Abstract
Acid Sensing Ion Channels (ASICs) are one of the most studied channels of the Epithelial Sodium Channel/Degenerin (ENaC/DEG) superfamily. They are responsible for excitatory responses following acidification of the extracellular medium and are involved in several important physiological roles. The ASIC1 subunit can form a functional homotrimeric channel and its structure is currently the most characterised of the whole ENaC/DEG family. Here we computed the free energy profiles for single ion permeation in two different structures of ASIC1 using both Na+ and Cl- as permeating ions. The first structure is the open structure of the channel from the PDB entry 4NTW, and the second structure is the closed structure with the re-entrant loop which contains the highly conserved `HG' motif form PDB entry 6VTK. Both structures show cation selective free energy profiles, however the profiles of the permeating Na+ differ significantly between the two structures. Indeed, whereas there is only a small energetically favorable (-0.5 kcal mol-1) location for Na+ in the open channel (4NTW) near the end of the pore, we observed a clear ion binding site (-7.8 kcal mol-1) located in between the `GAS' belt and the `HG' loop for the channel containing the re-entrant loop (6VTK). Knowing that the `GAS' motif was determined as the selectivity filter, our results support previous observations while addressing the importance of the `HG' motif for the interactions between the pore and the permeating cations.