Abstract
Ni-based catalysts supported on sol-gel prepared Pr-doped CeO2 with varied porosity and nanostructure were tested for the CO2 methanation reaction. It was found that the use of ethylene glycol in the absence of H2O during a modified Pechini synthesis led to a metal oxide support with larger pore size and volume, which was conducive toward the deposition of medium-sized Ni nanoparticles confined into the nanoporous structure. The high Ni dispersion and availability of surface defects and basic sites acted to greatly improve the catalyst’s activity. CFD simulations were used to theoretically predict the catalytic performance given the reactor geometry, whereas COMSOL and ASPEN software were employed to design the models. Both modelling approaches (CFD and process simulation) showed a good validation with the experimental results and therefore confirm their ability for applications related to the prediction of the CO2 methanation behaviour.
[Display omitted]
•Variation of sol-gel synthesis can alter the Pr-doped CeO2 support nanostructure.•Modified Pechini synthesis enhances the metal oxide porosity and pore volume.•Higher pore size and volume leads to medium-sized supported Ni nanoparticles.•Improved Ni dispersion, defect chemistry and basicity promote CO2 methanation.•CFD successfully predicts the catalysts’ performance and the reactor species.