Abstract
The level structure of Na-25 and Ne-22 in the high excitation energy/high spin regime was studied using gamma-ray spectroscopy and Doppler shift lifetime measurements following C-12(O-18 - alpha p)Na-25 and C-12(O-18, 2 alpha)Ne-22 reactions. Multiple new levels and transitions were identified in both nuclides based on y-y coincidence data. In Na-25, evidence was found for higher-spin negative-parity states up to I-pi = 13/2(-) resulting from neutron excitation into the pf shell, in good agreement with shell model calculations using the SDPF-MU and FSU interactions. Candidates for the yrast 7(+) and 8(+) levels in Ne-22, consistent with calculations using the USDB interaction, were also identified.