Abstract
Wet granule breakage is a significant mechanism, particularly in high shear mixer granulation. This paper presents a study of the wet breakage mechanism using a Breakage Only Granulator. Granules with varying powder and liquid binder properties were created using single drop nucleation. These granules were inserted in a Breakage Only Granulator, a high shear mixer granulator with non-granulating cohesive sand as the bulk medium. Two different impellers were used at impeller speeds of 500 and 750 rpm. An 11 degrees beveled edge impeller was used to create both impact and shear in the granulator, and a flat plate impeller was used to minimize impact and maximize shear in the granulator. The fraction of granules which broke during the granulation process was used as a measure of granule breakage using mean dynamic peak flow stresses measured in unconfined uni-axial compression tests. Results for the beveled edge impeller blade show increasing breakage with increasing Stokes deformation number. Significant breakage was observed at high Stokes deformation number. Increasing impeller speed increased the magnitude of breakage. The Stokes deformations number appears to be a reasonable predictor for granule breakage within the granulator. Results for the flat plate impeller show very little breakage at 500 rpm, and significant breakage for only one formulation at 750 rpm. This suggests that either impact is dominant over shear for breakage within the granulator, or that the two impeller designs give substantially different collision velocities in the granulator. The impeller speed type and shape have a profound effect on granule breakage in high shear mixer granulators. (C) 2010 Published by Elsevier Ltd.