Abstract
Sleep is believed to play an important role in cognitive functions. The underlying mechanisms of the relationship between the effects of waking experiences (i.e., sleep deprivation [SD] and enriched environment [EE]) on sleep characteristics (sleep states and brain waves) are believed to be beneficial. Sleep is divided into two main stages: non-rapid eye movement (non-REM) and REM sleep. Electroencephalogram (EEG) in adult mice was used in order to record and compare changes in sleep stages and specific brain waves (i.e., oscillations) during sleep following those waking experiences. Results showed that both waking experiences significantly increase NREM sleep amount and duration. However, SD and EE differentially affect slow wave activity (SWA: 0.5–4.0 Hz) and spindle-rich sigma activity (9–16 Hz), the two main sleep oscillations of NREM sleep. The conclusions were that extended wakefulness (i.e., SD) and learning (i.e., EE) differentially affect NREM EEG signatures (SWA, spindles). The obtained results support previous data which shows that these oscillations are important for cognition and further suggest that their differential regulation by experiences may account for different functions.