Abstract
Relying on the dramatic increase in the number of stars with full 6D phase-space information provided by the Gaia Data Release 3, we resolve the distribution of the stellar halo around the Sun to uncover signatures of incomplete phase-mixing. We show that, for the stars likely belonging to the last massive merger, the (v(r), r) distribution contains a series of long and thin chevron-like overdensities. These phase-space substructures have been predicted to emerge following the dissolution of a satellite, when its tidal debris is given time to wind up, thin out, and fold. Such chevrons have been spotted in external galaxies before; here, we report the first detection in our own Milky Way. We also show that the observed angular momentum L-z distribution appears more prograde at high energies, possibly revealing the original orbital angular momentum of the in-falling galaxy. The energy distribution of the debris is strongly asymmetric with a peak at low E - which, we surmise, may be evidence of the dwarf's rapid sinking - and riddled with wrinkles and bumps. We demonstrate that similar phase-space and (E, L-z) substructures are present in numerical simulations of galaxy interactions, both in bespoke N-body runs and in cosmological hydrodynamical zoom-in suites. The remnant traces of the progenitor's disruption and the signatures of the on-going phase-mixing discovered here will not only help to constrain the properties of our Galaxy's most important interaction, but also can be used as a novel tool to map out the Milky Way's current gravitational potential and its perturbations.