Abstract
The structure of 64Ni, the heaviest stable Ni isotope, has been investigated via high-statistics, multistep safe Coulomb excitation to search for shape coexistence, a phenomenon recently observed in neutron-rich 66Ni and 70Ni as well as in doubly magic, N = 40, 68Ni. The study was motivated by recent, state-of-the-art Monte Carlo shell-model calculations (MCSM), where a Hamiltonian with effective interactions incorporating the monopole tensor force predicts the existence of shape coexistence, also in the lower-mass 62,64Ni isotopes. A set of transition and static E2 matrix elements for both yrast and near-yrast structures was extracted from the differential Coulomb excitation cross sections. From comparisons between the new results and MCSM as well as other shell-model calculations, a clearer picture of the structure of 64Ni emerges. Specifically, the low-spin states are shown to be dominated by proton and neutron excitations mainly within the fp shell, with minimal contribution from the g9/2 shape-driving neutron orbital. The agreement between experimental data and MCSM results indicates a small oblate deformation for the 0+2 level and a spherical shape for the 0+3 state. In addition, the small upper limit determined for the B(E2) probability of a transition associated with the decay of the recently observed 3463-keV, 0+4 state agrees with its proposed assignment to a prolate shape, herewith providing first evidence for triple shape coexistence in a stable Ni isotope.