Abstract
IEEE 802.11p/bd and 3GPP LTE-Vehicular & 5G NR-V2X technologies counteract the doubly-selectivity properties of wireless vehicular communications thanks to the Orthogonal Frequency Division Multiplexing (OFDM). However, this waveform is the source of adjacent channel interference caused by high out-of-band emissions and luck of spectrum access fairness as well as channel capacity limitations. Filter Bank Multiple Carrier (FBMC) and Universal Filtered Multiple Carrier (UFMC) are efficient waveforms reducing the inter-channel interference for 5G physical layer and beyond. This paper provides simulation measurements of the channel capacity under these waveforms by applying the Non-Orthogonal Multiple Access (NOMA) technology with respect to the 3GPP specifications. The results put in evidence less spurious emission and low Bit Error Probability (BEP) using FBMC compared to both OFDM and UFMC waveforms. The spectral efficiency is enhanced as well, thanks to the combination of NOMA with FBMC. The simulation source code is shared for reproduction and further development.