess authenticated copies of
each other’s long term public keys which will be done through
the issued certificates within the first stage of CPFP.

A. CPFP Stage 1 – Initializing and imprinting with PNCA
PN security depends on the security of the imprinting

procedure which is subject to the following assumptions:

• The user is in full control of the imprinting procedure
and determines when and how new devices get
imprinted with PNCA and taken as members of her
PN.

• The personal devices share two different
communication interfaces with PNCA including
Proximity Authenticated Channel (PAC) and usual
(insecure) wireless communication channel.

A proximity authenticated channel is a communication
interface between two devices, which is authenticated by
physical means of user. Typically, proximity authentication is
performed by touching the device, or by reading from or
entering to a device’s interface. We distinguish between two
types of PAC channels, private and public PAC channels, with
respect to the level of security the PAC channel can provide. A
private PAC channel provides authenticity, integrity and
confidentiality, while a public PAC channels provide
authenticity and integrity only.

A typical example of a private PAC channel is realized by a
user, who reads an alphanumeric string from the display of one
device and then enters it to the other device using the keypad.
Clearly such a channel sets some limits to the length of the
string that can be transferred from one device to another, e.g.,
typically 32-40 bits, which is feasible to be transferred using
devices’ user interfaces by the user. Typical realizations of
public PAC are RFID tags, Infrared communication, and public
displays on the devices (such as an overhead display over a
cashier, printer, or network access point [8]). If the PAC is
public, the protocol requires that at least 160 bits of information
can be transferred over it.

The user starts CPFP by choosing one device with keypad
and display as the PN certificate authority (PNCA) and
imprints all PN devices with it. The PNCA initializes itself
with the generation of a pair of public and private ECDSA
(Elliptic Curve Digital Signature Algorithm) signature keys and
other PN components initialize themselves with the generation
of their long term ECDH public and private keys. The
parameters are based on a fixed elliptic curve with standardized
coefficients e.g. P-192 recommended by NIST.

PNCA and PN components exchange their public keys
(signature and long term) over the insecure wireless channel
and the user authenticates the procedure with help of the
complementary PAC channel. The outcome of this stage is that
the PNCA issues certificates for the long term public key of
each paired component which can be at the same time verified
by all PN components. Based on the used PAC, there are two
different procedures for this stage of the protocol:

1) Imprinting over Private PAC
In this version of the protocol, after the public keys are

exchanged over the insecure wireless channel, the PNCA
generates a key K which is suitable to be used in a Message
Authentication Code (MAC) function which is shared by all
PN components. Using this key K, the PNCA computes a
MAC of the exchanged public keys. Both the key K and the
MAC value should be feasible to be transferred by the user
interfaces of the devices over the private PAC (at most 8
digits). This means that the MAC value should be truncated to
4 digits. One possible way of doing it is to take the 32 least
significant bits of it, turn it to an integer, and then take the 4
least significant digits of it.

There are different scenarios, depending on the types of
available interfaces. For example, if the PNCA has a display
and the PN device has a keypad, then the key K and the
truncated MAC are displayed by the PNCA to the user who
enters them into the pairing device. The pairing device uses the
received key value K to compute the truncated MAC value on
the exchanged public keys (received over the insecure wireless
channel) on its own. In a second step, it compares the result
with the entered information and shows an accepted or rejected
signal (peeps or blinks a light) to the user who updates the
PNCA (Fig. 2a).

As the key K is chosen randomly each time and the private
PAC provides confidentiality, an attacker gets no knowledge
on the key K or on the MAC from the protocol runs. Hence, the
only possible attacks are to block the messages over the Private
PAC to prevent that the imprinting stage from finishing or to
replace the key of the PN device with its own key for
impersonation and to hope that the MAC value remains valid
by coincidence. Assuming a message size of 8 digits, the
probability for success is less than 2-16.

Figure 2. CPFP first stage - Imprinting

745
Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 09:34:38 UTC from IEEE Xplore. Restrictions apply.

2) Imprinting over Public PAC
In this version of the protocol (Fig. 2b), after exchanging

the signature and the long term public keys over the insecure
wireless channel, the PNCA generates a hash of the exchanged
public keys and sends it to the pairing device over the public
PAC. The pairing device calculates the hash of the exchanged
public keys, compares the result with the received data over the
public PAC, and shows an accepted or rejected signal to the
user who updates the PNCA.

As the public PAC provides integrity and authenticity, an
attacker can either again block the messages to prevent the
completion of the imprinting stage or replace the PN key WA
with another key to achieve impersonation. The replacement
remains only undetected if the hash value would be the same.
However, if the hash function is collision resistant, this is
possible only with a negligible probability.

B. CPFP Stage 1- Getting Certificates from PNCA
The use of digital certificates is an established method to

generate trusted identities in network communications. A
certificate provides a binding between identity information and
a public key; a key pair can subsequently be used for key
exchange to set up secured communications as well as for
digital signatures to validate transactions. In CPFP, certificates
are used to bind the user friendly identities of PN components
to their long term ECDH public keys. This ensures that once
the certificates are issued by the PNCA and while they are not
revoked or expired, the identities and their long term ECDH
public keys are trustable by all PN components.

The PN components’ identities are locally chosen in our
key management system and can be any unique name in the PN
environment. Because of the dynamic and heterogeneous
nature of the PN and also because of the distribution of PN
nodes in different clusters (fixed or mobile), MAC address or
IP address (main candidate for homogeneous static network)
can not be used as identities in the considered scenario. On the
other hand, in CPFP all PN devices get certificates on their
long term ECDH public keys and rarely change them, so a hash
value of these long term ECDH public keys is a good candidate
for a PN identity in MAGNET. To make the recognition of
different components as easy as possible for the user, she will
choose a user friendly name (UFN), including the PN name
and/or the owner name, for each component during the
imprinting and use these UFNs as their identities.

RSA, DSA and ECDSA are three standard algorithms that
are usually used for digital signatures [9]. The use of ECC-
based signatures with digital certificates provides both size and
performance advantages. ECC-based signatures on a certificate
are smaller and faster to create; and the public key that the
certificate holds is smaller too.

The process of issuing certificates by the PNCA is as
follows:

• After receiving the authenticated copy of the device’s
long term public key (during the imprinting procedure),
the PNCA asks the user for extra information which
should be included in the certificates like a user
friendly name (UFN) and a validity period. Based on

the received information and on the device’s long term
public key, the PNCA constructs a message m.

• The PNCA selects an ephemeral random secret private
key k from the interval [1, n-1] which has an inverse
modulo n.

• Then, it computes R = kG with G being the generator
of the used elliptic curve and converts its x-coordinate
to an integer x1.

• Next, it computes r = x1 mod n. If r=0, it goes back to
step 2.

• Otherwise, it computes e = h(m) with h being a hash
function

• Then, it calculated s = k-1(e+tr) mod n, where t is its
ECDSA signature private key. If s=0, it goes back to
step 2.

• Finally, it outputs the message m with its signature (r,
s) as the issued certificate for the paired device.

Each PN component is equipped with the PNCA’s public
key during the imprinting procedure. Given a certificate m and
a signature (r,s), a PN component verifies its validity by
performing the following procedure:

• Verify if r and s are from the interval [1, n-1]. If they
are not, stop and reject the signature.

• Compute e = h(m)

• Compute w = s-1 mod n

• Compute u1 = ew mod n and u2 = rw mod n

• Compute R= u1G + u2T, if R = � reject signature

• Convert x-coordinate of R to an integer, x1 and
calculate v = x1 mod n

• The device accepts the signature if v = r.

Observe that the algorithms described above are the
established ECDSA algorithm (e.g., see [10]). It is believed to
be secure according to the current state of knowledge if the
parameters are appropriately selected.

C. CPFP Stage 2 – Using ECMQV to Drive Shared Key
In the last stage of CPFP, the Elliptic Curve Menezes-Qu-

Vanstone (ECMQV) [6] key agreement protocol is used to
establish a shared secret key between PN components which
have already imprinted and have got PNCA’ certificates on
their long term public keys. The PNCA itself participates in
this stage to establish shared pairwise keys with other PN
components, with issuing a self signed certificate on its long
term ECDH public key.

While based on ECDH, ECMQV offers attributes – such as
key-compromise impersonation resilience and unknown key-
share resilience – that are not found with ECDH. ECMQV has
many desirable performance attributes, including the fact that
the dominant computational steps are not expensive while the
protocol also has low communication overhead, is role-
symmetric, non-interactive and does not use encryption or

746
Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 09:34:38 UTC from IEEE Xplore. Restrictions apply.

Long term DH key: WA, wA
(WA=wAG)

Ephemeral DH key: RA, rA
(RA=rAG)

Long term DH key: WB, wB
(WB=wBG)

Ephemeral DH key: RB, rB
(RB=rBG)

RB, Cert_B, MAC(k1, 2||UFNB||UFNA||RB||RA)

RA , Cert_A

MAC(k1, 3||UFNA||UFNB||RA||RB)

Device A Device B

time-stamping. This makes it ideal in the development of
security protocols and systems that require efficient and
authenticated key agreement protocol and was chosen as a one
of the three recommended key management protocols in NSA
Suite B cryptographic primitives to be used to protect classified
and unclassified sensitive information. For example, ECMQV
is proposed for securing US Federal government
communications up to the TOP SECRET classification (for
more information, see [11]).

We are using a three-pass version of ECMQV (Figure 3)
with the following protocol messages [12]:

1) A � B: RA , Cert_A �
A generates its ephemeral (dynamic) public and private

keys (rA, RA) and sends its ephemeral public key (RA) along
with its long term public key certificate (Cert_A) to B.

2) B � A: RB, Cert_B, MAC(k1, 2||UFNB||UFNA ||RB||RA) �
Upon receipt the first message, B does the following:

• Performs an embedded public key validation of RA to
verify it possesses certain arithmetic properties.

• Generates its ephemeral public and private keys (rB,
RB).�

• Computes an implicit signature “sB = (rB + �B wB) mod
n” and a shared key “K = hsB(RA+ �AWA)” and verifies
that K� � (�B and �A are the first “L=[((log2 n)+1)
/2]” bits of the first component of the point RB and RA).

• Using shared key derivation function (KDF), B derives
k1 and k2 from the x-coordinate of the shared key K.�

• Compute MAC(k1, 2||UFNB||UFNA||RB||RA) and send
the result along with its ephemeral public key RB and
its long term public key certificate Cert_B to A.

3) A � B: MAC(k1, 3||UFNA||UFNB||RA||RB)�
With receiving the second message, A does the following:

• Perform an embedded public key validation of RB to
verify it possesses certain arithmetic properties.

• Compute an implicit signature “sA = (rA+ �AwA) mod
n” and a shared key “K = hsA(RB + �BWB)” and verify
that K� �.

• Using shared key derivation function (KDF), derive k1
and k2 from the x-coordinate of the shared key K.�

• Compute MAC(k1, 2||UFNB||UFNA||RB||RA) and verify
it based on the received message 2

• Compute MAC(k1, 3||UFNA||UFNB||RA||RB) and send
the result to B.�

B computes MAC(k1, 3||UFNA||UFNB||RA||RB) and verifies
it based on the message 3. The session key is k2.

This part of the CPFP protocol makes use of ECMQV as an
established protocol which is secure according to the current
state of knowledge. However, if this assumption should turn
out to be unjustified at some point in time, one could imagine
variations of CPFP which use other key agreement protocols.

ECMQV was mainly chosen because of performance issues
and not because it differs in its functionalities from other key
exchange protocols.

III. KEY REVOCATION MECHANISM
Like a certificate authority in a normal PKI, the PNCA is

not only in charge of inviting nodes into the PN but also to
revoke them in the case of need. Since the user is the centre of
the PN architecture, only the user herself should be able to
decide whether a node has to be revoked or not. In practice, we
envision the following procedure from a user's point of view to
revoke one node.

Whenever the user logs into one PNCA device, he can
choose to have a list of the currently valid PN members
displayed. Given the list of current nodes, a user can select one
or several devices and choose the REVOKE option to revoke
these nodes.

When the revocation procedure is initiated, the actually
used PNCA updates the Certificate Revocation List (CRL). The
CRL is a file which contains all necessary information on the
nodes that need to be revoked. This information include at
least:

• PN's node identifier�

• A time stamp and/or a CRL version number�

• Serial number identification of the revoked certificate

• A code implying the reason of revocation�

PNCA keeps a record of revoked certificates in a CRL up to
their expiry date (each certificate has a specified expiry date).
Each CRL has either a version number and/or a time stamp.
With every revocation procedure, the PNCA updates the CRL
and changes its version number and/or refreshes the time
stamp. The CRL is signed with the private key of the PNCA
(SKPNCA) to ensure the non-repudiation, integrity, and message
authenticity. As the revocation list is signed, each node can
check its validity with the public key of the PNCA (PKPNCA)
obtained at imprinting time.

The new CRL is either distributed whenever a new
revocation has happened and/or periodically (even if nothing
has changed except the version number/time stamp). Nodes
keep a record of the CRL locally, update it with revocation
messages, and check its version with other communicating
peers. If a node does not have the latest version of the CRL (or
if it is overdue), it will update it.

Figure 3. CPFP Stage 2 – Using ECMQV to derive shared keys

747
Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 09:34:38 UTC from IEEE Xplore. Restrictions apply.

It goes without saying that the CRL has only its value if it is
ensured that every node has at any point in time the actual
version. If two nodes exchange data, both must be sure that the
other one has not been revoked since the last time they
communicated. Thus, we envision that each node checks the
current version of the CRL (either stored locally or retrieved
from appropriate places) before a new communication starts (or
at least in regular time intervals). This requires the following
functionalities in the context of the CRL:

• The updated CRL can be distributed within the whole
PN in a reliable way.�

• The current version of the CRL can be provided upon
request.�

This can be realized in several ways. One possibility is to
make use of the existing upper layer facilities in MAGNET,
e.g., by using the Secure Context Management Framework
(SCMF) [13] which is able to distribute and provide data on
demand or adding an extra service to a MAGNET PN, a kind
of 'revocation list service' which is discoverable through the
MAGNET Service Management Platform (MSMP) [13]. The
other approach is going for an ad-hoc CRL distribution scheme,
where PN nodes ask each other for the latest version of the
CRL and in case of difference, both nodes update to the latest
CRL version.

IV. PNCA RESILIENCE
The fact that the PNCA plays a central role in the PN’s key

management brings the problem of resilience. If the PNCA is
broken or out of reach, the basic operations as inviting new
devices and revoking keys should not be abandoned.

In the currently discussed approach, we use the fact that in
principle the difference between the PNCA and an ordinary PN
node is that the PNCA knows the secret key SKPNCA that is
mandatory for the operations mentioned above. This means that
PNCA is rather a functionality than a certain device and if other
devices share its knowledge of SKPNCA, they can take over its
functionality if necessary. Therefore, we propose to store
SKPNCA on different devices on several, strategically well-
chosen locations. Each of these devices can act as the PNCA in
the case of need, e.g., if the previous PNCA is unreachable or
broken. As a device acting as PNCA has in principle full
control over the PN as it can invite or revoke devices, it is of
utmost importance that SKPNCA is stored only in encrypted form
to prevent an attacker to take over control of the PN if she
steals a PNCA. If the value SKPNCA is only protected by a key
chosen by the user, e.g., derived from a password, this
requirement is unfortunately most probably not fulfilled.
Observations have showed that humans rather tend to choose
insecure password which would compromise the security of the
whole PN. A possible countermeasure could be to force the
user to choose a strong password by refusing weak ones.
Alternatively, one could imagine that the encryption is
additionally protected by a piece of hardware. As it is already
common practice for mobile phones, one could require the
usage of a smart card together with a password to decrypt
SKPNCA.

Observe that decrypting SKPNCA is only necessary once in
the beginning of an epoch to turn a device into the PNCA. As
long as the same device keeps this functionality, no user
interaction is required in this point. After this epoch, the
unencrypted SKPNCA need to be erased from the memory so that
only the encryption of SKPNCA remains. At this time, the device
looses its “superior knowledge” and becomes an ordinary node
again.

Of course, knowing SKPNCA is only half of the battle. It is
likewise required that the PNCA has an actual list of PN
members and revoked nodes. Therefore, the “old” PNCA and
the “new” PNCA have to synchronize their lists to provide full
functionality. If synchronization cannot be handled by the PN
itself, one could think of storing this information on a portable
medium like an SD card, possibly encrypted as wel. Thus, at
the end of one epoch, when a device looses its PNCA role, it
stores the current data on the medium. The device which
becomes the next PNCA should have access to this medium to
restore the actual data.

ACKNOWLEDGMENT
The authors are grateful of all the partners involved in the

projects MAGNET and MAGNET-Beyond, especially work-
packages 4, for their fruitful discussions and collaborations.

REFERENCES
[1] IST MAGNET Beyond Project http://www.ist-magnet.org/
[2] M Petrova et al., “Conceptual Secure PN Architecture”, IST MAGNET

deliverable D2.1.1, December 2004, http://www.ist-
magnet.org/GetAsset.action?contentId=939330&assetId=939344

[3] NIST Special Publication 800-57, “Recommendation for Key
Management – Part 1: General (Revised)”, May 2006,
http://csrc.nist.gov/publications/nistpubs/800-57/SP800-57-Part1.pdf

[4] S. Mirzadeh et al. , “Final version of the Network-Level Security
Architecture Specification”, IST MAGNET deliverable D4.3.2, Feburary
2005, http://www.ist-
magnet.org/GetAsset.action?contentId=942902&assetId=943012

[5] C. J. Mitchell and R. Schaffelhofer. The personal PKI. In C. J. Mitchell,
editor, Security for Mobility, chapter 3, pages 35-61. IEE, London, UK,
2004.

[6] L. Law, A. Menezes, M. Qu, J. Solinas, & S. Vanstone, An efficient
protocol for authenticated key agreement, Designs, Codes and
Cryptography, 28(2), 2003, 119–134

[7] http://en.wikipedia.org/wiki/MQV
[8] D.Balfanz, D.K.Smetters, P.Stewart and H.Chi Wong. “Talking To

Strangers: Authentication in Ad-Hoc Wireless Networks”. Technical
report, Xerox Palo Alto Research Center, Palo Alto, 2002,
http://www2.parc.com/csl/members/balfanz/publications/loclim.pdf

[9] NIST FIPS PUB 186-2, DIGITAL SIGNATURE STANDARD (DSS),
January 2000, http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-
change1.pdf

[10] Don Johnson, Alfred Menezes, Scott Vanstone, The Elliptic Curve
Digital Signature Algorithm (ECDSA), International Journal of
Information Security, 2001 - Springer

[11] Fact Sheet NSA Suite B Cryptography,
http://www.nsa.gov/ia/industry/crypto_suite_b.cfm?MenuID=10.2.7

[12] Darrel Hankerson, Alfred Menezes, and Scott Vanstone, “Guide to
Elliptic Curve Cryptography”, Springer-Verlag New York Inc., 2004

[13] M Jacobsson et al., “Specification of PN networking and security
components”, IST-MAGNET Beyond deliverable D2.3.1, December
2006, http://www.ist-
magnet.org/GetAsset.action?contentId=1111179&assetId=2253549

748
Authorized licensed use limited to: University of Surrey. Downloaded on May 17,2010 at 09:34:38 UTC from IEEE Xplore. Restrictions apply.

