Abstract
Recent events, such as the loss of 38 satellites by SpaceX due to a geomagnetic storm have highlighted the importance of having more accurate estimation and prediction of thermospheric density. Solar and geomagnetic activities wield significant influence over the behavior of the thermospheric density, exerting an important impact on spacecraft motion in low-Earth orbit (LEO). The impending Solar Cycle 25's peak arrives at a time when the number of operational satellites in LEO is surging, driven by the proliferation of mega-constellations. This escalating satellite presence, spanning sectors from defense to commercial applications, increases the intricacy of the operational environment. The accuracy of thermospheric neutral density models, which underpin crucial safety-oriented tasks like satellite collision avoidance and space traffic management, is therefore pivotal. While the importance of solar events on thermospheric density is apparent, currently, the influence of the Sun in thermospheric density models is only included in the form of solar proxies (such as F10.7). This can be underwhelming, leading to mispredictions of thermospheric density values. A shared framework that supports the ingestion of inputs from various sources to devise thermospheric density models, and where thermospheric density models can be compared, is currently lacking. Furthermore, the recent advancements in machine learning (ML) offer a unique opportunity to construct thermospheric density models that use these models to describe the relationship between the Sun and the Earth's thermosphere. For this reason, this study introduces an open-source software package, called Karman, to help solve this problem. Essential for this, are three steps: first, the preparation and ingestion of input data from several sources in an ML-readiness fashion. Then, the construction of ML models that can be trained on these datasets. Finally, the creation of a benchmarking platform to compare ML models against state-of-the-art empirical models, evaluating their performances under varying conditions, such as geomagnetic storm strength, altitude, and solar irradiance levels.
The utility of this framework is demonstrated through various experiments, showcasing its effectiveness in both benchmarking density models and discerning factors driving thermospheric density variations. The study compares the performance of traditional empirical models (NRLMSISE-00 and JB-08) with machine learning models trained on identical inputs. The results reveal a consistent 20-40\% improvement in accuracy, highlighting the potential of machine learning techniques.
One particularly significant area addressed by this research involves the incorporation of additional inputs to refine density estimations. Current approaches rely on solar proxies for estimating the Sun's impact on the thermosphere. However, it is suggested that direct Extreme Ultraviolet (EUV) irradiance data could enhance accuracy. The framework outlined in this paper enables the integration of such inputs, facilitating the validation of hypotheses and supporting the evolution of thermospheric density models.
In conclusion, this study presents a comprehensive framework for advancing thermospheric density modeling in the context of LEO satellites. Through the development of neural network models, an extensive dataset, and a benchmarking platform, the paper contributes significantly to the improvement of satellite trajectory predictions. As the space environment becomes increasingly intricate, tools such as the presented framework are crucial for maintaining the safety and effectiveness of satellite operations in LEO.