Abstract
This paper proposes re-sampled inheritance search (RIS), a novel algorithm for solving continuous optimization problems. The proposed method, belonging to the class of Memetic Computing, is very simple and low demanding in terms of memory employment and computational overhead. The RIS algorithm is composed of a stochastic sample mechanism and a deterministic local search. The first operator randomly generates a solution and then recombines it with the best solution detected so far (inheritance) while the second operator searches in an exploitative way within the neighbourhood indicated by the stochastic operator. This extremely simple scheme is shown to display a very good performance on various problems, including hard to solve multi-modal, highly-conditioned, large scale problems. Experimental results show that the proposed RIS is a robust scheme that competitively performs with respect to recent complex algorithms representing the-state-of-the-art in modern continuous optimization. In order to further prove its applicability in real-world cases, RIS has been used to perform the control system tuning for yaw operations on a helicopter robot. Experimental results on this real-world problem confirm the value of the proposed approach.