Abstract
This investigation examines the numerical cyclic response of historic masonry elements consisting of clay brick and lime mortar. The nonlinear procedures adopted for modelling the in-plane response of masonry panels under diagonal compression, as well as large walls under reverse lateral cyclic displacement and gravity load, are described. The numerical models are validated against the results of tests carried out under both dry and wet conditions which quantify the influence of moisture on the main response characteristics of the structural members. Considering the inherent material variability, the numerical results are shown to correlate well with the test results in terms of stiffness, strength, ductility, overall hysteretic response, and cyclic degradation. The numerical kinematics and stress distributions at failure are also found to be in good agreement with the test results including similar ultimate crack patterns. Overall, it is concluded that numerical models employing surface-based cohesive-contact approaches with due account for inelastic damage for modelling masonry interfaces, and damage-plasticity models to represent the constitutive behaviour of brick materials, can capture reliably the main structural response and failure modes.