Abstract
[Display omitted]
•A series of Cu doped g-C3N4 catalysts were synthesized.•The samples used for catalytic hydrogenation of p-nitrophenol (Para-NP).•The sensor performance of prepared samples towards paracetamol was investigated.•g-C3N4 with 1% Cu exhibits superior catalytic performance and sensor activity.
A series of Cu doped graphitic carbon nitride (g-C3N4) catalysts with different ratios of copper were synthesized by thermal method, using urea and copper sulphate as precursors. XPS (X-ray Photoelectron Spectroscopy) studies indicated that the peak of N1s at 398.9 eV is due to CuN bond and a peak at 932.9 eV showed the presence of CuNC bond. Catalytic hydrogenation of p-nitrophenol (Para-NP) to para-aminophenol (Para-AP) in presence of g-C3N4 (gCN) and copper doped g-C3N4 (CN-Cu) with sodium borohydride (NaBH4) was investigated by UV–Visible spectroscopy. The as-synthesized graphitic carbon nitride with 1% copper (CN-1Cu) doped sample exhibits superior catalytic performance and higher stability compared to fine Cu powder in the second cycle. Additionally, electrochemical paracetamol sensing properties of the samples were studied using cyclic voltammetry and chronoamperometry. Consistent with the catalytic performances, CN-1Cu exhibited greater sensitivity towards the detection of paracetamol within the broad range of 38 µM to 3.64 mM and the study was carried out in the physiological pH ∼ 7.4.