Abstract
Evolving Anthropocene epoch wields significant influence in altering atmospheric carbon, which affects the carbon cycle, leading to climate change. Understanding the carbon stock, fate, and transport across ecosystems is essential in determining India's carbon budget, hitherto, unavailable. In this study, we have analysed the stock, source, distribution, flux, and the relationship between terrestrial and aquatic black carbon over a high-altitude mountainous area in the Western Ghats region using the data collected from September 2019 to February 2021. Soil Organic Carbon (SOC) and Black Carbon (BC) are highest in the forest region (SOC:23 ± 3 g of C/kg (dry weight (dw)), BC:6 ± 3 g/kg) and are lowest in the urban region (SOC: 13 ± 2 g of C/kg (dw), BC:2 ± 1 g/kg). SOC is labile, whereas BC is non-labile. The BC/SOC ratio represents soil lability. Topsoil BC/SOC ratios vary by land use and land cover, with urban areas having greater labile carbon pools than the forests. Dissolved BC (DBC) concentrations were most strongly correlated with bulk dissolved Organic Carbon (DOC) concentrations in midstream (R = 0.6, p < 0.05), headwater streams (R = 0.3, p < 0.05) and to the soil bulk DBC (R = 0.3, p < 0.05), indicating the presence of transfer mechanism of soil to streams. The molecular associations revealed the presence of biolabile autochthonous compounds suggesting the crucial role land use and land cover play on watersheds. A positive relationship between DOC with seasonal hydrology and gradient significantly influences DBC flux across regional streams. Intercomparison of observed terrestrial and aquatic carbon stocks with globally modelled data indicates an overestimation of regional-scale stock. These new findings have repercussions to policy framework on regional climate change. Further, the results suggest that a consistent quantification of BC and integration of regional and global source-to-sink process are needed in order to understand and better quantify biogeochemical process cycles and associated climatic impacts.