Abstract
This paper presents a novel on-chip hybrid plas-monic leaky-wave nanoantenna, enhanced by optical transverse periodic slots, designed for the standard telecommunications wavelength of 1550 nm. By leveraging the combined advantages of hybrid plasmonic waveguides and leaky-wave mechanisms, this nanoantenna achieves superior light confinement and highly directive radiation patterns. The multi-layer structure, featuring InGaAsP, gold, and quartz, ensures minimal propagation loss and efficient mode conversion from guided to radiative modes. Simulation results demonstrate the antenna's performance with a directivity of 18.5 dBi and a gain of 14.3 dBi, while maintaining a low side-lobe level and broad bandwidth. These characteristics make it highly suitable for integrated optical interconnects, beam-steering devices, and enhanced solar cells. The design is fully compatible with standard complementary metal-oxide-semiconductor (CMOS) processes, facilitating seamless integration into opto-electronic circuits. This advancement marks a significant step towards highly efficient, miniaturized optical communication systems and on-chip photonic applications.