Abstract
CO2 utilization through the activation of ethane, the second largest component of natural and shale gas, to produce syngas, has garnered significant attention in recent years. This work provides a comparative study of Ni catalysts supported on alumina, alumina modified with CaO and MgO, as well as alumina modified with La2O3 for the reaction of dry ethane reforming. The calcined, reduced and spent catalysts were characterized employing XRD, N2 physisorption, H2-TPR, CO2-TPD, TEM, XPS and TPO. The modification of the alumina support with alkaline earth oxides (MgO and CaO) and lanthanide oxides (La2O3), as promoters, is found to improve the dispersion of Ni, enhance the catalyst's basicity and metal-support interaction, as well as influence the nature of carbon deposition. The Ni catalyst supported on modified alumina with La2O3 exhibits a relatively stable syngas yield during 8 h of operation, while H2 and CO yields decrease substantially for Ni/Al2O3.
[Display omitted]
•Ni catalysts on Al2O3 modified with MgO/CaO and La2O3 for the DER reaction.•Modification of Al2O3 improves the catalyst basicity and metal-support interaction.•Extensive ethane cracking into CH4 takes place during the first 3–4 h.•Ni/La–Al2O3 is the most active and stable with H2 and CO yields remaining constant.•Modification of Al2O3 aids the coke gasification and reduces catalyst degradation.