Abstract
We present theoretical predictions for electron scattering on oxygen and calcium isotopic chains. The calculations are done within the framework of the distorted-wave Born approximation and the proton and neutron density distributions are evaluated adopting a relativistic Dirac-Hartree model. We present results for the elastic and quasi-elastic cross sections and for the parity-violating asymmetry. As a first step, the results of the models are tested in comparison with some of the data available for elastic and quasi-elastic scattering on O-16 and Ca-40 nuclei. Then, the evolution of some nuclear properties is investigated as a function of the neutron number. We also present a comparison with the parity-violating asymmetry parameter obtained by the PREX Collaboration on Pb-208 and give a prediction for the future experiment CREX on Ca-48.