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Abstract— This paper provides an efficient key management 
scheme for large scale personal networks (PN) and introduces the 
Certified PN Formation Protocol (CPFP) based on a personal 
public key infrastructure (personal PKI) concept and Elliptic 
Curve Cryptography (ECC) techniques. 
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I.  INTRODUCTION 
The concept of Personal Networks (PNs) was introduced 

and studied during the IST-MAGNET project [1]. Fig. 1 
depicts its communication architecture which consists on the 
one hand of a dynamic collection of personal nodes and devices 
around a user (Private Personal Area Network or P-PAN) and 
on the other hand of remote personal nodes and devices in 
different clusters (home cluster, office cluster, car cluster…) 
that are connected to each other through an infrastructure or ad 
hoc networks.  

Security and privacy are one of the major concerns in the 
development and acceptance of PN technologies. For this 
purpose, well-established cryptography to protect the integrity 
and confidentiality of the data should be used as much as 
possible. Symmetric key algorithms like the 128-bit Advanced 
Encryption Standard (AES) are expected to provide strong 
protection beyond the year 2031 [3]. However, the use of AES 
requires the establishment of shared keying material in 
advance.  

With lack of permanent access to a common trusted third 
party in PN environments and also user unwillingness to 
delegate her trust to a centralized entity outside her personal 
territory, classical network security mechanisms based on the 
conventional public key infrastructure (PKI) and certificate 
authorities (CA) cannot be directly applied to the PN. In 
MAGNET phase 1, a key agreement protocol based on an 
authenticated Diffie-Hellman (DH) protocol, named PN 
Formation Protocol (PFP), was developed, which fulfills the 
security needs of small networks [4]. In this paper, we 

introduce a new key agreement protocol based on a personal 
public key infrastructure (Personal PKI) [5] and Elliptic Curve 
Cryptography (ECC), which is scalable to larger PNs and 
provides an enhanced level of authentication and non-
repudiation with ease of key revocation and key update.  

II. CERTIFIED PN FORMATION PROTOCOL (CPFP) 
CPFP is based on a personal public key infrastructure 

(Personal PKI) in which instead of global certificates issued by 
a trusted third party, the local certificates issued by the PN 
certificate authority (PNCA) will be applied. CPFP has two 
different stages.  In  the  first  stage,  all   PN   devices   get 
imprinted with the PNCA i.e., establish the PNCA signature 
public key as the PN root key and get a certificate on their own 
long term Diffie-Hellman public key.  In the second stage, PN 
nodes use their certificates to authenticate each other and 
establish pairwise keys based on the Elliptic Curve Menezes-
Qu-Vanstone (ECMQV) [6] protocol. 

The ECMQV is the elliptic curve variant of MQV [7] key 
establishment protocol which is incorporated in the public key 
standard IEEE P1363 and is based on two sets (public and 

Figure 1.  PN Communication Architecture [2] 
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private) of long term (static) and ephemeral (dynamic) Elliptic 
Curve Diffie-Hellman (ECDH) keys. As a prerequisite in 
ECMQV, peers should a priori possess authenticated copies of 
each other’s long term public keys which will be done through 
the issued certificates within the first stage of CPFP. 

A. CPFP Stage 1 – Initializing and imprinting with PNCA 
PN security depends on the security of the imprinting 

procedure which is subject to the following assumptions: 

• The user is in full control of the imprinting procedure 
and determines when and how new devices get 
imprinted with PNCA and taken as members of her 
PN. 

• The personal devices share two different 
communication interfaces with PNCA including 
Proximity Authenticated Channel (PAC) and usual 
(insecure) wireless communication channel. 

A proximity authenticated channel is a communication 
interface between two devices, which is authenticated by 
physical means of user. Typically, proximity authentication is 
performed by touching the device, or by reading from or 
entering to a device’s interface. We distinguish between two 
types of PAC channels, private and public PAC channels, with 
respect to the level of security the PAC channel can provide. A 
private PAC channel provides authenticity, integrity and 
confidentiality, while a public PAC channels provide 
authenticity and integrity only.  

A typical example of a private PAC channel is realized by a 
user, who reads an alphanumeric string from the display of one 
device and then enters it to the other device using the keypad.  
Clearly such a channel sets some limits to the length of the 
string that can be transferred from one device to another, e.g., 
typically 32-40 bits, which is feasible to be transferred using 
devices’ user interfaces by the user. Typical realizations of 
public PAC are RFID tags, Infrared communication, and public 
displays on the devices (such as an overhead display over a 
cashier, printer, or network access point [8]). If the PAC is 
public, the protocol requires that at least 160 bits of information 
can be transferred over it.    

The user starts CPFP by choosing one device with keypad 
and display as the PN certificate authority (PNCA) and 
imprints all PN devices with it. The PNCA initializes itself 
with the generation of a pair of public and private ECDSA 
(Elliptic Curve Digital Signature Algorithm) signature keys and 
other PN components initialize themselves with the generation 
of their long term ECDH public and private keys. The 
parameters are based on a fixed elliptic curve with standardized 
coefficients e.g. P-192 recommended by NIST. 

PNCA and PN components exchange their public keys 
(signature and long term) over the insecure wireless channel 
and the user authenticates the procedure with help of the 
complementary PAC channel. The outcome of this stage is that 
the PNCA issues certificates for the long term public key of 
each paired component which can be at the same time verified 
by all PN components. Based on the used PAC, there are two 
different procedures for this stage of the protocol: 

 

1) Imprinting over Private PAC 
In this version of the protocol, after the public keys are 

exchanged over the insecure wireless channel, the PNCA 
generates a key K which is suitable to be used in a Message 
Authentication Code (MAC) function which is shared by all 
PN components. Using this key K, the PNCA computes a 
MAC of the exchanged public keys. Both the key K and the 
MAC value should be feasible to be transferred by the user 
interfaces of the devices over the private PAC (at most 8 
digits). This means that the MAC value should be truncated to 
4 digits. One possible way of doing it is to take the 32 least 
significant bits of it, turn it to an integer, and then take the 4 
least significant digits of it. 

There are different scenarios, depending on the types of 
available interfaces. For example, if the PNCA has a display 
and the PN device has a keypad, then the key K and the 
truncated MAC are displayed by the PNCA to the user who 
enters them into the pairing device. The pairing device uses the 
received key value K to compute the truncated MAC value on 
the exchanged public keys (received over the insecure wireless 
channel) on its own. In a second step, it compares the result 
with the entered information and shows an accepted or rejected 
signal (peeps or blinks a light) to the user who updates the 
PNCA (Fig. 2a). 

As the key K is chosen randomly each time and the private 
PAC provides confidentiality, an attacker gets no knowledge 
on the key K or on the MAC from the protocol runs. Hence, the 
only possible attacks are to block the messages over the Private 
PAC to prevent that the imprinting stage from finishing or to 
replace the key of the PN device with its own key for 
impersonation and to hope that the MAC value remains valid 
by coincidence. Assuming a message size of 8 digits, the 
probability for success is less than 2-16. 

Figure 2.  CPFP first stage - Imprinting 
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2)  Imprinting over Public PAC 
In this version of the protocol (Fig. 2b), after exchanging 

the signature and the long term public keys over the insecure 
wireless channel, the PNCA generates a hash of the exchanged 
public keys and sends it to the pairing device over the public 
PAC. The pairing device calculates the hash of the exchanged 
public keys, compares the result with the received data over the 
public PAC, and shows an accepted or rejected signal to the 
user who updates the PNCA.  

As the public PAC provides integrity and authenticity, an 
attacker can either again block the messages to prevent the 
completion of the imprinting stage or replace the PN key WA 
with another key to achieve impersonation. The replacement 
remains only undetected if the hash value would be the same. 
However, if the hash function is collision resistant, this is 
possible only with a negligible probability. 

B. CPFP Stage 1- Getting Certificates from PNCA 
The use of digital certificates is an established method to 

generate trusted identities in network communications. A 
certificate provides a binding between identity information and 
a public key; a key pair can subsequently be used for key 
exchange to set up secured communications as well as for 
digital signatures to validate transactions. In CPFP, certificates 
are used to bind the user friendly identities of PN components 
to their long term ECDH public keys. This ensures that once 
the certificates are issued by the PNCA and while they are not 
revoked or expired, the identities and their long term ECDH 
public keys are trustable by all PN components.  

The PN components’ identities are locally chosen in our 
key management system and can be any unique name in the PN 
environment. Because of the dynamic and heterogeneous 
nature of the PN and also because of the distribution of PN 
nodes in different clusters (fixed or mobile), MAC address or 
IP address (main candidate for homogeneous static network) 
can not be used as identities in the considered scenario. On the 
other hand, in CPFP all PN devices get certificates on their 
long term ECDH public keys and rarely change them, so a hash 
value of these long term ECDH public keys is a good candidate 
for a PN identity in MAGNET. To make the recognition of  
different components as easy as possible for the user, she will 
choose a user friendly name (UFN), including the PN name 
and/or the owner name, for each component during the 
imprinting and use these UFNs as their identities. 

RSA, DSA and ECDSA are three standard algorithms that 
are usually used for digital signatures [9]. The use of ECC-
based signatures with digital certificates provides both size and 
performance advantages. ECC-based signatures on a certificate 
are smaller and faster to create; and the public key that the 
certificate holds is smaller too.  

The process of issuing certificates by the PNCA is as 
follows: 

• After receiving the authenticated copy of the device’s 
long term public key (during the imprinting procedure), 
the PNCA asks the user for extra information which 
should be included in the certificates like a user 
friendly name (UFN) and a validity period. Based on 

the received information and on the device’s long term 
public key, the PNCA constructs a message m. 

• The PNCA selects an ephemeral random secret private 
key k from the interval [1, n-1] which has an inverse 
modulo n. 

• Then, it computes R = kG with G being the generator 
of the used elliptic curve and converts its x-coordinate 
to an integer x1. 

• Next, it computes r = x1 mod n. If r=0, it goes back to 
step 2. 

• Otherwise, it computes e = h(m) with h being a hash 
function 

• Then, it calculated s = k-1(e+tr) mod n, where t is its 
ECDSA signature private key. If s=0, it goes back to 
step 2. 

• Finally, it outputs the message m with its signature (r, 
s) as the issued certificate for the paired device. 

Each PN component is equipped with the PNCA’s public 
key during the imprinting procedure. Given a certificate m and 
a signature (r,s), a PN component verifies its validity by 
performing the following procedure:  

• Verify if r and s are from the interval [1, n-1]. If they 
are not, stop and reject the signature. 

• Compute e = h(m) 

• Compute w = s-1 mod n 

• Compute u1 = ew mod n and u2 = rw mod n 

• Compute R= u1G + u2T, if R = � reject signature 

• Convert x-coordinate of R to an integer, x1 and 
calculate  v = x1 mod n 

• The device accepts the signature if v = r. 

Observe that the algorithms described above are the 
established ECDSA algorithm (e.g., see [10]). It is believed to 
be secure according to the current state of knowledge if the 
parameters are appropriately selected. 

C. CPFP Stage 2 – Using ECMQV to Drive Shared Key 
In the last stage of CPFP, the Elliptic Curve Menezes-Qu-

Vanstone (ECMQV) [6] key agreement protocol is used to 
establish a shared secret key between PN components which 
have already imprinted and have got PNCA’ certificates on 
their long term public keys. The PNCA itself participates in 
this stage to establish shared pairwise keys with other PN 
components, with issuing a self signed certificate on its long 
term ECDH public key.  

While based on ECDH, ECMQV offers attributes – such as 
key-compromise impersonation resilience and unknown key-
share resilience – that are not found with ECDH. ECMQV has 
many desirable performance attributes, including the fact that 
the dominant computational steps are not expensive while the 
protocol also has low communication overhead, is role-
symmetric, non-interactive and does not use encryption or 
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time-stamping. This makes it ideal in the development of 
security protocols and systems that require efficient and 
authenticated key agreement protocol and was chosen as a one 
of the three recommended key management protocols in NSA 
Suite B cryptographic primitives to be used to protect classified 
and unclassified sensitive information. For example, ECMQV 
is proposed for securing US Federal government 
communications up to the TOP SECRET classification (for 
more information, see [11]). 

We are using a three-pass version of ECMQV (Figure 3) 
with the following protocol messages [12]: 

1) A � B: RA , Cert_A �
A generates its ephemeral (dynamic) public and private 

keys (rA, RA) and sends its ephemeral public key (RA) along 
with its long term public key certificate (Cert_A) to B.  

2) B � A: RB, Cert_B, MAC(k1, 2||UFNB||UFNA ||RB||RA) �
Upon receipt the first message, B does the following: 

• Performs an embedded public key validation of RA to 
verify it possesses certain arithmetic properties. 

• Generates its ephemeral public and private keys (rB, 
RB).�

• Computes an implicit signature “sB = (rB + �B wB) mod 
n” and a shared key “K = hsB(RA+ �AWA)” and verifies 
that K� � (�B  and �A are the first “L=[((log2 n)+1) 
/2]” bits of the first component of the point RB and RA). 

• Using shared key derivation function (KDF), B derives 
k1 and k2 from the x-coordinate of the shared key K.�

• Compute MAC(k1, 2||UFNB||UFNA||RB||RA) and send 
the result along with its ephemeral public key RB and 
its long term public key certificate Cert_B to A. 

3) A � B: MAC(k1, 3||UFNA||UFNB||RA||RB)�
With receiving the second message, A does the following: 

• Perform an embedded public key validation of RB to 
verify it possesses certain arithmetic properties. 

• Compute an implicit signature “sA = (rA+ �AwA) mod 
n” and a shared key “K = hsA(RB + �BWB)” and verify 
that K� �. 

• Using shared key derivation function (KDF), derive k1 
and k2 from the x-coordinate of the shared key K.�

• Compute MAC(k1, 2||UFNB||UFNA||RB||RA) and verify 
it based on the received message 2 

• Compute MAC(k1, 3||UFNA||UFNB||RA||RB) and send 
the result to B.�

B computes MAC(k1, 3||UFNA||UFNB||RA||RB) and verifies 
it based on the message 3. The session key is k2.  

This part of the CPFP protocol makes use of ECMQV as an 
established protocol which is secure according to the current 
state of knowledge. However, if this assumption should turn 
out to be unjustified at some point in time, one could imagine 
variations of CPFP which use other key agreement protocols. 

ECMQV was mainly chosen because of performance issues 
and not because it differs in its functionalities from other key 
exchange protocols. 

III. KEY REVOCATION MECHANISM 
Like a certificate authority in a normal PKI, the PNCA is 

not only in charge of inviting nodes into the PN but also to 
revoke them in the case of need. Since the user is the centre of 
the PN architecture, only the user herself should be able to 
decide whether a node has to be revoked or not. In practice, we 
envision the following procedure from a user's point of view to 
revoke one node. 

Whenever the user logs into one PNCA device, he can 
choose to have a list of the currently valid PN members 
displayed. Given the list of current nodes, a user can select one 
or several devices and choose the REVOKE option to revoke 
these nodes.  

When the revocation procedure is initiated, the actually 
used PNCA updates the Certificate Revocation List (CRL). The 
CRL is a file which contains all necessary information on the 
nodes that need to be revoked. This information include at 
least: 

• PN's node identifier�

• A time stamp and/or a CRL version number�

• Serial number identification of the revoked certificate 

• A code  implying the reason of revocation�

PNCA keeps a record of revoked certificates in a CRL up to 
their expiry date (each certificate has a specified expiry date). 
Each CRL has either a version number and/or a time stamp. 
With every revocation procedure, the PNCA updates the CRL 
and changes its version number and/or refreshes the time 
stamp. The CRL is signed with the private key of the PNCA 
(SKPNCA) to ensure the non-repudiation, integrity, and message 
authenticity. As the revocation list is signed, each node can 
check its validity with the public key of the PNCA (PKPNCA) 
obtained at imprinting time. 

The new CRL is either distributed whenever a new 
revocation has happened and/or periodically (even if nothing 
has changed except the version number/time stamp). Nodes 
keep a record of the CRL locally, update it with revocation 
messages, and check its version with other communicating 
peers. If a node does not have the latest version of the CRL (or 
if it is overdue), it will update it. 

Figure 3.  CPFP Stage 2 – Using ECMQV to derive shared keys 
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It goes without saying that the CRL has only its value if it is 
ensured that every node has at any point in time the actual 
version. If two nodes exchange data, both must be sure that the 
other one has not been revoked since the last time they 
communicated. Thus, we envision that each node checks the 
current version of the CRL (either stored locally or retrieved 
from appropriate places) before a new communication starts (or 
at least in regular time intervals).  This requires the following 
functionalities in the context of the CRL: 

• The updated CRL can be distributed within the whole 
PN in a reliable way.�

• The current version of the CRL can be provided upon 
request.�

This can be realized in several ways. One possibility is to 
make use of the existing upper layer facilities in MAGNET, 
e.g., by using the Secure Context Management Framework 
(SCMF) [13] which is able to distribute and provide data on 
demand or adding an extra service to a MAGNET PN, a kind 
of 'revocation list service' which is discoverable through the 
MAGNET Service  Management Platform (MSMP) [13].  The 
other approach is going for an ad-hoc CRL distribution scheme, 
where PN nodes ask each other for the latest version of the 
CRL and in case of difference, both nodes update to the latest 
CRL version. 

IV. PNCA RESILIENCE 
The fact that the PNCA plays a central role in the PN’s key 

management brings the problem of resilience. If the PNCA is 
broken or out of reach, the basic operations as inviting new 
devices and revoking keys should not be abandoned. 

In the currently discussed approach, we use the fact that in 
principle the difference between the PNCA and an ordinary PN 
node is that the PNCA knows the secret key SKPNCA that is 
mandatory for the operations mentioned above. This means that 
PNCA is rather a functionality than a certain device and if other 
devices share its knowledge of SKPNCA, they can take over its 
functionality if necessary. Therefore, we propose to store 
SKPNCA on different devices on several, strategically well-
chosen locations. Each of these devices can act as the PNCA in 
the case of need, e.g., if the previous PNCA is unreachable or 
broken. As a device acting as PNCA has in principle full 
control over the PN as it can invite or revoke devices, it is of 
utmost importance that SKPNCA is stored only in encrypted form 
to prevent an attacker to take over control of the PN if she 
steals a PNCA. If the value SKPNCA is only protected by a key 
chosen by the user, e.g., derived from a password, this 
requirement is unfortunately most probably not fulfilled. 
Observations have showed that humans rather tend to choose 
insecure password which would compromise the security of the 
whole PN. A possible countermeasure could be to force the 
user to choose a strong password by refusing weak ones. 
Alternatively, one could imagine that the encryption is 
additionally protected by a piece of hardware. As it is already 
common practice for mobile phones, one could require the 
usage of a smart card together with a password to decrypt 
SKPNCA.  

Observe that decrypting SKPNCA is only necessary once in 
the beginning of an epoch to turn a device into the PNCA. As 
long as the same device keeps this functionality, no user 
interaction is required in this point. After this epoch, the 
unencrypted SKPNCA need to be erased from the memory so that 
only the encryption of SKPNCA remains. At this time, the device 
looses its “superior knowledge” and becomes an ordinary node 
again. 

Of course, knowing SKPNCA is only half of the battle. It is 
likewise required that the PNCA has an actual list of PN 
members and revoked nodes. Therefore, the “old” PNCA and 
the “new” PNCA have to synchronize their lists to provide full 
functionality. If synchronization cannot be handled by the PN 
itself, one could think of storing this information on a portable 
medium like an SD card, possibly encrypted as wel. Thus, at 
the end of one epoch, when a device looses its PNCA role, it 
stores the current data on the medium. The device which 
becomes the next PNCA should have access to this medium to 
restore the actual data.   
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