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Abstract—A typical high-end film production generates several
terabytes of data per day, either as footage from multiple cameras
or as background information regarding the set (laser scans,
spherical captures, etc). This paper presents solutions to improve
the integration of the multiple data sources, and understand their
quality and content, which are useful both to support creative
decisions on-set (or near it) and enhance the post-production
process. The main cinema specific contributions, tested on a
multisource production dataset made publicly available for re-
search purposes, are the monitoring and quality assurance of
multi-camera set-ups, multisource registration and acceleration
of 3D reconstruction, anthropocentric visual analysis techniques
for semantic content annotation, and integrated 2D-3D web
visualization tools. We discuss as well improvements carried out
in basic techniques for acceleration, clustering and visualization,
which were necessary to deal with the very large multisource
data, and can be applied to other big data problems in diverse
application fields.

Index Terms—Multi-modal Data Processing, Big Media Data
Analysis and Integration, Outdoor 3D Reconstruction, Anthro-
pocentric Semantic Video Analysis, Graph Processing Accelera-
tion, Web 3D Visualization.

I. INTRODUCTION

THE amount of data captured onset for film production is
vastly increasing; currently, several terabytes are gener-

ated per day for a typical high-end film. Data come from a
larger variety of capture devices, such as Light Detection and
Ranging (LIDAR) scanners, spherical cameras, still cameras,
HD video cameras, 2.7K/4K cameras and RGBD cameras, as
illustrated in Figure 1. Other types of sensors might play a role
as well. Generation and storage of digital data is considerably
cheaper than in the (analog) recent past. These data need to be
sorted, indexed and processed, currently requiring an immense
amount of manual effort. In fact, the high volume of data
generated during a shot prevents the immediate assessment of
whether footage is fit for purpose. The current strategy (of
re-shooting in case of doubt) costs extra time and money on
set, and leads to potentially redundant data, which also need
to be processed. Even more data are generated during post-
production, as the raw input is usually processed multiple
times, in order to obtain the output desired by the director.
Extra, or poorly understood raw data, leads to higher post-
production costs and times.
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This process, which requires a lot of manual input needs to
be streamlined. By understanding better the data, it is possible
to revert the trend of producing and storing even more data
towards keeping only the suitable data instead, and to provide
more intelligible content to the following stages of the digital
cinema production chain.

This paper presents novel approaches for big media data
analysis based on the integration of multiple big media data
sources, which lead to solutions improving their management,
and monitoring and understanding the quality of the data
produced. The solutions support creative on-set or near-set
decisions, and also facilitate and enhance post-production,
taking advantage as well of the semantic content analysis
which are also presented. The structure and key contributions
can be summarized as follows.

Section II starts by discussing the multiple data sources,
which are typical in the production of data for high-end digital
movies. It indicates the variety of devices used and data they
generate and different types of representative environments
(outdoor, indoor, single or multiple actors, etc.). A represen-
tative multisource IMPART dataset, approximately 10 TB in
uncompressed format, has been generated to test the developed
solutions with realistic and challenging material, and has been
used in most of the experiments presented in this paper. It has
been made public for the wider research community, together
with a detailed documentation on the capture and some initial
pre-processing, to facilitate its use.

Section III presents two key contributions with regards to
quality assessment and registration:

1) Tools to monitor setups and to enhance quality assurance.
The tools enable on-set detection of capture problems,
namely, poor coverage, such as out-of-focus configura-
tion, or insufficient detail provided; calibration invalida-
tion, which is detected and the true camera parameters
can be recovered on set or the calibration repaired in post-
production; and synchronization loss or frame-drops.

2) Multisource data (both 3D, such as laser scans, and 2D,
from multiple and varied cameras) can be automatically
registered into a common coordinate system (a ”unified
3D space”, visually represented in Figure 1). The current
paradigm for efficient management of these data requires
extensive manual input; our work introduces an automatic
process to replace this manual effort, which in turn leads
to a more efficient post-production phase.

Section IV presents re-formulations of some aspects of 3D
reconstruction from multiple sources introduced in section III,
and the underlying techniques are significantly optimized and
accelerated, allowing for much faster processing to achieve
near real-time. Complementary strategies of quality assess-
ment and desktop visualizations of 3D reconstructions are also
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presented. The re-formulations can be used in other big data
contexts, and include:

1) Sparse 3D reconstruction from stills is performed through
a novel fast Bundle Adjustment (BA) solver based on
Block Matrices which features fast covariance recovery,
where the BA task is formulated as a nonlinear maximum
likelihood estimation on a graph of feature point obser-
vations by the respective cameras. Orders of magnitude
efficiency gains are achieved.

2) Accelerated dense 3D reconstruction from individual
spherical stereo scans through reformulation of the image
processing primitives in terms of partial functions called
recursively for each pixel and a tiled cache as another
partial function to save computation for local filters.
Additionally, 3D reconstruction from multiple spherical
stereo pairs was accelerated by a novel alignment method,
based on SLAM techniques.

While sections III and IV deal with approaches related to
3D data, section V presents algorithms for high-level human-
centered semantic metadata extraction and description through
visual single- and multi-view information analysis, to support
fast big visual data ingestion, search and retrieval for post-
production and archival. The presented methods are related
to (human) activity-based temporal video segmentation and
clustering, approximate methods for big media classification
and a fast distributed clustering approach. Despite being eval-
uated on visual big data analysis tasks, such as facial images
clustering or face recognition, most of the underlying tech-
niques, such as distributed trimmed kernel K-means clustering
or approximate methods for classification are designed so as
to be fast enough to deal with large scale data, and can be
very well applicable in other big data areas too.

Section VI presents interactive web visualization with inte-
gration of 2D and 3D sources and processed large data and
metadata, for increased user driven quality assessment, creative
on-set decisions and post-production planning. Traditional big
data visualization favors abstract representations, but practi-
tioners of cinema and other fields rather prefer concrete ones
(video and 3D superimposed, in our case, for instance), while
web-based visualization allows easy integration of modalities
with advantage respect to desktop solutions. Improvements
in progressive visualization of the very large (3D) data are
discussed as well.

Data sources and formats in section III are largely
media/cinema-specific, and we show that the applications
presented in Sections IV, V and VI are useful for the cinema
context. Additionally, the techniques in the latter sections
required acceleration and improvements to deal with the
challenges posed by cinema applications, and are both big data
problems specific, and applicable in other areas. For instance,
the PDE solution strategies, or the optimized graph-SLAM
processes of section IV are optimizations required by the
very large size of data we deal with, which demand specific
solutions to manage the memory and speed requirements of
computers, and especially laptops which are the preferred
on-set platform. The classification and clustering techniques
of section V can be applied to any type of big data where

Fig. 1. Sources for multi-modal data registration and visualisation.

samples are represented in vectorial form. We discuss later in
detail these and other examples of widely applicable improved
big data techniques, especially in the final section, where we
outline the actual validation of the solutions by the cinema
industry.

II. BIG MEDIA DATA ACQUISITION

A. Multiple-source On-set Big Data Acquisition

In recent digital media production, a variety of 2D and 3D
sensors capture a large number of assets and their geometrical
properties (see Figure 1). The amount of data generated on-
set to support digital media production is increasing, as more
devices become available and their data resolutions increase. In
2014, for example, the data for a film visual effects produced
by Double Negative Visual Effects, one of the biggest Euro-
pean visual effects companies, consisted of several hundred
terabytes, in different file formats from various devices as
shown in Table 1.

Video cameras are the primary source of data in media
production: as indicated in Table I, their share in a typical
production scenario far surpasses that of the auxiliary modal-
ities. Multiple cameras have always been considered useful
for editing. However, nowadays it is very common to see set-
ups with a principal camera to shoot the main action, and
a battery of static witness cameras to collect the necessary
data for post-production, in line with the current significance
of “post” in determining the final success of a film. If not
analog, a principal camera was conventionally a HD device,
but 4K to 6K resolutions are becoming increasingly common,
and witness cameras usually HD.

Recently, low-cost RGBD cameras such as Kinect1 and
Xtion2 simultaneously capturing colour and depth information
have become available to support motion analysis in the main
action as well as to extract background geometry information.
However, they still have limitations in large areas or outdoor
scenarios, because of their limited depth range and interference
between devices and materials.

1Kinect. https://www.microsoft.com/en-us/kinectforwindows/develop/
2Xtion. https://www.asus.com/us/Multimedia/Xtion PRO LIVE/
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In order to get more accurate static background scene
information, various passive/active sensors are used. Digital
stills are the most common source of texture information, due
to their wide availability and ease of use.

High dynamic range omnidirectional spherical imaging is
commonly used to get an aligned environment texture map
or lighting source detection. An easy way to capture the
full 3D space in one shot is to use a catadioptric omni-
directional camera using a mirror combined with a CCD
[1]. However, this is difficult to calibrate and has limited
resolution. Point Grey developed an omnidirectional multi-
camera system, the Ladybug3, which consists of six XGA
color CCDs to overcome the resolution problem. Spheron4

developed a commercial line-scan camera with a fish-eye lens
in order to capture the full static environment as a high
resolution and high dynamic range spherical image.

Active depth sensors using ultrasonic, infrared or laser are
sometimes used to reconstruct accurate geometry of objects
or surfaces. LIDAR is one of the most popular active ranging
techniques measuring the distance by the time delay between
emission and reflection of a light pulse.

On-set dynamic scene acquisition takes place mainly out-
doors, and differs from indoor studio shooting with controlled
uniform lighting condition and background geometry (see
[2] on the design of indoor studio capture systems). On-
set capture for media production is more challenging, due
to moving background, uncontrolled illumination and limited
system support [3]. It requires aligned background scene
information as well as dynamic actions in the main capture
volume, on-set system monitoring and assessment tools against
unsecured capture environments, and accurate composition of
footage from various capture devices.

In order to support research into multi-modal big data
processing, we have released a big multi-modal database
acquired in various indoor and outdoor environments, available
at http://cvssp.org/impart/. The dataset includes captured data
typical of important issues facing movie production, with de-
tailed information, and the corresponding 3D reconstructions
of static scenes and multiple synchronised video captures for
dynamic actions, as illustrated in Figure 2.

B. Big data Analysis Issues in Media Production

A key step in the analysis of the data has been the integra-
tion of the multiple, large, data sources, as it plays a significant
role in understanding the data produced and its quality. The
approach taken has been to adopt a “unified 3D view” (Figure
1) for the sources, spherical images, stills, LIDAR scans, etc.
It is a “3D” approach, in the sense, for instance, that 3D
model/point-cloud is reconstructed from multi-view images,
and this allows to register better these images with respect to a
ground-truth 3D (in our case, assumed to be the LIDAR data);
and the position of the sensors with respect to the reference
system provided. Thus, multi-source data are not just unified
in a folder with place and time tags, but become integrated in
the same space. On the other hand, this 3D reconstruction of

3Pointgrey: http://www.ptgrey.com/
4Spheron: http://spheron.com

(a) Indoor scene footage

(b) Outdoor scene footage

Fig. 2. Examples of the IMPART public multi-modal dataset.

the background scenarios is in itself a very useful output for
later post-production effects.

This unified 3D view supports solutions (toolsets) for mon-
itoring the quality of the (multi-)camera set-ups presented in
section III, in the different aspects mentioned above, such
as coverage, synchronization, calibration, etc. The complex
approaches to analyse these aspects with enough quality and
flexibility to be used in the highly dynamic environment of
on-set shooting are discussed in that section, as well as its
evaluation with examples taken from the IMPART dataset.

A key requirement is that the solutions work in real-time
or near real-time, so that fixing the issues, repairing the
calibration, or setting up the cameras to improve the coverage
of the scenario, etc., can take place on-set, where shooting
takes place. Currently, the issues described above are detected
during revision of dailies, or even during post-production,
away from the set; in both cases, the costs of shooting again
the following day, or fixing during post-production, are very
high. To achieve near real-time solutions of the very high
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TABLE I
EXAMPLES OF TYPICAL DATA GENERATED IN FILM MAKING

Data Device Format Dimension Volume Used in
Principal camera 4K or HD Camcorrealder DPX/RAW 2D+Time Many Terabytes All
Witness cameras HD Camcorders H.264/MP4 2D+Time Many Terabytes Animation
Motion capture Xsens MOVEN2 Joint Angle 3D Several Gigabytes Animation/Rigging

Texture reference DSLR camera RAW/JPG 2D Several Terabytes Modelling/Texturing
Spherical HDR Spheron EXR 2D (Spherical) Few Gigabytes Lighting/Modelling
LIDAR Scans Leica/FARO Point cloud 3D Few Terabytes Modelling/FX

quality expected in film blockbusters shown on cinema screens
represents an important challenge.

On one hand, the multiple large data sources pose very
strong memory and processing demands that have to be dealt
with; and preferably, not with supercomputers but with the
more appropriate laptops for the on-set environment. Section
IV discusses mostly the acceleration and optimization of the
techniques to make the approaches presented in section III
for reconstruction and quality monitoring real- or near real-
time. This is achieved by reformulation of the algorithms,
with suitable use of CPU and GPU and distribution; resulting
in orders of magnitude speed improvements in some basic
processes used in the algorithms - largely applicable to other
areas.

An integrated visualization is both a useful outcome and a
tool for users to assess quality further. Section IV discusses
laptop-oriented streaming techniques for the very large 3D
outcomes. Section VI is web oriented, showing its advantage
to integrate a new type of semantic - 2D - 3D interactive
visualizations, which moreover could be easily shared and
annotated in the on-set environment. The additional challenges
posed by bandwidth constraints, and specific 3D graphics
issues are addressed as well.

Section V presents action analysis from an anthropocentric
perspective, generating metadata, which is useful to search
and retrieve in a more intelligent way the content produced
and for integrating semantics in visualizations as indicated
above. The data to be dealt with is much larger: instead of
being the result of a (part of a) day’s shooting, the solutions
should handle the data produced and post-produced in a whole
production, or several of them. The improved optimization and
acceleration techniques presented with respect to clustering,
and using approximate methods, were needed to face this
challenge providing a practically applicable solution.

III. DATA QUALITY AND REGISTRATION

First, we discuss a toolset for set-ups, and then, for regis-
tration.

A. Set-up Monitoring and Quality Assurance

In media production, the conventional quality assurance
mechanism is the review of the “dailies” (the material shot
and produced during the day) at the end of each day’s session.
However, this process can easily be overwhelmed by the huge
volumes of data that the current media production practices
generate, with their use of multiple cameras and an assortment
of auxiliary sensors (Table I), and the current solution, “if in

doubt, re-shoot”, offers robustness through redundancy, but, as
discussed, this leads to additional associated costs in terms
of time and money.

The IMPART toolset offers on-set decision support and
quality assurance capabilities for multicamera set-ups. The
specific problems the toolset addresses include the assessment
of the coverage of the capture volume, validation of the camera
calibration parameters, and through-the-lens synchronisation
of the set-up. The individual tools are discussed in the follow-
ing sections.

1) Coverage Evaluation: A camera is said to success-
fully cover a volume element in the scene if it meets some
application-specific criteria, e.g. the size and the location of
this volume projection on the image plane. The coverage
evaluation tool characterises the scene coverage offered by a
camera configuration with known pose and intrinsic parame-
ters. This is a variant of the sensor placement problem, with
its roots in the “Art Gallery Problem” [4], and its applications
in surveillance [5] and industrial machine vision [6]. However,
the optimal solutions provided by the sensor placement liter-
ature imply rigid pre-planning and precise camera placement.
In media production, on-the-spot decisions and flexibility are
important, which makes feedback on an existing configuration
more valuable than setting up an optimal, but inflexible
alternative [7].

In order to characterise the coverage, a range of 2D and 3D
world models with different geometric primitives is discussed
in [6]. In [7], we consider a 3D cloud of transparent spheres
covering the scene, viewed by pinhole cameras. This permits
more realistic camera models [8], and is sufficient to charac-
terise how a configuration covers a specified capture volume
(the space where the action takes place). The sphere cloud
is then projected through the cameras, to a set of ellipses.
A volume element is covered if it satisfies an application-
dependent subset of unary and binary criteria listed below.
Unary criteria (involving a single camera):

• Field-of-view. The sphere lies within the viewing frustum
of the camera, and its projection lies within the image
frame.

• Framing. Concerns the positioning of the subject matter
in the image frame. It is satisfied if the projection lies
within a specified region of the image plane.

• Resolution. This constraint ensures that the volume is
imaged at sufficient detail, which can be judged from the
area of the ellipse associated with the volume element.

• Depth-of-field. A scene point is in focus if the diameter of
the blur circle on the image plane is less than the pixel
size. This defines a subvolume in the viewing frustum,
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Fig. 3. 3D model of the capture environment, obtained via a colour LIDAR.

where any scene points within satisfies this constraint [9].
Binary Criteria (involving camera pairs):
• Viewpoint difference. Defined as the maximum difference

between the viewing angles of the cameras observing the
scene point.

• Relative resolution. Concerns the maximum scale differ-
ence between the two projections of the scene point,
measured as the ratio of the areas of the projection
ellipses.

• Joint coverage. A volume element is jointly covered if
it satisfies the unary coverage criteria for each of the
cameras separately.

The usefulness of the tool is demonstrated in a camera
placement scenario in a set whose 3D model is depicted in
Figure 3 [7]. Figure 6 illustrates the layout of the cameras,
placed on a 180-degree arc surrounding the capture volume,
in addition to a top-view of a sparse 3D model built from
the images acquired by the cameras [10], and the capture
volume, represented with a synthetic lattice embedded into
the scene. It also presents the coverage evaluated for each
scene point. Since the cameras are trained on the capture
volume, the coverage reaches to 15 cameras within it, but
drops off to 2 cameras for the background points. Figure 7
indicates the change of the coverage during a dolly shot with
a principal camera. As expected, the coverage is proportional
to the overlap between the capture volume and the field-of-
view. Finally, Figure 8 is a vision graph, which, unlike the first
two examples, makes use of the binary constraints, and helps
to identify any redundant cameras, or any segments, which
may benefit from an additional camera.

2) Calibration Validation: For a multicamera set-up de-
ployed for post-production purposes, a very accurate calibra-
tion is essential. Such a calibration can be obtained via a
dedicated, preliminary shot involving a known object [11].
However, maintaining calibration throughout multiple shots
poses a real challenge, considering how busy a production
set is and the cost of any delay. The calibration validation
tool identifies any cameras which are unintentionally per-
turbed, invalidating their calibration. The correct calibration
parameters can be recovered by subsequently registering them
to a 3D model of the scene estimated from the rest of the
set-up [12]. This strategy is preferable to recalibration via,

Fig. 4. Calibration validation pipeline.

for example, VisualSfM [13] [14]: since the perturbations
are often minor and limited to a small number of cameras,
and the computational expense of a full structure-from-motion
procedure is not justified.

Pairwise calibration validation: The calibration parame-
ters for a camera pair imply a geometric relationship between
the corresponding image features, which is encapsulated by a
3× 3 matrix (i.e. a fundamental or an essential matrix). This
relationship can also be estimated directly from the image cor-
respondences. The calibration validation tool leverages on the
observation that, the estimated and the implied relationships
will be consistent only if the calibration parameters are correct.
Otherwise, at least one of the cameras has invalid calibration
parameters. However, it is not possible to identify which one,
or whether both are perturbed at the pairwise level.

Global calibration validation: The pairwise validation
block issues a verdict of intact or perturbed for each camera
pair. This leads to a graph, where each node is a camera and
each edge corresponds to the verdict for the associated camera
pair. The number of inliers (successfully explained image
correspondences) are assigned as edge weights. Any vertices
for which there are too few observations (e.g., less than two
edges) are labelled as undetermined. For the remaining cam-
eras, the algorithm seeks the best combination of vertex labels,
by exhaustively instantiating all possible combinations of the
binary tags valid and invalid. An intact edge is consistent with
a labelling, if the associated vertices are valid. A perturbed
edge requires at least one invalid vertex. A labelling hypothesis
is scored by summing up the weights of the consistent edges.

Figure 4 depicts the calibration validation pipeline. As an
example, the calibration parameters obtained via [11] for the
set-up in Figure 6, when employed in a multiview triangulation
task [10], yield 4711 3D points. The calibration verification
tool recommends the correction of the cameras 4, 8 and
14. With the updated parameters, the triangulation algorithm
returns a 3D structure with 5512 points.

3) Multicamera Synchronisation: Any post-production task
that makes use of a multicamera set-up invariably requires
synchronisation. This is typically achieved by a hardware
signal. A through-the-lens synchronisation and frame drop
detection capability is of value in the event that
• the hardware signal is interrupted, for example, due to a

broken or disconnected cable.
• a device does not have a hardware synchronisation facility
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Fig. 6. The coverage map for the witness cameras. Hotter colours indicate
better coverage. The witness cameras are marked by a numbered square.
The principal camera moves to right, on a path denoted by the horizontal
line.

Fig. 7. The number of capture volume points covered by the principal
camera, as it moves to right.

Fig. 8. The vision graph for the witness cameras. See Figure 6 for the camera numbers.

Fig. 5. Synchronisation pipeline.

(e.g., a Kinect), or cabling is impractical (e.g. a principal
camera on a moving platform).

• the recording media drops frames due to, for example, a
buffer overload.

The alternative, audio synchronisation is sensitive to the back-
ground noise, and limited to frame-level synchronisation, due
to the slow sound propagation speed in the air [15].

The multicamera synchronisation tool estimates a frame rate
and an offset for each camera in the set-up. It also detects the
frame drop events, reporting a time window and the number of
dropped frames for each event [16]. The tool makes use of the
observation that, if two frames are acquired at the same time
instant, the corresponding image points on the dynamic scene
elements (e.g. actors) satisfy a certain geometric constraint
(epipolar constraint) [17]. This requires a calibrated camera
set-up, but enables the use of point features, sidestepping a
major challenge: feature trajectories, as used in [18] and [19],
are difficult to establish and maintain on deformable objects
such as actors. As alternatives, spatio-temporal features [20]
and global image similarity metrics [21] do not have this

issue, but they are very sensitive to viewpoint and appearance
changes [22].

The synchronisation pipeline, illustrated in Figure 5, has
two distinct stages: relative and absolute synchronisation.

Relative camera synchronisation: In the presence of frame
drops, the indices of the corresponding frames for a pair of
image sequences lie on a broken line with a fixed slope.
The slope corresponds to the relative frame rate, whereas
the offset of the first segment is the relative temporal offset.
Any frame drop events are manifested as the break points,
where the number of lost frames can be estimated from
the shift. The relative synchronisation module establishes the
index correspondences via the Viterbi algorithm [23], where
the similarity of a frame pair is measured by the conformance
of the image feature pairs to the epipolar constraint. When
there are gaps in the index correspondences, the time of the
frame drop events can be reported as windows.

Absolute synchronisation: The pairwise synchronisation
measurements can be represented on a graph, where each
vertex is a camera, and each edge corresponds to a rela-
tive synchronisation measurement, weighted by the number
of supporting frame indices. In this graph, each minimum
spanning tree offers an absolute synchronisation hypothesis,
namely a frame rate and a temporal offset for each camera. The
absolute synchronisation procedure samples the solution space
by randomly generating minimum spanning trees and returns
the best hypothesis. A hypothesis is scored by summing the
weights of the edges consistent with it.

Frame drop fusion: Each pairwise measurement effectively
proposes a temporal offset for each frame in the associated
camera pair. The fusion algorithm scores these proposals with
the edge weights in the absolute synchronisation graph. A
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frame drop is reported for the segments where the strongest
offset hypothesis is different from the absolute offset estimated
for that camera.

As an example, the tool is tested on a 30-second action
sequence acquired by the set-up in Figure 6. The tool success-
fully identifies the -1, 20 and 1-frame offsets in the cameras
8, 11 and 15, respectively, along with the correct frame rate.
A more extensive evaluation in [16] reports that the frame
drop events can be localised down to a 1-3 second temporal
window, and the number of lost frames is correctly identified.

B. Multi-modal Data Registration

The multi-modal data capture process ends up with huge
amount of unstructured footage which is hard to efficiently
search, arrange and manage. Datasets acquired by various
devices introduced in Section II-A exist in different coordinate
systems with different dimensions, formats, densities, charac-
teristics and noise as shown in Table I. The processing and
management of this amount of heterogeneous data consumes
considerable resources, most of them intensive manual labour.
A key issue to allow efficient data management and visuali-
sation is automatic registration of the multi-source data into a
common coordinate system.

There have been a few researches for 2D-3D data matching
and registration [24]–[26], but they have focused only on
registration for a single data modality. 2D-3D registration
between pairs of modalities such as photos to LIDAR [27],
[28], spherical images to LIDAR [29], and images to range
sensor [30], [31] have also been investigated. In our prelimi-
nary researches, 3D feature descriptors were tested and their
performance on multi-modal registration in various domains
was analysed [32], [33].

Here, we introduce a complete pipeline for multi-modal
2D/3D data registration for media production, based on a
unified 3D space where 2D and 3D data are registered as
shown in Figure 1. The LIDAR point cloud and its coordinate
system are defined as the reference (target) model space for
registration because they provides an accurate 3D geometry of
the scene at real-world scale. If LIDAR scans are not available,
any data modality can be used as a target reference.

1) 2D Data registration via 3D reconstruction: 2D data
are registered to the target coordinate via 3D reconstruction
because direct registration of 2D images to 3D structure is
difficult. We assume that multiple 2D data are available for the
same scene so that 3D geometric information can be extracted.
Relative camera pose information to the reconstructed model is
computed during the 3D reconstruction process. As a result, all
original camera poses are automatically registered to the target
reference coordinate if the reconstructed model is successfully
registered to the target reference model.

RGBD cameras provide appearance (colour) and respective
depth information. 3D scene geometry and camera poses can
be estimated from consecutive RGBD frames using the Kinect-
Fusion algorithm [34]. Registration of normal photographs
without depth information is more challenging.

Shape-from-Motion algorithms such as Bundler [35] fol-
lowed by PMVS [36] provide dense 3D scene reconstruction

with camera poses from photos. Autodesk also provides an
on-line image-based 3D reconstruction tool with camera pose
estimation, RECAP3605. However, these Shape-from-Motion
approaches for digital stills may not be appropriate for on-
set media production due to their processing speed and being
proprietary. A fast reconstruction algorithm from digital stills
is proposed later in Section IV-A. A spherical image is
represented on the longitude-latitude coordinate instead of
the common x-y system. Spherical images are captured as
vertical stereo pairs to allow dense reconstruction of the
surrounding scene using stereo matching [37]. This stereo
matching algorithm is further accelerated in Section IV-C.

In case of multiple wide-baseline witness video cameras,
the sparse reconstruction from Section III-A can be used for
registration. However, it is sometimes difficult to extract good
geometry of the static background if cameras are too sparsely
placed (i.e. they have little overlap) to find corresponding
points between viewpoints. In such a case, camera calibration
information estimated by wand-based extrinsic camera cali-
bration [11] is directly registered by aligning the calibration
coordinates to the origin of the LIDAR sensor.

2) 3D Feature Detection: 3D feature detection identifies
locations of distinct points in terms of shape or appearance
in an input 3D structure. Feature detection is an important
step because its distinctiveness and repeatability across models
directly influences the performance of matching and regis-
tration. Many feature detection methods for 3D point clouds
have been investigated. Dutagaci et al. [38] and Tombari et
al. [39] provide benchmark evaluations of existing 3D feature
detectors. However, all detectors which were highly ranked
in these evaluations do not guarantee such high performance
for multi-modal data, due to their noise, geometric errors and
distortions in 3D reconstruction.

We evaluated various Various 3D feature detectors, resulting
in our choice to use the 3D extension of the classic Kanade-
Tomasi detector [40], which uses the ratios of eigenvalues
of surface normal vectors for 3D edge and corner detection.
This detector is not too selective but still produces a relatively
high number of repeatable and distinctive 3D features between
cross-modalities in spite of geometrical errors induced from
incomplete 3D reconstruction.

Figure 9 shows feature points detected for the Cathedral
scene available in the IMPART public multi-modal database.
The Kanade-Tomasi detector and the 3D SIFT detector [41],
one of the most popular feature detectors using Difference-of-
Gaussian filter and Hessian eigenvalue test, were compared.
The SIFT and Kanade-Tomasi detect a similar number of
feature points but the results of Kanade-Tomasi are more
distinctive in representing clean 3D edges and corners.

3) 3D Feature Description and Registration: A feature
descriptor is a vector representing different distinctive char-
acteristics of a specific point in the scene. Recently Guo et
al. [42] presented a survey and evaluation of local 3D feature
descriptors but the test was carried out for a single modality.
Most 3D feature descriptors use local geometric information.
However, these descriptors are suitable only for models with

5RECAP360: http://recap360.autodesk.com



8

(a) Point cloud

(b) 3D SIFT detector

(c) 3D Kanade-Tomasi detector

Fig. 9. 3D Feature detection results (Left: LIDAR, Middle: Reconstruction
from Photos, Right: Reconstruction from spherical imaging)

low geometric errors. In our preliminary research for multi-
modal data registration [33], we verified that a combination
of descriptors applied on different domains such as colour
and local/global geometry can improve the point matching and
registration performance.

Among various descriptors introduced in [33] and [42],
we use Fast Point Feature Histograms (FPFH) [43] in our
pipeline because it is fast and shows stable performance with
a short description. FPFH is computed by a weighted sum
of neighbouring Point Feature Histogram values which are
calculated by three angles between neighbouring points. One
FPFH descriptor is represented as a vector with 33 bins (11
bins for each angle).

The FPFH descriptor is extended to multiple domains to use
geometry and colour information together. FPFH descriptors
in three different domains (Local, Semi-global and colour) are
calculated for the same input point cloud. The Local FPFH is
calculated with neighbouring points in the same way as in the
original FPFH descriptor. The Semi-global FPFH is calculated
only with detected feature points in the larger volume radius,
which represents the distribution of feature points. The Colour
FPFH is calculated with the same neighbours of the Local
FPFH, but it uses CIE colour components instead of surface
normal components. The result is represented as a 2D vector
with 33×3 bins.

Once the 3D descriptor sets are computed, all datasets are
registered to the target (LIDAR) point cloud by descriptor
matching. There may be many outliers in descriptor matching
because of low distinctiveness and repeatability of detected
features. RANSAC is a common method to find an optimal

solution when unknown outliers exist. SAC-IA [43] is a
RANSAC-based initial alignment algorithm which eliminates
outliers and estimate a 3D rigid transform matrix between
source and target models. We modify this SAC-IA algorithm
to adaptively adjust the contribution of description domains in
matching according to the distinctiveness of the descriptor. The
matching cost between two points p and q in the RANSAC
process is defined as a weighted sum of individual domain
descriptor matchings of the form:

D(p, q) = λLDL(p, q) + λGDG(p, q) + λCDC(p, q) (1)

where D(·) denotes the distance between two descriptors, and
subscripts L, G, and C represent local, semi-global and colour
domains, respectively. The weighting factor λ is computed by
the ratio of the second to the first nearest neighbour distances.
The initial alignment resulted from the modified SAC-IA is
refined over the whole point cloud using the Iterative Closest
Point (ICP) algorithm [44].

Figure 10 illustrates the original datasets and registration
results. In Figure 10 (a) the original 3D point clouds generated
from different sources exist in different coordinates which
are automatically registered into a single unified coordinate
system through the proposed registration pipeline. The original
2D footage is visualised on the target LIDAR reference in
Figure10 (b). We can observe that all 2D footage including
photographs and HD videos are registered to the target coor-
dinate with correct location and orientation.

This enables the automated registration of multi-modal data
sources allows web-based visual inspection for completeness
and supporting creative decisions in production, as discussed
in section VI.

IV. ACCELERATION AND QUALITY ASSESSMENT OF BIG
3D RECONSTRUCTION

To support various special effects, principal camera match-
moving, and rendering animated characters, among others, 3D
reconstruction is often employed in digital cinema production.
In section II we described a wide variety of available input
sensors for 3D reconstruction is available.

Two basic modalities of the 3D reconstruction are com-
monly used, static and dynamic. The static one is typically
used for the reconstruction of the movie set or for the
natural environments to complement digital matte paintings.
The variety of input sensors can be used, and a plethora
of algorithms exist for this purpose. On the other hand,
dynamic 3D reconstruction, on the other hand, is typically
being used for the actors and it can be obtained by a multi-
view camera setup and the visual hull algorithm [45] or one
of its variants [46]. In this section, we focus mainly on the
static 3D reconstruction.

Sparse 3D reconstruction can be obtained from still images
using the Bundle Adjustment algorithm [47]. In this context,
the term sparse refers to the relative density of the 3D point
cloud obtained. A dense reconstruction can be obtained by
an additional post-processing pass, e.g. by the PMVS [36]
or CMVS [48] algorithms. Unlike the sparse reconstruction,
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(a) Point cloud registration (Top: Cathedral set in Figure 9 (a), Middle:
Indoor set in Figure 2 (a), Bottom: Outdoor set in Figure 2 (b)

(b) Visualisation of registered 2D footage in the unified 3D space

Fig. 10. Multi-modal data registration results

the dense reconstruction is not particularly interesting from
the acceleration and quality assessment points of view, as it
seldom fails and it usually gives satisfactory results if it is
given a successful sparse reconstruction to start with.

A. 3D Reconstruction from Stills

Several open-source and commercial software packages are
available for 3D scene reconstruction from unstructured set

of photographs of the scene: Bundler [35], VisualSFM [13],
PhotoSynth6, PhotoScan7, to name just a few. Most of the
existing software packages are based on Bundle Adjustment
(BA) [35] to obtain a refined structure of the environment from
captured images.

However, usage of such algorithms in digital cinema pro-
duction suffers from several drawbacks. A main one is their
execution time; the reconstruction using the available software
takes far too long to be performed on-set; therefore, it is
typically performed later, on a render farm. This can lead to
problems if it turns out that the capture was insufficient, requir-
ing the repetition of the scene capture. Another problem is the
use of cloud computing by several of the available solutions
(Microsoft’s Photosynth, Autodesk 123D8, and RECAP3609).
When processed in a Cloud, the original data are transferred
outside the VFX facility or even outside of the respective
country, which is always an issue with copyright-protected or
otherwise sensitive content.

In this work, we propose a novel fast Bundle Adjustment
solver based on Block Matrices [49] which features fast covari-
ance recovery [50] and hence enables online error visualization
and correction. We formulate the Bundle Adjustment task as
a nonlinear maximum likelihood estimation on a graph of
feature point observations by the respective cameras, similar
to [47].

As discussed in the previous section, the 3D reconstruction
starts by calculating the initial poses of the cameras and the 3D
points in the environment. They are obtained by considering
pairwise image matching. In general, every 3D point is visible
in more than two images and the contributions of all the
measurements need to be considered for a better estimation
of the 3D structure. Bundle adjustment starts from the initial
estimates of the camera and 3D point poses and iteratively
refines the solution. Conceptually, this is done by minimising
the reprojection errors. In our work we formulate the BA as
a nonlinear optimisation on graphs, where the vertices are the
variables to be estimated, namely camera poses and 3D points
in the environment, and the edges are the measurements. In
order to obtain the optimal configuration of the graph, we
perform a maximum likelihood estimation (MLE) of the set
of variables θ = [θ1 . . . θn], usually containing the 3D points
in the environment p = [p1 . . . pnp] and camera parameters
c = [c1 . . . cnc] (position, and in the case of uncalibrated cam-
eras, the intrinsic parameters), given the set of observations
z = [z1 . . . zm]:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

{− log(P (θ | z)} . (2)

Each observation zk is the 3D point projection onto the
image plane, ẑk = Prk(ci, pj), where Pr(·) is the projection
function of a 3D point, pj , onto the camera, ci. Each obser-
vation is assumed to have zero-mean Gaussian noise with the

6https://photosynth.net/
7http://www.agisoft.com/
8http://www.123dapp.com/catch
9https://recap.autodesk.com/
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covariance Σk and we measure the reprojection error:

P (zk | ci, pj) ∝ exp

(
−1

2
‖ zk − Prk(ci, pj) ‖2Σk

)
,(3)

where zk is the actual value in pixels of the projected 3D point.
Finding the MLE from (2) is done by solving the following
nonlinear least squares problem:

θ∗ = argmin
θ

{
1

2

m∑
k=1

‖zk − Prk(ci, pj)‖2Σk

}
. (4)

Iterative methods such as Gauss-Newton (GN) or Levenberg-
Marquard (LM) are used to find the solution of the NLS in (4).
An iterative solver starts with an initial point θ0 and, at each
step, computes a correction δ towards the solution. For small
‖δ‖, Taylor series expansion leads to linear approximation in
the neighbourhood of θ0:

ẽ(θ0 + δ) ≈ e(θ0) + Jδ , (5)

where e = [e1, . . . , em]
> is the set of all nonlinear re-

projection errors between the observed and reprojected 3D
points, ek(ci, pj , zk) = zk − Prk(ci, pj), with [ci, pj ] ⊆ θ
and J is the Jacobian matrix containing the derivative of the
components of e.

Thus, at each ith iteration, a linear least squares problem
needs to be solved:

δ∗ = argmin
δ

1

2
‖A δ − b‖2 , (6)

where the A = Σ−>\2J(θi) is the system matrix,
b = Σ−>\2e(θi) the right hand side (r.h.s.) vector and δ =
(θ − θi) the correction to be calculated [51]. The minimum
is attained where the first derivative vanishes:

A> A δ = A>b or Λδ = η , (7)

with Λ = A>A, the square symmetric system matrix and
η = A>b, the right hand side vector.

The solution to the linear system can be obtained either
by sparse matrix factorization followed by backsubstitution
or by linear iterative methods. After computing δ, the new
linearization point becomes θi+1 = θi ⊕ δ.

In BA applications, the initial solution θ0 can be relatively
far from the optimal one; therefore, LM is preferred over the
GN methods. LM is based on efficient damping strategies
which allow convergence even from poor initial solutions. For
this reason, LM solves a slightly modified variant of (7), which
involves a damping factor λ:

(Λ + λD̄)δ = η or Hδ = η , (8)

where D̄ can be either the identity matrix, D̄ = I , or the
diagonal of the matrix Λ, D̄ = diag(Λ).

The remaining part of the section discusses important as-
pects that must be understood in order to compute efficiently
solutions of the BA problem from linear system properties to
nonlinear solvers.

Indeed, to solve the linear system in (8) efficiently, some
particulars of the BA problem can be considered. For example,
by grouping the elements of the system matrix corresponding

to the camera poses and the 3D points separately, one can solve
for camera poses first and refine the 3D points in a second
step. This is a common practice in solving 3D reconstruction
problems, where the camera poses are linked only through the
points and the algebraic decomposition of the system matrix is
called Schur Complement. For this purpose, the system matrix
is split in four blocks:[

C U
U> P

]
·
[
c
p

]
=

[
ηc

ηp

]
. (9)

Usually, the number of cameras is much lower than that of
observed points and P occupies a relatively large portion of
the matrix.

It results in diagonal C and P matrices, that can be easily
inverted. Following that P is invertible, the Schur complement
of the block P is C − UP−1U>, and it is used to solve for
the camera poses first (this is sometimes referred to as the
reduced camera system). Points are then obtained by solving
the remaining system.

To obtain fast solutions of the BA problem, sparse block
matrices are employed. The derivatives in Λ are grouped into
blocks, whose size corresponds to the number of degrees of
freedom (DOF) of the corresponding variables: three DOF for
the 3D points and 12 DOF for the cameras (6 for description
of the pose and a further 6 for the intrinsic camera parameters).
We can say that the problem has a natural sparse block
structure; therefore, for the representation and solving of (8) or
(9), it is preferable to use sparse block matrix representation
and linear algebra packages rather than elementwise sparse
representation (such as e.g. compressed sparse row (CSR) or
compressepoint cloudd sparse column (CSC) [52]). A detailed
description of the block matrix data structure for fast nonlinear
solving can be found in [53], while [54] shows how this data
structure highly benefits real-time solving.

Note that most of the existing packages do not fully take
advantage of this block structure, and despite some of them use
an intermediate sparse block matrix formats, they all convert
to element-wise sparse matrix before solving the associated
linear system. Using sparse block matrices is the main novelty
of our approach.

To obtain even higher performance, it is possible to take
advantage of parallel architectures, such as GPUs. The most
time consuming operations in the solving process (9) on a CPU
are 1) matrix multiplication in UP−1, further referred to as
general matrix multiplication GEMM1, 2) the second matrix
multiplication in UP−1U>, further referred to as GEMM2,
and 3) decomposing the system in C − UP−1U>, further
referred to as reduced camera system solve (RCS).

As already mentioned above, the size of the RCS is much
smaller than the original system since the number of cameras
is much smaller than the number of observed 3D points. On the
other hand, the corresponding matrix is also less sparse, and
it is usual to solve it by means of a dense solver. On a GPU,
this is easily parallelized and state of the art implementations
are available e.g. in CULA10 or cuSOLVER11 packages. The

10Available at http://www.culatools.com/
11Part of CUDA 7 and higher, http://developer.nvidia.com/cuda-zone
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TABLE II
BUNDLE ADJUSTMENT SOLVING TIME BREAKDOWN; INTEL CORE I5 IS MID-RANGE QUAD CORE CPU, NVIDIA GTX 680 IS LOW-END CONSUMER

GPU AND NVIDIA K40 IS HIGH-END SCIENTIFIC GPU.

Operation Implementation Device Time [sec]

Cholesky factorization

Sparse (CSparse) Core i5 CPU 215.83
Blockwise (SLAM ++) Core i5 CPU 32.75

Dense (Eigen) Core i5 CPU 0.91
Dense (CULA) GTX 680 GPU 0.72
Dense (CULA) K40 GPU 0.22

GEMM2

Sparse (CSparse) Core i5 CPU 28.72
Blockwise (SLAM ++) Core i5 CPU 13.25

Sparse (cuSPARSE) GTX 680 GPU 16.84
Sparse (cuSPARSE) K40 GPU 13.05

Blockwise (proposed) K40 GPU 6.05

speedup of dense matrix decomposition on a GPU, compared
to the CPU version, is nearly two orders of magnitude (see
the upper half of Table II), which is deemed sufficient in
production environments.

On the other hand, the speedup of the sparse GEMM kernel
is not as good, as can be seen in the lower half of Table II,
specifically the rows with cuSPARSE results. The consumer
GPU is somewhat slower than the CPU implementation and
the high-end GPU is only marginally faster. This stems from
the fact that the CPU implementation is taking advantage of
the block structure [53], while the GPU implementation is
working at the level of sparse matrix elements. To improve
this, we implemented a custom sparse matrix multiplication
kernel on GPU [55] and further modified it to work with
block matrices. Although it is only a proof of concept, the
implementation already outperforms the CPU by about a factor
of 2.

B. Quality Assurance in 3D Reconstruction from Stills

Once the 3D reconstruction has been calculated, it is
possible to visualize it. Thanks to the above-mentioned op-
timizations, it is possible to reconstruct large scale scenes on
a high-end laptop in a matter of tens of minutes, and thus,
it is possible to inspect the reconstruction on-set. However,
some of the shortcomings might not be immediately apparent,
especially if the scene geometry is complex. Fortunately, by
defining the underlying optimization problem as maximum
likelihood estimation (MLE), we have information theoretic
error metrics at our disposal.

The usual metric in statistics and information theory is
covariance (resp. marginal covariance). However, recovering
the covariance matrix Σ involves inverting the system matrix
Λ, and while Λ is sparse in BA, Σ would be completely dense.
This is not only problematic because of the computational cost,
but also because of the storage requirements. The matrices rou-
tinely encountered in BA are hundreds of thousand elements
square, which corresponds to roughly 74.5 GB of memory
which is not available nowadays even in high-end laptops.
Fortunately, not all of the elements of the covariance matrix are
needed in order to display the 3D reconstruction precision. In
[56], it was shown how specific elements from the covariance
matrix can be efficiently calculated from R = chol (Λ) by
applying the recursive formula:

Σii =
1

Rii

 1

Rii
−

n∑
k=i+1,Rik 6=0

RikΣki

 , (10)

Σij =
1

Rii

− j∑
k=i+1,Rik 6=0

RikΣkj −
n∑

k=j+1,Rik 6=0

RikΣjk

 .(11)

In case R is sparse, the above formulas can be used to com-
pute the elements of Σ at the positions of nonzero elements
in R very efficiently [57]. To compute multiple elements of
the covariance matrix, such as the whole block diagonal, these
formulas become inefficient unless all the intermediate results
are stored. Our implementation performs the calculation of
(11) in blockwise manner, same as the linear solving, yielding
considerable gains in computation speed.

In order to visualize the 3D reconstruction quality, the
block diagonal of the covariance matrix, which corresponds
to the covariances of the individual cameras and 3D points, is
calculated. Cholesky decomposition of the individual diagonal
blocks is performed, yielding a matrix with the coordinate ba-
sis of an ellipsoid enveloping the uncertainty of each respective
variable. If the scale of the reconstruction matches the physical
scale, it would be possible to calculate the precision of each
3D point estimate e.g. in inches, for instance. For displaying a
false color point cloud such as the one in Fig. 11, the squared
norm of the matrix is taken instead and the resulting value is
used to look up a false color in a suitable palette. Visualization
of marginal covariances was not previously attempted, as
the cost of the algorithms required to compute them using
conventional algorithms was prohibitive [50].

C. Dense Reconstruction from Spherical Stereo Images

Furthermore, we accelerate the dense 3D reconstruction
from spherical stereo scans, originally described in [37]. The
spherical stereo consists of two spherical images unwrapped
into latitude - longitude format, captured with vertical dis-
placement and the result of the reconstruction is a spherical
depth map of the same size as the images. The corresponding
columns in the two images capture the same portion of the
scene from a different viewpoint and they are sufficient to cal-
culate one column of the dense depth map. The method of [37]
consists of dense disparity estimation by constrained block
matching followed by regularization by a PDE. The former one
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Fig. 11. Color-coded 3D reconstruction Quality Assurance of the Surrey
Cathedral. Orange colors correspond to low covariance, blue colors correspond
to high covariance. There should be additional capture to the blue parts, in
order to reduce covariance of the solution. The white pyramids are the camera
poses.

is computationally bound while the latter is memory bound. To
accelerate block matching, parallelization is employed: each
column can be treated separately.

The PDE in the original version of the algorithm is im-
plemented as a series of image processing primitives, each
reading and writing the results to a separate image. This is
highly inefficient with respect to the memory traffic and usage
of cache as the images are too large to fit in it; so by the
time the next operation starts reading the image, the data
must be fetched from RAM. To optimize this, the operations
are formulated as partial functions and chained together in
such a way that query to a result pixel value recursively
calls the operations and performs all the computation for that
single pixel at once. This significantly improves locality of
references, as the input image is now read from and written to
RAM only once, the rest of traffic being facilitated by cache
and CPU registers.

However, the implementation of local filters required for
partial derivative calculation causes repeated computation of
the overlapping source pixels. In some cases, the repeated
computation is faster than storing the intermediate result in
memory. However in our case, increased throughput was
gained by implementing a transparent tiled cache as another
partial function. This way, a small patch of the intermediate
image is computed once and then the local filter can read from
the tile, thus saving computation.

Fig. 12 shows a plot of relative speedup of the entire
processing pipeline based on the number of cores (this was
measured on 16-core Xeon platform). We can see nearly linear
scaling up to 8 cores and then sublinear scaling to 16 cores,
where both CPUs of this NUMA system become utilized
and some extra communication overhead ensues. The entire
processing time was reduced from over 14 minutes to less
than 1.5 minutes, or by a factor of 11.3.

To enable reconstruction of larger areas than a single spher-
ical stereo scan can cover, an algorithm for 3D reconstruction
from multiple spherical images was developed [58]. It is based
on combined RGB and depth interest point matching, and
consists of spherical image feature extraction, matching, initial
estimation and optimization based on graph-SLAM process,

Fig. 12. Performance Scaling of Accelerated Dense Reconstruction from
Spherical Stereo Images

Fig. 13. GraphViewer displaying a LIDAR scan of the Plaza Scene in the
IMPART dataset

which can be calculated using the same accelerated algorithms
as the BA in the previous subsection.

Multiple experiments have been performed in order to
evaluate the performance of the proposed 3D reconstruction
from multiple spherical images. To analyse the accuracy of
the proposed technique, ground truth was measured on the
IMPART datasets. The precision and time of the reconstruction
was compared to that of the ICP algorithm. Both ICP and
SLAM have similar performance in terms of accuracy, but the
main advantage of the SLAM approach is in the processing
time: it is almost three orders of magnitude faster than the ICP
algorithm, for all the tested datasets.

D. 3D Reconstruction Visualisation

While our web-based on-set visualisation is presented in
Section VI, we have also implemented an offline visualisation
solution based on a subset of OpenGL 4 and OpenGL ES 2.0,
for testing purposes. In the basic display mode, it shows the
reconstructed point cloud, either with colors where available
(see Fig. 13), or just in red otherwise. It can also display
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Fig. 14. Semantic Content Analysis in Cinema Production.

graph edges, for coverage and debugging purposes. It supports
camera or 3D point selection, by clicking on a specific camera,
only the edges of that camera are displayed. Edges of multiple
cameras can be displayed as well, by holding ctrl or shift while
making the selection.

To allow viewing of very large scenes, a streaming mech-
anism was implemented. The data is split into several blocks
which individually fit in the GPU memory, while each block
contains a set of 3D point positions: their corresponding
colors, and a portion of the edges of the graph, referring to
these points. Each block is then sent for rendering separately
and then deleted from GPU memory. This allows displaying
3D scene of any size while only sacrificing the rendering
speed.

V. SEMANTIC MOVIE CONTENT ANALYSIS

The huge amounts of multimedia data which arise during
shooting have to be managed, stored and integrated in ap-
propriate ways for subsequent processing, postproduction and
footage archiving. Cinema production is demanding not only
on-set but afterwards too. Important requirements include fast,
efficient ways of searching, browsing and analysing footage,
towards automatic generation of semantic metadata. Video
summarization and fast content analysis algorithms for big
media data are some of the techniques needed to meet these
needs.

Film content analysis research efforts originally focused on
exploiting text-based approaches. Thus, film audio description
scripts and screenplays constituted the basis of most of the
methods developed, up until the previous decade. On the other
hand, analysis of low-level visual features was widespread
for other types of content like sports and surveillance CCTV
footage, while several attempts had also been made to exploit
higher level semantic visual features. However, semantic film
content analysis by exploiting visual features or combin-
ing them with audio ones is gradually becoming prevalent,
bridging the semantic gap that existed when only text-based
approaches were employed [59].

In film production, semantic content analysis of big media
data is mainly used in the ingestion, post-production and
footage archiving stages of the pipeline (Figure 14), by adding
human-related or other semantic annotations to content, thus
enabling novel functionalities for fast browsing and preview
of footage, as well as retrieval of the most relevant streams
out of the entire available footage.

Technologies that have significant impact in this workflow
include temporal video segmentation exploiting semantic in-
formation, video segment clustering towards video summa-
rization and batch processing, face detection / recognition

/ clustering and visual analysis based on production-related
specific activities, as discussed in the following paragraphs.

One approach for performing temporal video segmentation
is to segment the stream according to the depicted human
activities. This can be accomplished by applying recursively
activity-based temporal video segmentation techniques in or-
der to detect changes in the depicted activity and split content
accordingly. Activity change detection can be achieved by
employing activity related video descriptions and measuring
their dispersion on overlapping video segments, as described
in Section V-A

Fast browsing within takes, dailies previewing and batch
processing of similar takes constitute real needs in film pro-
duction. These needs can be successfully catered for with
clustering techniques, forming clusters of similar takes based
on some type of semantic information (e.g. the displayed
activity). In the technique briefly described in Section V-A,
descriptors widely used in human action recognition are em-
ployed for the description and subsequent clustering of the
activity segments created using the temporal video segmenta-
tion method mentioned above. In the multiview video case, the
additional information is also exploited and view-independent
action representation is achieved.

In general, once video segments, frames or frame regions
have been represented by appropriate feature vectors, one can
apply clustering or classification upon them. Many clustering
or classification algorithms cannot deal with big data without
proper adaptation. These algorithms often involve the con-
struction of a similarity matrix of all the available training
vectors. A novel kernel matrix trimming algorithm, which aims
to both increase the performance of baseline kernel k-means
clustering [60] and reduce the number of non-zero kernel
matrix elements, thus accelerating the iterations of kernel k-
means and requiring less memory, is presented in Section
V-B and is an example of a fast and scalable technique for
big media data analysis. A distributed implementation of this
algorithm, that utilizes the MapReduce programming model
and allows the fast processing crucial for the movie industry,
is also presented in the same section. These approaches have
been applied and evaluated in the task of facial images
clustering in large scale datasets.

Big visual data classification problems, such as face or
human activity recognition often appear in movie production
and post-production. A simple approach to deal with the vast
amount of training data is to model each class of the population
separately, by employing an ensemble of one-class classifiers.
However the training data for each separate class can still be
huge. Approximate approaches can be used to overcome this
problem. A novel approximate solution for Least Squares One-
Class Support Vector Machines is presented in Section V-C.
The performance of the approach is experimentally evaluated
on face recognition in a large facial images dataset.

The approaches presented can also be applied to big media
data found in other application domains such as large media
archives, surveillance etc. In addition, the clustering and
classification techniques can be also applied to all sorts of big
data where individual samples can be represented in vector
form.
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A. Activity-based temporal video segmentation and clustering

Understanding/analyzing human activities in video is vital
in many applications related to media production and post-
production, such as video summarization, highlight extraction,
event detection or content-based annotation [61]. This problem
has been primarily approached by applying action/activity
recognition techniques on video data from one [62] or multiple
[63] cameras. One of the disadvantages of action analysis
within a recognition setting is that the set of all possible human
actions should be a priori defined and an adequate number of
(labeled) action videos should be available for the training of
the involved classifiers. In several application scenarios, e.g.,
in movie production/post-production and content-based video
retrieval, the objective is to temporally delineate the different
action patterns and perhaps cluster them into sets of similar
actions, rather than to perform a strict characterization (i.e.,
recognition) of the observed actions. Indeed, temporal video
segmentation into meaningful segments, as well as video seg-
ment clustering can be important steps in the production and
post-production processing chain, since they allow automatic
semantic annotation of the video segments for fast footage
ingestion, archiving and retrieval, all being instrumental due
to the huge volumes of data.

Three methodologies have been widely used [64] for tempo-
ral action segmentation, namely the sliding window, boundary
detection and grammar concatenation ones. The sliding win-
dow approach (e.g. in [65]) divides a motion sequence into
multiple (usually overlapping) video segments. The success of
this approach strongly depends on the discrimination ability of
the employed action video representations. Boundary detection
methods [66] generally search for discontinuities in observed
human action videos. Boundaries usually imply a basic action
taxonomy, without depending on explicit class definitions. The
use of grammars in temporal action segmentation originates
from speech recognition. The mainstream approach is to model
state transitions between action states using Hidden Markov
Models (HMM) along with some method for action feature
generation, such as dynamic system representations [67],
geometrical property encoding [68], curvature scale space,
centroid distance function [69] etc. Moreover, two models of
increasing popularity are change-point detection [70], [71] and
Switching Linear Dynamical Systems (SLDS) [72].

In the following, we will summarize a novel semantic tem-
poral video segmentation approach based on human activity
information and the Fisher discriminant analysis. The approach
goes beyond the standard shot boundary (shot cut) detection
applied on video data, employs a state-of-the-art video repre-
sentation and can be applied both to single-view and multi-
view video data. The derived temporal video segments can
then be clustered into clusters. Each such cluster contains
video segments depicting similar human activities and can be
semantically annotated according to these activities . More-
over, face detection and face recognition can be performed
within each segment extracting additional actor identity-based
annotation of the footage.

For action representation within the proposed method we
have employed the Dense Trajectories-based action video de-

scription [73] combined with the Bag of Words (BoW) model,
since it has been shown to provide state-of-the-art performance
in the related task of human action recognition. In Dense
Trajectories video description, each video is described by
using a set of five descriptors calculated along the trajectory of
interest points that are tracked for a number of L consecutive
video frames.

More specifically, in order to perform temporal segmenta-
tion of an action video possibly depicting several consecutive
actions, we employ the Dense Trajectories description, in order
to calculate descriptors dv

i , i = 1, . . . , Pd, (Pd: number of
interest points detected in the video) v = 1, . . . , V (V = 5)
on the trajectories of densely-sampled video frame interest
points of the entire action video sequence. We then apply k-
means clustering on dv

i , in order to calculate a set of descriptor
prototypes (codebook). By using this codebook, which is ex-
clusively derived from the video under consideration, and the
video frame indices corresponding to each trajectory, we create
BoW-based representations of M (overlapping) video seg-
ments for each descriptor, denoted by bv

i , i = 1, . . . ,M, v =
1, . . . , V . Subsequently, we concatenate the five BoW vectors
bv
i , v = 1, . . . , V , in order to fuse the information appearing

in each trajectory, i.e., bi = [b1 T
i , . . . ,b5 T

i ]T . Overlapping
video segments consisting of Tv video frames (e.g. Tv = 20)
having overlap of Tv − 1 video frames are then created. Let
us denote by N the number of frames in a video split into
M video segments and S be the set of the bj , j = 1, . . . ,M
BoW-based representations of the resulting video segments.
Through the temporal relationship of the video segments, we
create two sets of video segment representations Si, i = 1, 2,
each consisting of Mi, i = 1, 2 vectors, where M1+M2 = M .
By employing bj , j = 1, . . . ,M and the corresponding set
labels cj , the within-set and total variance can be respectively
measured by:

sw =

2∑
i=1

∑
j,cj=i

(bj −mi)
T (bj −mi), (12)

sT =

M∑
j=1

(bj −m)T (bj −m), (13)

where:

mi =
1

Mi

∑
j,Cj=i

bj ,m =
1

M

M∑
j=1

bj . (14)

By combining sw, sT , we obtain the Fisher criterion
J = sw/sT [74]. Since bj represent the video segments in
the video to be segmented, the minimization of J leads to the
maximization of the compactness of the two video segment
sets S1,S2. The optimal temporal segmentation of the video
is performed by finding the minimum of J(h), h = 1, . . . ,H ,
where H denotes the number of possible bisections of S, as
described above. To this end, we employ a line search strat-
egy for the determination of the best temporal segmentation
position hm(1 ≤ hm ≤ H). The above-described process is
illustrated in Figure 15.

In order to treat a long sequence, we extend our method
of line search strategy over the two resulting video segments
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Fig. 15. Determination of the temporal segmentation point.

in a recursive way, by computing the Fisher criterion on each
video segment. The procedure stops when a minimum video
segment length has been reached.

The method can be also applied in the case where action
instances are depicted in multiple synchronized videos, each
captured from a different viewpoint. Indeed, if temporal seg-
mentation in the different views has been adequately accurate,
one can employ a majority voting over all camera segmenta-
tion timelines (namely the sequences of video frame labels,
where each label denotes the video segment it belongs to) in
order to create a single “global” segmentation timeline for the
multiview video.

Once one or more videos have been temporally segmented
into NI segments using the procedure outlined above, video
segment clustering can be performed in order to group them
into K clusters containing similar actions. For this, we apply
clustering on the BoW-based video representations xv

i , i =
1, . . . , NI by employing kernel k-means algorithm. In order
to combine the different action properties described in different
BoW-based representations xv

i , we employ the RBF-χ2 kernel,
where different descriptor types are combined in a multi-
channel approach [75]. If by the end of this procedure one
manually sets labels (e.g. walk, run, jump) in each cluster (in
the case where the derived clusters are fairly homogeneous),
each action video can be assigned the corresponding action
cluster label. For clustering multi-view videos, one can exploit
the circular shift invariance property of the Discrete Fourier
Transform (DFT) coefficients [76] in order to obtain a view-
independent action representation.

B. Distributed trimmed kernel K-means clustering

The objective of data clustering is to divide a given group
of unlabeled data samples in subgroups (clusters), so that
data samples belonging to the same cluster are similar to
each other and dissimilar to samples belonging to any other
cluster. Clustering has many applications in different scientific

fields. Despite the fact that there has been an extremely rich
bibliography on this subject for years [77], it is still an active
research field.

One of the earliest clustering methods is the k-Means
algorithm [78] that is still popular, despite its age. Its main
drawback is that the surfaces separating the clusters can only
be hyperplanes. Thus, if the clusters are not linearly separable,
the standard k-Means algorithm will not be able to give good
results. In order to overcome this limitation, the classical
algorithm has been extended into the kernel k-Means [60].
The basic idea behind kernel approaches is to project the
data into a higher, or even infinite dimensional space. It is
possible for a linear separator in that space to have a non-
linear projection back in the original space, thus solving the
non-linear separability issue. The kernel trick [79] allows us
to circumvent the actual projection to the higher dimensional
space. The trick involves using a kernel function to implicitly
calculate the dot products of vectors in the kernel space using
the feature space vectors.

A convenient way to have quick, repeated access to the dot
products without calculating the kernel function every time, is
to calculate the function once for every possible combination
of data samples. The results can be stored in a n× n matrix
K called the kernel matrix, where Kij = κ(xi,xj).

Kernel k-Means provides a popular starting point for many
state of the art clustering schemes [80]–[83]. A recent survey
on kernel clustering methods can be found in [84].

Distributed computing can provide the means to handle
problems on very large datasets, often encountered in media
production, that would otherwise be almost impossible to solve
[85]. Provided that a task can be split into many independent
subtasks, then it can theoretically be performed in a reasonable
amount of time, regardless of the data size, given enough
processing units.

Distributed versions of clustering algorithms related to
kernel k-Means, like classic k-Means [86] and k-Medians
[87] have already been proposed. However, to the best of
our knowledge, a distributed approach to kernel k-Means has
not been proposed yet. Such an approach that also involves
kernel matrix trimming is summarized below. Full details and
experimental evaluation are provided in [88].

The approach follows the MapReduce programming model
[89], which is a high level framework for distributed pro-
cessing on a computing cluster. The implementation uses
Apache Spark [90], a cluster computing framework, which is
similar to and compatible with Hadoop [91]. The computing
cluster can include a wide variety of hardware from high-
end, multiprocessor computers with large amounts of RAM, to
average recent PCs. The focus of the proposed implementation
is to avoid the need to store n2 kernel matrix entries into
the distributed memory at the same time, if possible. In
order to achieve this goal, we employ a novel kernel matrix
trimming algorithm, which enables us to significantly reduce
the number of non-zero entries in the kernel matrix, while also
increasing clustering performance. The proposed distributed
clustering scheme is divided into three major parts: kernel
matrix computation, kernel matrix trimming algorithm and,
finally, kernel k-Means itself. The experimental evaluation of
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the proposed approach was performed on the facial image
clustering task, which is important in movie content analysis
and description, as it allows us to search for actor face
appearances in video content.

In more detail, we consider the kernel matrix entries to
express data sample facial image similarity. These entries have
large/small values within the same cluster/between different
clusters, respectively. We aim to eliminate (trim out) small Kij

entries, while retaining as many large Kij entries as possible.
In the presented algorithm, it is possible to retain a different
number of entries Kij for different data samples.

In general, the proposed kernel matrix trimming algorithm
attempts to determine the cardinality of the cluster that a data
sample belongs to, through a voting system. Each data sample
casts votes on the various candidate cluster cardinalities for
itself. The votes for each cluster cardinality j are summed up
for every sample. Each cardinality is then assigned a score
by using a suitability function that measures how close the
number of votes for j is to the nearest integer non-zero product
of j. The winning cardinality is the one with the highest score.
Every data sample that voted for the winning cardinality value
is determined to belong to a cluster of that cardinality

When there are no more votes, every data sample has
received an estimate of the cardinality of the cluster it belongs
to. The trimming of the kernel matrix K entries is performed
in a row-wise manner. Suppose that the estimated cluster
cardinality for data sample ai is wi. We zero (trim out) every
entry Kij in the i-th row of K whose value is less than the
wi-th largest value of the row. The resulting matrix K̂ may no
longer be symmetric, thus the final trimmed similarity matrix
is obtained as K∗ = max(K̂, K̂T ).

For the distributed implementation of the above mentioned
clustering algorithm the MapReduce distributed computing
programming model [92], whose implementations include
Hadoop and Spark, has been utilized. MapReduce simpli-
fies the coding of distributed programs and was specifically
developed to allow easy processing of very big datasets
on computing clusters. A master node in the MapReduce
framework automatically splits the dataset up into smaller data
sample collections and distributes them to the workers, each
processing the assigned data independently.

As the name implies, there are two major components
to this programming model. With the Map command, every
worker applies a user defined function to each data sample.
Each worker can then return the results to the master node.
Additionally, with the Reduce command, a worker applies
a commutative and associative operation to collect the data
elements, or the results of a previously mapped function, into a
single result. As the operation is commutative and associative,
the results for each worker are independent from those of other
workers and they can also be combined in the same way on
the master node.

All three parts of the proposed trimmed kernel K-means
algorithm, namely the kernel matrix computation, its trimming
and the actual kernel K-means have been cast in a MapReduce
framework. For example, the computation of the kernel matrix
proceeds as follows. Assuming there are n data samples, each
of which has d features, we read the data samples into n d-

dimensional data vectors, which are distributed to the cluster
worker nodes. Then we iterate through every data vector and
map the kernel function of the current vector with every other
vector. This provides us with a single row of the kernel matrix,
which we can then write to the disk. After n iterations, the
computation is complete. This step requires O(nd) distributed
memory and O(n2d) operations [88].

The performance of the proposed trimmed kernel k-means
approach and its distributed implementation have been judged
on a number of experiments. The first experiment involved
the MNIST handwritten digit dataset. In this experiment we
used the Normalized Mutual Information (NMI) metric [93]
to measure the similarity between the clustering results and
the ground truth while the reduction in the size of the kernel
matrix has been measured with the ratio nz

n2 of the non-
zero elements of the kernel matrix after trimming to the
number of elements of the full matrix. In this experiment,
the proposed trimmed kernel k-means approach utilizing an
RBF kernel provided the best clustering performance in terms
of NMI (0.5687), compared to 0.4936 obtained by kernel k-
means while retaining only about 4% of the full kernel matrix
elements. By comparing the proposed approach to approximate
kernel k-Means [94] on the same dataset it was found that
the latter needs about 7% of the full kernel matrix, in order to
match the full kernel matrix performance (0.4941), while our
approach achieves better performance (0.5687) with about the
same kernel matrix size.

Tests were also conducted in order to check the effect of
the number of processing/computing nodes in a distributed
processing environment to the processing time of the pro-
posed distributed implementation of the clustering algorithm.
The plot of computation time with respect to number of
computing nodes is expected to ideally have the form of
the rectangular hyperbola f(x) = 1

x . Experiments to verify
this were conducted on the Youtube Faces dataset [95] that
certainly qualifies as big data since it consists of Local Binary
Patterns (LBP) descriptors [96] for 621126 faces of various
celebrities extracted from Youtube videos. Since it was not
practical to run the kernel matrix computation in its entirety
for various numbers of cores, as it would take about 150 days
for a single core to finish the task, we measured the time
required by the computing cluster to calculate 50 rows of the
kernel matrix. The computing cluster consisted each time of a
different number of Virtual Machines (VMs) as workers, each
VM having 2 cores and 4 Gigabytes of memory. The resulting
acceleration curve can be seen in Figure 16 and indeed
reasonably follows the predicted rectangular hyperbola. In
total, the algorithm (kernel matrix computation and trimming,
kernel k-means itself) for the entire dataset required about
14.21 days on 12 cores compared to the 150 days on a single
core mentioned above.

C. Approximate methods for big media data classification

Large scale visual data classification problems, including
face recognition, activity recognition and video shot-type
characterization, commonly appear in a movie production and
post-production stage. For such problems, the state-of-the art
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Fig. 16. Seconds to compute 50 rows of the kernel matrix with respect to
number of cores.

approach is to use classification methods that produce non-
linear decision functions by employing a non-linear piecewise
mapping function to map the data from the input space to
a feature space of higher dimensionality. In order to express
data similarity in the feature space, one can employ the kernel
trick [79], where similarity is expressed with the kernel matrix
K ∈ RN×N , N being the number of the available training
data. The derived solutions for state-of-the-art methods, such
as Kernel Principal Component Analysis [97], Kernel Ridge
Regression [98], Regularized Neural Networks [99], Least-
Squares Support Vector Machines [100] or Randomized Neu-
ral Networks (also referred to as Extreme Learning Machines
[101]), involve the eigen-decomposition or the inversion of
K. Thus, in classification problems involving big visual data,
where N is very large, the application of such approaches can
be prohibitive, since the theoretical computational complexity
and memory requirements are of order O(N3) and O(N2),
respectively. As the number of the available training data
increases with the number of the classes to be modeled, one
simple approach to the issue above could be to try to model
each class separately, by employing an ensemble of one-class
classifiers, each modeling only one class. It has been shown
that such an approach can achieve very good performance in
large-scale multi-class biomedical data classification problems
[102]. Furthermore, one-class classification methods show
good performance when only the class of interest needs to
be modeled and discriminated from the rest of the world.
Moreover one-class approaches have been used in visual data
classification problems, such as video surveillance and video
summarization [103]. State-of-the-art one-class classification
methods, such as the One-class Support Vector Machines (OC-
SVM) [104], the Support Vector Data Description [105] and
Least Squares One-Class Support Vector Machine (LS-OC-
SVM) [106], achieve significantly better performance in their
kernel version over their linear alternatives. Two up-to-date
relevant reviews can be found in [107], [108].

However, in the big data case, even the number of training
data for each separate class can be enormous. In order to
overcome such restrictions of kernel methods, kernel matrix
approximation approaches have been proposed [109]–[111],
based on the Nystrom method. In this line of work, a rank
n approximation of the kernel matrix K ∈ <N×N , can be
obtained by random (column) sampling as K ≈ K̃B†K̃T ,
where K̃ ∈ RN×n contains the n sampled columns and B ∈
Rn×n is the kernel matrix of the training data corresponding

to the n sampled columns. Thus, only a reduced number of
data similarities need to be calculated and stored, leading to
lower computational and memory demands. Although matrix
approximation methods can be used in every kernel based
learning method with decent results, this may not always be
the best possible approximation option.

In Support Vector Machines, the decision hyperplane can
be expressed as a linear combination of the support vectors
[104], which are expected to be fewer than the training data.
Therefore, a method that approximates the extreme points (that
are more likely to be the support vectors) has been proposed
in [112]. This can lead to decreased memory requirements and
reduced computational complexity, without sacrificing classi-
fication performance. Other approximation methods include
the fast determination of a k-Nearest Neighbor (kNN) graph,
using k-dimensional trees or Local Sensitive Hashing [113],
[114].

Towards this end, a novel approximate solution for Least
Squares One-Class Support Vector machines has been intro-
duced. In order to be effectively approximated, the solution is
restricted to be a linear combination of a subset of the training
data in the feature space, by employing a randomization
approach. Moreover, in order to model the geometric class data
information in the optimization process, specific regularizers
based on the data similarity graphs can be included and can be
implemented without increasing the computational complexity
and memory requirements dramatically. The proposed one-
class classifier is designed to be employed in large scale visual
data classification problems, where each class can be modeled
independently to be distinguished from the rest of the world.

Let us denote by Φ ∈ <|F|×N a matrix that contains
all training data representations in the feature space, such
that each row of Φ contains φ(xi) ∈ F . Also let K =
ΦTΦ,K ∈ <N×N be the corresponding kernel matrix that
contains the training data similarities in the feature space F .
In the case where many training data exist, N is huge, so
that employing the kernel version of OC-SVM may be com-
putationally impossible. In order to obtain a OC-SVM specific
approximate solution, we consider to obtain an approximate
solution for the hyperplane w. Based on the Representer
Theory [115], the separation hyperplane w can be expressed
as a linear combination of the training data, by employing a
reconstruction vector a ∈ <N , such that w = Φa. In order to
obtain an approximate version of kernel OC-SVM, we restrict
w to be a linear combination of fewer (n) training data, such
that n << N , where n is the number of sampled elements,
obtained e.g., by random sampling. Thus, the approximate
version of w can be expressed as follows:

w̃ = Φ̃a, (15)

where Φ̃ ∈ <|F|×n contains the sampled data representations
in F . By using (15), the approximate kernel OC-SVM (AOC-
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SVM) optimization problem is formulated as follows:

Minimize
1

2
aT Φ̃T Φ̃a− ρ+

1

νN

N∑
i=1

ξi, (16)

Subject to aT Φ̃Tφ(xi) ≤ ρ− ξi, (17)
ξi ≥ 0. (18)

The above optimization problem can be solved by finding
the saddle points of the corresponding Lagrangian which
leads to a quadratic programming optimization problem. By
substituting the Hinge loss in (16)-(18) with the squared loss,
we formulate the approximate one-class least-squares SVM
(AOC-LS-SVM) objective which leads to a linear system of
equations instead of a quadratic programming problem and
can be easily solved. The extension to two-class or multi-class
approximate optimization objectives is straightforward.

Experiments have been conducted in order to evaluate
the performance of the proposed variants of LS-OC-SVM
classifier and compare them to other state-of-the art classi-
fication methods, as well as approximation methods. More
specifically, we compared the approximate method with the
OC-SVM classifier [104], its approximate version using the
Nystrom method (AOC-SVM) [104], [110], the standard LS-
OC-SVM [106], its Nystrom approximate variant (NY-LS-
OC-SVM) [106], [116] and another approximate LS-OC-SVM
version (ALS-OC-SVM). Three variants of the LS-OC-SVM
classifier using geometric information were included in the
conducted experiments, namely the ones that employ the total
class scatter (GE-LS-OC-SVM-T), the within class scatter with
respect to subclass information (GE-LS-OC-SVM-W),and the
kNN type graph (GE-LS-OC-SVM-KNN). We evaluated the
performance of the classifiers in terms of classification perfor-
mance and training time. For classification performance, we
have employed the g-mean metric [117], which is geometric
mean of the accuracy for data samples belonging to the
modeled class (positives) and outliers (negatives). In one such
experiment we used the YouTube Faces dataset [118] already
mentioned in section V-B

In this experiment we have employed a test protocol similar
to the ”restricted” protocol proposed in [118]. The classi-
fication performance and training times in seconds for this
experiment are shown in Table III. As it can be seen, the
approximate GE-LS-OC-SVM has superior performance over
the standard OC-SVM and LS-OC-SVM in all its variants. By
setting the percentage of the used training samples p ≥ 0.05, it
can be seen that all tested approximate algorithms can match
or improve the performance of OC-SVM and LS-OC-SVM.
Moreover, even for values of p = 0.05, 0.10, we can obtain
state-of-the-art classification performance with a significant
time gain for all GE-LS-OC-SVM variants.

Experiments were also conducted on activity recognition
and shot type characterization datasets, since these problems
are relevant to movie production, and again verified the
superiority of the approximate methods over the competition
in large scale media annotation experiments.

VI. INTEGRATED WEB VISUALIZATION

TABLE III
CLASSIFICATION PERFORMANCE AND TRAINING TIMES IN THE YOUTUBE

FACES DATASET

method/percentage 0.01 0.02 0.05 0.10 0.20 0.50 1.00

OC-SVM [104] - - - - - - 96.32
- - - - - - 3.70s

OC-LS-SVM [106] - - - - - - 96.11
- - - - - - 7.01s

AOC-SVM [104], [110] 93.60 94.86 96.19 96.71 96.86 96.74 96.32
2.07s 1.83s 1.61s 1.91s 2.02s 2.73s 4.78s

NY-LS-OC-SVM [106], [110] 92.73 95.23 96.02 96.16 96.02 95.90 96.11
0.07s 0.07s 0.09s 0.16s 0.38s 2.28s 15.74s

AOC-LS-SVM 92.92 95.30 96.25 96.34 96.26 96.11 96.11
0.02s 0.02s 0.04s 0.06s 0.16s 0.95s 7.30s

GE-LS-SVM-T 93.93 95.65 96.40 96.45 96.53 96.56 96.68
0.02s 0.02s 0.04s 0.06s 0.14s 0.75s 5.86s

GE-LS-SVM-W 94.24 95.92 95.57 96.68 96.69 96.69 96.79
0.09s 0.09s 0.13s 0.19s 0.49s 3.01s 22.18s

GE-LS-SVM-KNN 93.88 95.78 96.40 96.50 96.48 96.50 96.59
1.61s 1.63s 1.58s 1.63s 1.73s 2.64s 9.15s

As we have argued in section III, the ‘unified 3D space
paradigm’ represented in Figure 1 enables a more efficient
management of multiple source data, and is the basis of
better quality monitoring and assessment of data captured on-
set. Furthermore, the optimization and acceleration discussed
in section IV allows for real- or near real-time support for
creative decisions, likely leading to important cost savings both
in production and in post-production.

In this section we add a further innovative tool, the in-
tegrated hybrid web visualization of different data sources
and modalities. Indeed, the ability to register multiple data
sources to a reference (LIDAR) system and to position the
sensors generating the data discussed in section III allows
visual representation of the results of the ‘unified 3D space’.
Our technique represents, within an interactive 3D graphics
environment, the different datasets and modalities - and even
makes use of the metadata generated, such as, for instance,
those discussed in sections IV and V. This visual integrated
tool provides support for human assessment of the quality
issues, as users can understand better the whole picture, instead
of the more traditional visualizations of each modality sepa-
rately, which come from using different processing algorithms,
and which tie the visualizations to the results of different
software for each modality.

The visualization paradigm proposed is novel as well: The
actual shooting environment is simulated, combining the LI-
DAR reference point cloud, with 3D reconstruction from other
sources, the actual simulation of those data sources themselves
at the actual positions of the sensors; and using the metadata to
filter as well some of the content - some human actions, for
instance. Traditional data visualizations are abstract, leading
mostly to dynamic graphics (and symbolic pictograms in the
less abstract cases). Our paradigm supports a very concrete
visualization, that of the actual sources and content. This is
aligned with the current cinema professional practices, which
needs to understand the actual content to assess some aspects
of quality. This hybrid visualization is inspired by [119], which
showed efficiency gains, but our paradigm proposes a much
higher stage of integration.

Integrating the visualizations in a web environment can
easily lead to on-set collaboration and annotation, which
would be another advantage. But, on the other hand, we
discuss and show below that the web environment is better
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to support multiple modalities integration than desktop based
environments. On the other hand, the interactive very large 3D
graphics visualization poses a number of technical challenges,
whose solution is discussed below as well.

A. Web-based Visualization

The advent of cloud technology has changed modern digital
workflows considerably. Remote and collaborative workflows
and web-based tools are now becoming common in the
workplace, with users increasingly accessing applications from
anywhere, and on any platform, to share and collaborate. This
potentially includes both those professionals present on-set (a
large crew with different roles, generating different modalities
of data and metadata) and those working remotely, who have
roles in the production and post-production processes, visual
effects, etc. There is a strong drive for any on-set visualisation
app to be web-based, as this requires no external software to
be installed and, by its very nature, is suited for remote data
access, for supporting collaboration. Nevertheless, supporting
these requirements in the digital production world presents a
series of difficulties:
(a) the sheer volume of data (whether raw image data, pro-

cessed 3D data, or metadata) which is created is not very
compatible with the concept of distributed visualisation
via the web (and particularly the mobile web), due to
bandwidth constraints.

(b) the wider access permitted by cloud and web-based tools
means that there is a wider range of hardware devices
capable of accessing it (from high powered desktop
machines to mobile phones), a fact that any visualisation
must take into account.

(c) the same wider access also poses open questions for
data security, a critical issue in the world of cinema
production.

Points (a) and (b) above affect directly a key consideration
for all web-based applications: the speed of interaction, which
is a key ingredient. The expectation of the user when opening
a web page is very different to the traditional application
experience (whether desktop or mobile). There is no explicit
application startup or data processing information relayed to
the user (the typical “startup splash screen” ubiquitous to many
applications); once the user visits a url, their expectations are
for an instantaneous response, yet one with an inconsistent
or partial presentation. The classic case is that of a web-page
loading and displaying text first, while any associated images
appear later as and when they are loaded. Another example is
that of streaming video, users no longer expect to download
the entire file before beginning to watch it.

In parallel, combinations of 3D and other modalities on the
web have recently appeared, as exemplified by Jankowski et al.
[119] [120], who presented an interface combining hypertext
and simple 3D graphics and showed that the performance with
this so called “dual-mode” interface was better than for single
modalities (even taking into account switches). Inspired by
this paradigm, the visualisation work presented below goes
beyond a simple dual-mode interface, in the sense that it is a
truly hybrid interactive visualization, tightly integrating video,

static image, hypertext and real-time 3D graphics. In spite of
the difficulties for creating such a web-based visualisation (as
pointed out above), the modern web browser is in fact a propi-
tious context for creating a hybrid application, which combines
several modalities. Apart from the ability to rapidly create
attractive and adaptive user interface layouts (using CSS), it
has a well established and stable system for downloading and
streaming 2D images and video data and, with the release
of WebGL in 2011, a standard manner of creating hardware
accelerated real-time 3D graphics applications. Furthermore,
the browser context encourages the parallel use of 2D and
3D contexts (in combination with audio and video streams),
in order to create hybrid web applications which present data
from dozens of potential sources.

The main goal of our visualization research is to make
best use of these advantages, while overcoming the difficulties
described above.

B. Progressive Visualization of 3D Data

The release of the WebGL standard in 2011 has meant a
qualitative change in web-based 3D graphics. Now supported
by all major desktop and mobile browsers, the WebGL API
allows the browser to access hardware accelerated graphics
without requiring 3rd party plugins, such as Unity3D or Adobe
Flash. WebGL can be programmed imperatively directly via
the browser using Javascript, although several more declarative
methods of programming Web-based 3D have gained popular-
ity in research [121], [122]. Web-based 3D applications share
many of the advantages common to all web-based technology,
namely platform independence, no reliance on 3rd party soft-
ware, and ease of distribution and maintenance. Using WebGL
also allows a seamless integration of 2D and 3D, which
facilitates the creation of powerful and innovative interfaces
[119], [123], which would be more difficult to create with non-
browser-based software. However, the difficulties inherent to
many client-server based technologies, such as those relating
to bandwidth and synchronisation, are particularly present in
all web 3D applications, due to the typically large file size
of the assets used. For more information on the current state
of the art in web-based 3D graphics, we refer the reader to a
recent comprehensive survey [124].

As explained in previous sections, the 3D data generated by
movie production is represented in both point cloud or recon-
constructed 3D mesh format. Visualisation of such big 3D
data over the web presents several difficulties. The challenges
relating to bandwidth, as described above, are quite clear; yet
merely applying one of several well-understood mesh com-
pression algorithms [125] is not necessarily the best course of
action. The lack of computing power available to the browser
context, due to the (semi)-interpreted nature of the javascript
client-side API; and the restrictions of the WebGL API itself,
which has neither the power nor the flexibility of its OpenGL
desktop brother, mean that the decompression time for several
mesh compression algorithms can actually create a greater
time bottleneck than the one due to available communication
bandwidth [126]. This situation is best explained by Chun
[127], whose “WebGL loader” has become a popular method
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to load large 3D meshes over the web; it relies does on a
custom file format which encodes a mesh using the UTF-8
string format to represent binary data that are compressed us-
ing a standard gzip algorithm. This approach takes advantage
of decompression methods inherently available to all browsers
(thanks to HTML standards) yet is limited, from a big data
perspective, due to restrictions in the UTF-8 data format,
which requires the mesh to be broken down into various
smaller chunks. Behr et al. [128] adopted a different approach
to the transmission of binary data, storing them in the pixels
of lossless Portable Network Graphics (PNG) format images.
This also has the advantage of fast decompression and a further
one of pushing much of the mesh reconstruction work to the
GPU. Lavoue et al. [129] present a method for progressive
mesh rendering, decimating the mesh using vertex collapse
mechanisms and reconstructing on the fly. This method allows
progressive reconstruction of the mesh in the browser client,
which is a desirable user experience, as it provides an ‘instant’
low-resolution view, before being refined stepwise.

A common problem facing all of these mesh transfer and vi-
sualisation techniques stems from the WebGL standard, which
permits only a 16-bit buffer. While extensions do exist to
enable a 32-bit index buffer, they are not as widely supported
as WebGL itself, particularly in mobile hardware, and cannot
be relied upon to be present in each client’s browser. Due
to the fact that an index buffer is an essential requirement for
any efficient transfer of mesh data, from a big data perspective,
the restriction to a mere 65536 vertices is problematic, as it
necessitates splitting the mesh into several smaller meshes.

As a result, for the visualisation of the unified 3D space
presented in this paper, we chose to use coloured pointclouds
almost exclusively. This avoids some issues regarding meshes,
as indicated above, and also is somewhat logical, given hat the
raw data is provided in (sometimes rather sparse) pointcloud
format.

In order to visualize the point cloud correctly, we use a pro-
gressive transfer mechanism based on our previous work [130],
[131]. To begin with, the point data is linearly normalized to its
axis aligned bounding box, to 16-bit precision. Using a 30m set
size for example, this provides a precision of less than half a
centimeter, which we consider to be adequate for visualisation.
In practice, an even lower resolution could be used, but the
16-bit normalization provides a useful structure with which
to manipulate data quickly using Javascript Typed Arrays in
the client application. Colour data can also be normalized, if
required, though in the work presented in this paper we use
standard 24-bit RGB colour. In an offline process, we add the
entire set of points to a memory efficient octree. The colour of
each node of the tree is calculated as an average of the colour
of all the nodes below it. The tree is then saved breadth first
as a series of binary files, which are stored on a web-server.
The point cloud is now ready for transmission to the browser
client.

When the user arrives at the relevant URL, the browser starts
downloading, sequentially, the list of files which contain the
breadth-first description of each point cloud. After each file is
downloaded, it draws the octree to the scene, with each node in
the tree represented by a GL POINT, whose size is that of the

Fig. 17. Four screenshots of progressive rendering of the same scene (increas-
ing time/resolution: left-to-right, top-to-bottom), constructed from LIDAR,
spheron, static images and RGBD camera data

width of the octree node. Point widths are kept constant with
respect to the distance to the camera by multiplying the desired
size by the height of the near projection plane, in homogenous
coordinates. As more data is downloaded, the point cloud is
updated. However, this is not simply a case of drawing higher-
resolution data over the (previously drawn) lower resolution
data, as the lower resolution data will occlude any higher
resolution points. To deal with this issue, the “level” of the
octree is tracked, and lower-resolution data are periodically
removed from the draw-buffer.

Display times for a typical 2.5 million point dataset, over a
clamped 8 megabyte/second internet connection, are 1 second
for the initial low-resolution view, 10 seconds for 50%
completion, and under 20 seconds for the full dataset. Such
results are difficult to compare directly with other approaches
as there has been little or no other research published on
progressive point cloud visualisation via the web. Yet the
combined download and processing times for our approach
improve on the results of the similar, yet different, challenge
of progressive 3D mesh visualisation via the web [129].

Figure 17 shows a visual representation of the progressive
rendering effect, with four different pointclouds being down-
loaded simultaneously. While LIDAR data usually provides the
highest resolution representation of the set, multiple 2D data
sources such as spheron data, static image data, and RGBD
data are also used to create 3D point clouds, as discussed in
Section III, and are visualized also.

C. Hybrid 3D, Video and Image Rendering

As mentioned above, one of the advantages of using a
browser context for visualising multimodal data is that the
HTML5 standard allows relatively straightforward combina-
tion of 2D and 3D data sources, permitting us to view image
or streaming video data on surfaces within the 3D scene.

The results of the work presented in section III include
data obtained via feature matching and registration algorithms,
which are used in order to back-calculate the real position
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Fig. 18. Camera coverage point cloud superimposed on the LIDAR set data.
Bright yellow points are seen by more cameras, dark red points are seen by
fewer.

in the scene of the sensor used to record the data. These
positions are then registered to the LIDAR data which is taken
as the ground truth reference for the scene. The result is a set
of matrices representing the position (and, for video camera
footage, the orientation) of each sensor in the scene. On a
static image level, this permit us to place a single textured
plane (showing the source image for the sensor) located in
the 3D scene precisely where the sensor was when it took its
image (see Figure 10).

For video data, a hidden HTML5 video element is created
for each video in the scene, and added to the browser Docu-
ment Object Model (DOM), the standard system for managing
the HTML elements of the page. The fact that the element is
hidden ensures that it does not affect the 3D visualisation.
However, the WebGL API can read the HTMLVideoElement
in the DOM, and extract the pixels of the current frame
into texture data, which can be used within the 3D scene.
Similar to the static image case presented above, a simple
plane mesh is created, using the position and orientation of
each witness video camera in the scene as the model matrix.
Then, every draw frame, the DOM video elements pipe their
texture information as WebGL textures, which are displayed on
the plane meshes. The result is the video data being rendered
in real-time on meshes within the 3D scene with the actual
position and orientation of the camera, providing a tight 2D/3D
integration. To control the playback of the video and to ensure
that at most one video is playing at a time (avoiding needless
bandwidth and rendering power use), the application features
a timeline interface created as a 2D Canvas and added to
the DOM separately. This element allows the user to select
a camera, which then moves the 3D camera to a position
immediately behind the plane mesh displaying the selected
camera. Play/pause/stop controls exist for video playback, and
scrubbing allows the user to skip forward and backwards (by
setting the time of the HTML5 video element via javascript).
Figure 10 shows a screenshot of the timeline interface and
the mesh planes featuring the video frames, illustrating the
enhanced naturalness of the visualisation.

D. Metadata Visualization: Actions, Saliency, Coverage

As described in section V, actors and human actions in
multi-view footage can be recognized through the use of visual
data analysis techniques especially accelerated to deal with
big media data on set. Furthermore, the camera which is most
salient with respect to an action can be recognised. Saliency
could be used, for instance, to decide which take should be
included when editing in post-production; metadata are useful
to solve more intelligent queries. The metadata resulting from
the processing is provided as an XML file and associated
description with:

1) identification of one or more actors in a scene
2) identification of actions carried out by the actors
3) separation of the footage into timed segments
4) saliency of the camera
5) any additional metadata which has been added manually

This information can then be overlayed on the timeline
discussed above. Other metadata related to quality is the
estimation of camera coverage as described in section III. The
result of this analysis is a collection of points in 3D space with
associated values representing the number of cameras that can
accurately see that point. Figure 18 shows how this sparse
point cloud can be overlaid onto the set context, allowing
users rapid feedback with regards to the coverage of a given
configuration of cameras.

VII. DISCUSSION AND PERSPECTIVES

The generation of ever more digital data, which come from
different sources and in different formats, is increasing. The
case dealt with in this paper is the high-end movie industry,
where currently 6 TB per on-set shooting day are average,
and the variety of sensors used, data formats that result,
and different reference systems, have been indicated. Poor
understanding of the data in this industry (and others) leads
to generate even more data (“in doubt, re-shoot”) with the
associated costs of production and processing.

A first issue addressed was to make the multi-source large
data more intelligible through its integration into a unified
3D space; from spherical, multiple stills, etc., different 3D
datasets are reconstructed, registered, and the sensors positions
provided with respect to a ground truth reference (LIDAR
in our case). Several aspects are improved with respect the
current state-of-the-art in 3D reconstruction.

Secondly, toolsets based on the previous approach to mon-
itor quality of the data and of the set-ups have been provided
and their success evaluated, testing them with part of the
IMPART dataset. These toolsets are intended to support on-
set or near-set decisions, to recalibrate, or change set-up to
improve coverage, or re-shoot in case of out-of-focus or frame
drops. Some remedial action could also be taken in post-
production, and the methods introduced support better post-
production strategies as well. The real-time or near real-time
requirement has been mainly met through re-formulation of the
approaches in terms of techniques of widespread use in big
data problems, where important gains in some optimization
and acceleration techniques have been achieved.
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To allow more efficient management of the data, and better
use further along the digital cinema production chain, for
example, in post-production, semantic analysis of multi-view
video led to the generation of metadata from an anthropocen-
tric perspective. Novel concrete integrated visualization of
different datasets, which takes advantage of the integration of
multiple data sources and is based upon enhanced streaming
techniques, can support further user driven quality assessment.

These contributions are rather digital cinema application
specific. Most of the research advances presented in this paper
have been already tested on film related material, some of
it from actual productions, some of it from the IMPART
research dataset mentioned previously. As a measure of their
actual applicability, we should mention that most of the tools
have been integrated in the software used by a major film
industry player (Double Negative Visual Effects) to organize
and process the vast amount of data captured. The automatic
strategies presented in this paper do not always work for all
on-set cases, but in the large number of cases where they do
work, there is a substantial amount of savings in human non-
creative labour by creative professionals.

On the other hand, the presented novel approaches which
advance the state of the art (e.g. of integrating multisource
data into a unified space - in this case, a 3D one with common
reference coordinates; of semantic temporal segmentation of
videos, and of tight integrated visualization), could be applied
in other big data areas, besides film production and post-
production. Moreover, the acceleration strategies (including
novel numerical implementations for very basic processes),
the distributed trimmed clustering technique, the proposed
approximate Least Squares One-Class SVM classification ap-
proach, and the 3D visualisation (web or desktop), are novel
approaches which are applicable to quite different types of
big data problems, e.g. any types of data with a vectorial
representation in the case of clustering and classification
approaches. It is worth mentioning that the visualization of
quality/errors through marginal covariances was not previously
attempted because of the cost of the existing algorithms was
prohibitive. The extensive testing of acceleration strategies in
CPU and GPU for the very large scale problems (with which
we were dealing) should be useful as well to orient further
research and development.

Research perspectives do exist in the different areas consid-
ered, such as more challenging 3D reconstruction and quality
monitoring problems, further acceleration of processes, deriva-
tion of approximate, distributed or incremental versions of
other clustering and classification algorithms, and augmented
reality as a further tighter integrated visualisation strategy.

In general, the area of big media (or multimedia) data pro-
cessing and analysis is a very demanding but also promising
new field, that already attracts the interest and research efforts
of scientists and engineers in the area [132], as verified by
the establishment of at least one conference series dealing
with this topic (IEEE International Conference on Multimedia
Big Data). Challenges and topics in the multimedia big data
field include, among others [133], ultra-high efficiency com-
pression, coding and transmission, content analysis, mining,
interaction, visualization and semantic retrieval, deep learning

and cloud computing for multimedia big data, high-efficiency
storage, multimedia big data systems etc.
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[58] M. Šolony, E. Imre, V. Ila, L. Polok, H. Kim, and P. Zemčı́k, “Fast
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