Abstract
Explosion of methane‐air mixtures is an important research issue. Of many factors affecting this process, initial turbulence has been recognized as an important one but less studied. This work determines the important parameters in the experimental process that affect gas explosion process and investigate the characteristics of pressure, temperature and velocity in the methane‐air explosion process under quiescent and turbulent conditions. Experiments and CFD are integrated to optimize the experimental parameters and elucidate the impact of initial turbulence on the explosion behavior of methane‐air mixtures. The results show good agreement between the computed results and experimental data. For a certain CH4 concentration within the explosive limit range, initial turbulence can increase the maximum explosion pressure () and the maximum rate of the pressure rise (), and shorten the time to reach to maximum explosion pressure (), enhance the explosion strength and destructive power of CH4‐air mixtures. Furthermore, the simulated pressure field indicates that the pressure will be uniform within the short time period during the gas explosion in a small space. At the same time, the experimental results show that turbulent flow can significantly broaden the explosive limits of CH4‐air mixtures and the effect is more apparent on the upper explosive limit than on the lower one. The ignition delay time which influences the homogeneous distribution of initial turbulence was determined by numerical simulation. The combination of numerical simulation and experimental results will provide more efficient method to understand the explosion characteristics and mechanism of flammable gas mixtures.