Abstract
Lithium-sulfur (Li-S) batteries are promising for next-generation electrochemical energy storage due to their high energy density and low cost. Here, we introduce light-weight polar carbon selfdoping C3N4 nanosheets (C-CNN) as sulfur host for the fabrication of high performance Li-S batteries. The role of carbon doping in boosting the electrical conductivity of C-CNN is revealed by electrochemical impedance spectroscopy and electrical conductivity measurements. The strong chemical interactions between C-CNN and polysulfides are investigated by adsorption and post-mortem X-ray photoelectron spectroscopy analysis. Benefiting from the high surface area, enhanced electrical conductivity and high content of active N species (56.7 at%) in C-CNN, the strong chemical interactions between C-CNN and polysulfides can be fully exploited to minimize the shuttle effect and achieve long cycle life of Li-S batteries. As a result, the C-CNN/S cathode delivers a high specific capacity of 1050 mAhg(-1), good rate capability and excellent cycling stability with a low capacity decay of 0.07% per cycle at 1 C over 500 cycles, showing better performance than nitrogen-doped graphene. A performance comparison with the literature also shows that C-CNN is one of the most promising nitrogen-containing carbon materials for long cycle life Li-S batteries.