Abstract
Near Rectilinear Halo Orbits (NRHOs) are orbits of great interest for the upcom-ing lunar missions. To maintain NRHOs in a three-body regime, a stationkeeping strategy based on a high-order Target Point Approach (TPA) is proposed, where fuel-optimal and error-robust TPA parameters are acquired from stochastic global optimization. Accurate TPA manevuers are calculated in a high-order fashion enabled by Differential Algebra (DA) techniques. Stochasticity is handled by incorporating Monte Carlo simulations in the process of optimization and the evaluation of high-order ODE expansions is employed to supplant the time-consuming numerical integration. Multiple candidate NRHOs with different stability properties are investigated.