Abstract
This paper proposes a joint iterative optimization based hybrid beamforming technique for massive MU-MIMO systems. The proposed technique jointly and iteratively optimizes the transmitter precoders and combiners, aiming to approach the global optimum solution for the system sum-rate maximization problem. The proposed technique develops an adaptive algorithm exploiting the stochastic gradients (SG) of the local beamformers and provides low-complexity closed-form solutions. Furthermore, an efficient adaptive scheme is developed based on the proposed adaptive algorithm and the closed-form solutions. The proposed algorithm requires the signal-to-interference-plus-noise ratio (SINR) feedback from each user and a limited size transition vector to be exchanged between the transmitter and receivers at each step to update beamformers locally. Analytic result shows that the proposed adaptive algorithm achieves low-complexity when the array size is large and is able to converge within a small number of iterations. Simulation result shows that the proposed technique is able to achieve superior performance comparing to the existing state-of-art techniques. In addition, the knowledge of instantaneous channel state information (CSI) is not required as the channels are also adaptively estimated with each coherence time which is a practical assumption since the CSI is usually unavailable or have time-varying nature in real-time applications.