Abstract
Most of the binaural source separation algorithms only consider the dissimilarities between the recorded mixtures such as interaural phase and level differences (IPD, ILD) to classify and assign the time-frequency (T-F) regions of the mixture spectrograms to each source. However, in this paper we show that the coherence between the left and right recordings can provide extra information to label the T-F units from the sources. This also reduces the effect of reverberation which contains random reflections from different directions showing low correlation between the sensors. Our algorithm assigns the T-F regions into original sources based on weighted combination of IPD, ILD, the observation vectors models and the estimated interaural coherence (IC) between the left and right recordings. The binaural room impulse responses measured in four rooms with various acoustic conditions have been used to evaluate the performance of the proposed method which shows an improvement of more than 1:4 dB in signal-to-distortion ratio (SDR) in room D with T60 = 0:89 s over the state-of-the-art algorithms.