Abstract
Modern high performance computers are massively parallel; for many PDE applications spatial parallelism saturates long before the computer's capability is reached. Parallel-in-time methods enable further speedup beyond spatial saturation by solving multiple timesteps simultaneously to expose additional parallelism. ParaDiag is a particular approach to parallel-in-time based on preconditioning the simultaneous timestep system with a perturbation that allows block diagonalisation via a Fourier transform in time. In this article, we introduce asQ, a new library for implementing ParaDiag parallel-in-time methods, with a focus on applications in the geosciences, especially weather and climate. asQ is built on Firedrake, a library for the automated solution of finite element models, and the PETSc library of scalable linear and nonlinear solvers. This enables asQ to build Para-Diag solvers for general finite element models and provide a range of solution strategies, making testing a wide array of problems straightforward. We use a quasi-Newton formulation that encompasses a range of ParaDiag methods, and expose building blocks for constructing more complex methods. The performance and flexibility of asQ is demonstrated on a hierarchy of linear and nonlinear atmospheric flow models. We show that ParaDiag can offer promising speedups and that asQ is a productive testbed for further developing these methods.