Abstract
In recent years, we have witnessed tremendous advances in cloud data centers (CDCs) from the point of view of the communication layer. A recent report from Cisco Systems Inc demonstrates that CDCs, which are distributed across many geographical locations, will dominate the global data center traffic flow for the foreseeable future. Their importance is highlighted by a top‐line projection from this forecast that by 2019, more than four‐fifths of total data center traffic will be Cloud traffic. The geographical diversity of the computing resources in CDCs provides several benefits, such as high availability, effective disaster recovery, uniform access to users in different regions, and access to different energy sources. Although Cloud technology is currently predominant, it is essential to leverage new agile software technologies, agile processes, and agile applications near to both the edge and the users; hence, the concept of Fog has been developed.
Fog computing (FC) has emerged as an alternative to traditional Cloud computing to support geographically distributed latency‐sensitive and QoS‐aware IoT applications while reducing the burden on data centers used in traditional Cloud computing. In particular, FC with features that can support heterogeneity and real‐time applications (eg, low latency, location awareness, and the capacity to process a large number of nodes with wireless access) is an attractive solution for delay‐ and resource‐constrained large‐scale applications. The distinguishing feature of the FC paradigm is that a set of Fog nodes (FNs) spreads communication and computing resources over the wireless access network to provide resource augmentation to resource‐limited and energy‐limited wireless (possibly mobile) devices. The joint management of Fog and Internet of Technology (IoT) paradigms can reduce the energy consumption and operating costs of state‐of‐the‐art Fog‐based data centers (FDCs). An FDC is dedicated to supervising the transmission, distribution, and communication of FC. As a vital component of the Internet of Everything (IoE) environment, an FDC is capable of filtering and processing a considerable amount of incoming data on edge devices, by making the data processing architecture distributed and thereby scalable. An FDC therefore provides a platform for filtering and analyzing the data generated by sensors utilizing the resources of FNs.
Increasing interest is emerging in FDCs and CDCs that allow the delivery of various kinds of agile services and applications over telecommunication networks and the Internet, including resource provisioning, data streaming/transcoding, analysis of high‐definition videos across the edge of the network, IoE application analysis, etc. Motivated by these issues, this special section solicits original research and practical contributions that advance the use of CDCs/FDCs in new technologies such as IoT, edge networks, and industries. Results obtained from simulations are validated in terms of their boundaries by experiments or analytical results. The main objectives of this special issue are to provide a discussion forum for people interested in Cloud and Fog networking and to present new models, adaptive tools, and applications specifically designed for distributed and parallel on‐demand requests received from (mobile) users and Cloud applications.
These papers presented in this special issue provide insights in fields related to Cloud and Fog/edge architecture, including parallel processing of Cloudlets/Foglets, the presentation of new emerging models, performance evaluation and improvements, and developments in Cloud/Fog applications. We hope that readers can benefit from the insights in these papers, and contribute to these rapidly growing areas.