Abstract
•The motivations for continued FPE and LEM development are established•A non-linear and multi-domain model of the PMLSM is presented•Incorporation of the PMLSM in an FPEG multi-domain model is demonstrated•Model validation with data captured from an experimental FPEG is conducted•Simulation results indicate the model captures the dominant dynamics of the PMLSM
The Free Piston Engine (FPE) can be considered a viable and promising option in future low-carbon technology development. When coupled to the Linear Electric Machine (LEM) to produce electrical energy, its characteristic non-linear dynamics typically have been described as linear when considering a systems-level modelling approach. This paper presents a multi-domain model of a Permanent Magnet Linear Synchronous Machine (PMLSM) for Free Piston Engine Generators (FPEG) and offers a detailed non-linear mathematical description of the machine dynamics.
The model was implemented in a free-piston expander system and validated against experimental data from a test rig that has identical parameters. The simulation results indicate a strong correlation to the experimental data, which captured the dominant dynamics of the PMLSM and prove the satisfactory accuracy and performance of the model, together with a similar voltage and current output trace, indicating a cyclic energy output error of approximately 10 %. This paper aims to extend the current knowledge and literature within FPEG PMLSM design by considering the inherent non-linearity and multi-directional nature of the system dynamics and its interactions with multi-physical domains.