Abstract
This paper investigates the dynamical substitutes of the Moon's synodic and side-real resonant Near-Rectilinear Halo Orbits (NRHOs) under the Circular-Elliptic Restricted Four-Body Problem formulation. This model considers that the Earth and Moon move in elliptical orbits about each other and that a third body, the Sun, moves in a circular orbit about the Earth-Moon barycenter. The resonant periodic NRHOs are replaced by two-dimensional quasi-periodic tori in this model, which better approximate the real dynamics. We present the steps and algorithms needed to compute these dynamical structures as well as their geometry in the Circular-Elliptic model.