Abstract
Journal of Mathematical Physics 43, 5254-5261 (2002) The energy-based stochastic extension of the Schrodinger equation is a rather
special nonlinear stochastic differential equation on Hilbert space, involving
a single free parameter, that has been shown to be very useful for modelling
the phenomenon of quantum state reduction. Here we construct a general closed
form solution to this equation, for any given initial condition, in terms of a
random variable representing the terminal value of the energy and an
independent Brownian motion. The solution is essentially algebraic in
character, involving no integration, and is thus suitable as a basis for
efficient simulation studies of state reduction in complex systems.