Abstract
The increasing Greenhous Gases (GHG) concentration in the atmosphere is leading to a changing climate. The GHG emissions are directly or indirectly related to human activities. Meanwhile, human activities are affected by changing climate through various ways. One of the most important way is water availability changes in different industries and different regions. Water resources have close relationships with industrial activities and economic development. Moreover, the virtual water transfer embodied in multi-region trades have significant impacts on water stresses in different regions. Considering the close links among climate change, water, and economy, it is desired to project the long-term hydrological impacts and risks on various industries and regions to improve the awareness and understanding of stakeholders and governments.
In this study, a RAS water-extended input-output model (RWEIO) model based on the RegCM is developed to simulate the long-term precipitation, water availability as well as the related socio-economic consequences under various scenarios. A case study of China, which contains 30 provinces, is conducted to illustrate the potential benefits of the proposed RWEIO model and provide scientific support for the policy development for different provinces. To be specific, RegCM is used to project the spatial distributions of precipitation in China for future 100 years. RAS method is adopted to adjust the unbalanced socio-economic structure caused by various scenarios. Input-Output Model aims at exploring the economic and environmental impacts after the policy implementation.
It is found that the future water availability in different provinces vary significantly. The precipitation in Xinjiang Province will increase over 50%, while the water availability in south China will decrease slightly. The long-term impacts of water availability are higher in the provinces that rely on Agriculture industry, such as Ningxia, Shandong, Henan and so on. It is recommended that Provinces with rich water resources and high water consumption capacity (e.g., Guangdong, Shandong, Jiangsu) should take the initiative to assume more responsibilities for saving water resources of other provinces through reducing the inter-provincial imports of water-intensive products.