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ABSTRACT

Assuming that a set of source signals is sparsely representable in
a given dictionary, we show how their sparse recovery fails when-
ever we can only measure a convolved observation of them. Starting
from this motivation, we develop a block coordinate descent method
which aims to learn a convolved dictionary and provide a sparse rep-
resentation of the observed signals with small residual norm. We
compare the proposed approach to the K-SVD dictionary learning
algorithm and show through numerical experiment on synthetic sig-
nals that, provided some conditions on the problem data, our tech-
nique converges in a fixed number of iterations to a sparse represen-
tation with smaller residual norm.

Index Terms— Dictionary Learning, Sparse Representation,
Convolution, K-SVD.

1. INTRODUCTION

Sparse representation has recently become a very popular research
field which is causing a profound impact on the scientific community
with applications to sampling, coding, analysis and processing of
signals [1].

The general model behind sparse representation consists in de-
composing a signal as a linear combination of elementary functions
or atoms and seeking the representation with the smaller number of
active atoms. Generally speaking, when attempting a sparse repre-
sentation of a variable or group of variables that belong to a common
class, one needs to specify a (possibly over-complete) dictionary,
that is, a collection of atoms in which the observed data are sup-
posed to be sparse. Although a great effort has been spent to design
explicit dictionaries that are well suited for images and other types
of signals [2], it is often desirable to learn an optimal dictionary from
a set of training samples and then utilise it to represent new data of
the same class. This problem is known as dictionary learning and,
over recent years, various techniques have been proposed in order to
address it [3]. Some of these methods can be tested and compared
using the MATLAB toolbox SMALLBOX1.

Whenever a physical phenomenon is measured by means of
transducers (e.g. recording an audio signal by means of a micro-
phone), the observed variable can be modelled as the convolution
of the original signal of interest with the impulse response of the
system in which the measurement takes places. Unfortunately, this
process causes the sparse representation to be lost, as we will show
in Section 2. This fact comes at no surprise if we realise that the
signals are no longer sparse in the original dictionary, but in a new
dictionary which is a convolved version of the initial one. In Sec-
tion 3 we propose an algorithm whose aim is to learn a convolved

1http://small-project.eu/software-data/smallbox/

dictionary that provides a sparse representation with small residual
norm and present some numerical tests carried out in order to assess
its performance, comparing it to the K-SVD algorithm [4]. Section
4 will conclude the paper with a brief summary of our results and
plans for further research.

2. CONVOLUTION AND SPARSE REPRESENTATION

2.1. Model and notation

Suppose that a set of source signals {sn}Nn=1 is sparsely repre-
sentable in a dictionary Φ, which is a D by K matrix of rank D
containing a collection of atoms {φk}Kk=1 in its columns.

sn = Φxn ||xn||0 ≤ S0 ∀ n = 1 . . . N

where xn is the vector containing the representation coefficients of
the n-th signal and the operator || · ||0 is the `0 pseudo-norm which
counts the number of nonzero elements of its argument. This means
that each source signal has a sparse representation in the dictionary
Φ with at most S0 active atoms.

We do not directly observe the variables sn, but rather a set of
convolved observations

yn[t] =
X
τ

h[τ ]sn[t− τ ]

that are the output of a single input single output (SISO) convolutive
system characterised by the impulse response h. Since convolution
is a linear operator, the resulting variables will be no longer sparse
in the dictionary Φ but in a dictionary Ψ whose atomsψk = h∗φk
are obtained by convolving the original dictionary atoms with the
impulse response h.

In many applications the impulse response of the measurement
system is unknown; in this case, one could still use the dictionary Φ
and attempt an approximation of the observed signals. However, as
shown in the next section, this would greatly affect the performance
of sparse representation.

2.2. Effect of convolution on sparse representation

In order to show the effect of convolution on sparse representation,
we tested the performance of both the sparsity-constrained and the
error-constrained versions of the orthogonal matching pursuit algo-
rithm [5] which will be labelled OMP-S and OMP-E respectively. The
former aims at solving the following optimisation:

minimise
X

||Y −ΦX||2F (1)

subject to ||xn||0 ≤ S0 ∀ n = 1 . . . N

http://small-project.eu/software-data/smallbox/
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Fig. 1. OMP-S results on convolved signals (averaged values over
100 trials of the experiment). The two black curves represent the
mean distance between the reconstructed signals and the sources or
the observed variables respectively. For comparison purpose, the
red dashed line represents the mean distance between the observed
variables and random signals, while the red solid line is the error
tolerance defined for OMP-E.

where || · ||F is the Frobenious norm, while the latter attempts to
solve the problem

minimise
X

||X||0 (2)

subject to ||yn −Φxn||22 ≤ ε ∀ n = 1 . . . N

The observed signals yn were generated according to the model de-
scribed in Section 2.1. In particular, we firstly defined N = 500
source signals of dimension D = 100 as sparse linear combinations
of the atoms contained in a two times over-complete real Fourier
dictionary (one of the standard dictionary ensembles implemented
in the SPARSELAB toolbox, available as part of the SMALLBOX).
The normalised diversity of the source signals, defined as the ratio
between the number of nonzero coefficients of the representations
and the number of atoms in the dictionary, was set to ||x||0/K =
0.05. We produced the observations by convolving the sources with
a sparse non negative impulse response h of length L = 50. We
repeated the experiments varying the number of non-zero elements
of h from 1 to L, thus causing an increasing mean distance between
sources and observations measured by d̄(S|Y) = ||S − Y||F/N .
Here the columns of S and Y contain the sources and convolved
observations respectively.

Figures 1 and 2 depict the results of the experiment for the two
versions of OMP. Let us first analyse the results for OMP-S. We ran
the algorithm using the dictionary Φ on the convolved variables Y
and setting the number of active atoms to S0 = 15.
As can be seen in the left side of the plot, when the impulse response
is simply h = δ0 the source and observed variables are the same
and OMP-S is able to represent them with negligible error. However,
as the convolution causes the observed Y to differ from S, the error
in the representation quickly increases, to the point where OMP-S
becomes almost comparable with a random representation (i.e. a
gaussian random signal of unit variance generated for comparison
purposes). The behaviour of OMP-E is similar: fixing a tolerance
ε = 10−2, the algorithm is able to represent the observed signals
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Fig. 2. OMP-E results on convolved signals (averaged values over
100 trials of the experiment). The black and red dashed lines repre-
sent the true number of active atoms used to generate the test signals
and the number of active atoms of a completely dense representation
respectively. S0 is the constraint parameter used for OMP-S

using the right number of active elements in the trivial case h = δ0.
However, as soon as the mean distance d̄(S|Y) increases, the num-
ber of active elements needed rapidly rises over 80% of a completely
dense representation.

3. DICTIONARY LEARNING OF CONVOLVED SIGNALS

The simple experiment presented in the previous section shows that
a sparse representation algorithm fails whenever applied to a con-
volved observation of sparse signals. Starting from this motivation,
we present a dictionary learning algorithm that takes into account
the particular structure of the convolved dictionary Ψ and aims to
learn the impulse response of the SISO system that produced it. The
general optimisation strategy, which will be referred as block coordi-
nate descent, is similar to the one employed in the method of optimal
directions presented in [6].

3.1. Block Coordinate Descent Optimisation

In order to learn a convolved dictionary for the sparse representa-
tion of the observed variables, we seek the solution of the following
optimisation problem:

minimise
h,X

||Y −HΦX||2F (3)

subject to ||xn||0 ≤ S0 ∀ n = 1 . . . N

Here the matrix H is the Toeplitz convolutive matrix associated with
the impulse response h.
Unfortunately, this problem is underdetermined and non-convex;
therefore, we choose to adopt an iterative block coordinate descent
(BCD) strategy, minimising the cost function alternatively for the
variables X and h. This leads to the following steps:

• X-Step: given a fixed impulse response, the above minimi-
sation is a standard sparse representation problem which can
be tackled with a variety of methods. In the present formula-
tion, we consider a constraint on the `0 pseudo-norm of the
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Fig. 3. BCD and K-SVD residuals as a function of the iteration num-
ber (average over 100 trials of the experiment)

representation coefficients and employ a suboptimal greedy
algorithm such as OMP-S.

• h-Step: given the current estimate of the representation co-
efficients, the minimisation (3) with respect to h can be
turned into an overdetermined quadratic program which can
be solved with any standard convex optimisation method.

At each iteration, the estimated impulse response is re-scaled in or-
der to preserve the Frobenious norm of the original dictionary Φ
and avoid a scaling ambiguity inherent in the optimisation. For a
detailed derivation of the algorithm which includes learning the im-
pulse response in the Fourier domain where the convolution can be
interpreted as a simple multiplication, see [7].

The h-Step can be modified by constraining the impulse re-
sponse to be sparse and non-negative. This is realistic for the rep-
resentation of audio signals in that, according to the image method
[8], the early reflections coming from the surfaces of a small size
room can be well described by such vectors. Employing or not these
constraints during the h-Step leads to two different versions of the
BCD algorithm that will be labelled sparse h (Sh-BCD) and dense h
(Dh-BCD) and that will be compared in the next section.

3.2. BCD optimisation for dictionary learning

In order to evaluate the proposed dictionary learning algorithms, we
generated a set of test signals using the parameters described in Sec-
tion 2.2 and convolved them with a sparse, non-negative impulse re-
sponse of normalised diversity ||h||0/L = 0.05. We then initialised
a dictionary by convolving Φ with a random impulse response and
ran Sh-BCD, Dh-BCD and the K-SVD algorithm for 50 iterations, cal-
culating the mean distance between observations and representations
defined as:

d̄(h,X|Y) =
||Y −HΦX||F

N
Figure 3 depicts the results averaged over 100 trials of the ex-

periment. As can be seen, Dh-BCD is the only method which does
not seem to get trapped in a local minima of the objective function,
improving its value during all the iterations. On the other hand, the
convergence of K-SVD and Sh-BCD is significantly slower, with the
latter method performing worse.
Figure 4 offers a more precise comparison between K-SVD and Dh-
BCD by showing the boxplot of the mean distance d̄(h,X|Y) as a
function of the iteration number. We can note that K-SVD is defi-
nitely more robust to outliers. However, the proposed block coordi-
nate descent with dense estimation of the impulse response consis-
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Fig. 4. Boxplot comparison of Dh-BCD and K-SVD over 100 trials
of the experiment. For each iteration, the central mark is the median,
the edges of the boxes are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points not considered outliers, and
outliers are plotted individually.

tently achieves a better result, reaching the error tolerance defined
for the experiment described in Section 2.2. These surprising re-
sults suggest that constraining the solution to belong to the feasible
set from where the test data were generated is not a good strategy,
while performing an unconstrained optimisation of the impulse re-
sponse allows for the necessary flexibility required to minimise the
non-convex cost function whenever the initialisation is far from the
global minimum. Moreover, the fact that K-SVD is outperformed
by Dh-BCD indicates that taking into account the particular structure
of the dictionary and reducing therefore the number of free parame-
ters of the optimisation from the whole set of atoms to the impulse
response coefficients leads to significative improvements.

Since the sparsity of the problem data always plays a crucial
role in every sparse representation framework, we tested the algo-
rithms varying the normaised diversity of source signals and im-
pulse response between 1% and 25% of the respective dimensions,
again comparing the results with the K-SVD algorithm. Figure 5
shows the contour plot of the residual error achieved at the end of
the optimisation by the various methods, along with a comparison
plot which shows the best performing technique in each point of the
sources/impulse response normalised diversity plan.
As we might expect, the two variants of the proposed block coor-
dinate descent method perform well when the source signals and
the impulse response are sparse, exhibiting a slightly stronger de-
pendence on the sources normalised diversity. The results for the
K-SVD algorithm, on the other hand, seem to depend strongly on the
normalised diversity of the impulse response, presenting also a slight
drop in correspondence with a source normalised diversity of 0.05.
Overall, the comparison plot reveals that, as long as the sources nor-
malised diversity is below 10% of the signals dimension D and the
impulse response is sufficiently sparse, then K-SVD is outperformed
by Dh-BCD. This condition is not unrealistic and corresponds to the
common assumption S0 � D made throughout most of the litera-
ture on sparse representation.
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Fig. 5. BCD and K-SVD results for various normalised diversities of source signals and impulse response (average over 20 trials). The
values appearing along the contour plots represent the mean distance d̄(h,X|Y) achieved after 50 iterations by the various algorithms on
a logarithmic scale. Since the dictionary is two times over-complete, a completely dense representation corresponds to a source normalised
diversity ||x||0/K = .5

4. CONCLUSIONS AND FURTHER RESEARCH

We presented a dictionary learning method suitable for the sparse
representation of convolved signals using a block coordinate descent
strategy. We compared it with the K-SVD algorithm and assessed
through numerical experiments that, providing some conditions on
the sparsity of the problem data, the proposed method leads to im-
provements over a general purpose dictionary learning algorithm.

The promising results presented in this paper suggest an inter-
esting direction for further investigation. If the algorithm is able
to provide a sparse representation with small or negligible residual,
this might occur because it identifies the true impulse response that
generated the observations, linking therefore two apparently distant
problems such as dictionary learning and blind deconvolution. Al-
though preliminary results suggest that this might be the case for
short, sparse impulse responses, additional tests with real world data
and a deeper understanding of the convergence properties of the op-
timisation are required and will be object of further research.
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