Abstract
We present a theoretical analysis of the optoelectronic properties of type-II GaAs1-xBix/GaNyAs1-y quantum wells (QWs) grown on GaAs substrates. We eludicate the broad scope for band structure engineering in these novel heterostructures, demonstrating that they offer emission and absorption out to mid-infrared wavelengths in structures which can be grown with little or no net strain relative to GaAs. We confirm our analysis by comparing to experiments on a prototype GaAs0.967Bi0.033/GaN0.062As0.938 structure, which show room temperature photoluminescence (PL) and absorption at a wavelength of 1.72 mu m (one of the longest achieved to date from a pseudomorphic GaAs-based heterostructure). Overall, we demonstrate that this new class of type-II QWs has significant promise for (i) extending the wavelength range accessible to the GaAs material platform, and (ii) the development of long-wavelength photonic devices and highly efficient solar cells.