Abstract
We address the inherent high-field magnetoresistance (MR) of indium antimonide epilayers on GaAs (001), studying the modification of the MR when processed into a set of geometries. The changes produced by the geometries are quite subtle. The extraordinary MR geometry produces the highest low-field MR while the Corbino geometry produces the largest high-field magnetoresistance. We demonstrate that any material with an unsaturating linear intrinsic MR, will also have an unsaturating linear Corbino MR, and that the ideal material for linear MR sensors in conventional geometries would have a high mobility and a small, linear intrinsic MR.